
Implementation Aspects of a Delegation System

Isaac Agudo
Computer Science

Department
E.T.S. Ingenieria Informatica
University of Malaga,Spain

isaac@lcc.uma.es

Javier Lopez
Computer Science

Department
E.T.S. Ingenieria Informatica
University of Malaga,Spain

jlm@lcc.uma.es

Jose A. Montenegro
Computer Science

Department
E.T.S. Ingenieria Informatica
University of Malaga,Spain

monte@lcc.uma.es

ABSTRACT
In this paper we simulate an authorization and delegation
system using knowledge based technology. This proposal is
part of a visual tool that is intended to be an implementa-
tion of the theoretical model weighted trust graph (WTG).
A brief description of WTG Model and its associated tool
is included in the text. In essence, the model is based on
the inclusion of real numbers between zero and one in cer-
tificates to represent the trust level between the entities in-
volved in them. This trust level is used to control delegation.
Moreover, attributes from different domains may be inter-
related, so attribute delegation is also taken into account.
The proposed Simulation Engine supports one directional
and bidirectional search algorithms.

1. INTRODUCTION
Many authorization systems have been presented in the

literature, most of them based on logic formalism. They are
mostly based on DATALOG (PROLOG variant) but it is dif-
ficult to find real implementations with full implementation
details. In most approaches, two logical predicates are used
to encode the granting and delegation of attributes. They
are usually denoted with grant and delegated respectively.
Certificates or credentials are encoded using predicates also,
and delegation is implemented with the appropriate infer-
ence rules. In [7, 8] two logic authorization frameworks
are defined with different characteristics. There are many
differences between them, but the main ones are:

• DAP support negative credentials and hence non-monotonic
reasoning whereas RT do not.

• RT is based on local Roles or Attributes, whereas DAP
is based on resources and access rights.

We take the best of both, so we try to implement non-
monotonic reasoning, i.e. authorization can be retracted,
and we make use of local attributes. More over we provide
mechanisms to connect attributes from different domains.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobimedia’07 Month 8, 2007, Nafpaktos, Aitolokarnania, Greece
Copyright 2007 ACM ICST 978-963-06-2670-5 ...$5.00.

We have chosen CLIPS to implement the reasoning tool
for WTG because it is a widely used tool for knowledge
representation and reasoning. Certificates are the facts of
the system, together with other useful information, and the
inference engine gives us the answer to our authorization
requests. Moreover, CLIPS can be called from a C appli-
cation so connecting CLIPS with the graphical tools devel-
oped to define WTG credentials is straightforward. This
tool, including its source code, is available for download at
http://openpmi.sourceforge.net.

When asking for an authorization request, there are two
main approaches. The first approach consists of inferring
all authorization predicates and then checking if the desired
predicate is within the generated fact set. If the set of possi-
ble inferred rules (determined by the number of certificates
and rules) is comparable to the normal number of requests
per unit of time, this approach, which is called one direc-
tional search, is highly recommended. The second approach,
or goal oriented approach, makes use of the desired predicate
as a compass, so the choosing of inference rules is influenced
by the predicate we are looking for. When the number of
requests is significantly smaller than the set of potentially
inferred facts, is better not to spend time checking non useful
predicates and instead to do a goal oriented or bidirectional
search.

WTG uses attributes to define authorization. When us-
ing attributes, we have to keep in mind that they only have
meaning in the domain of definition of the attribute. At-
tributes are defined by entities, who are in charge of giv-
ing them meaning. Attributes are then defined as a pair
(Resp, ID). WTG offers the possibility of linking attributes
from different domains. In this way, an attribute is said to
be subscribed to another attribute when the first attribute
inherits all the privileges of the second one. As an exam-
ple, Alice may define attribute best friend to be subscribed
to attribute friend. In this way best friend is defined by
Alice as a specification of the attribute friend. Moreover,
Alice may subscript her attribute friend to the attribute
(Bob, friend), so Bob’s friend are defined by Alice as her
friends.

The outline of the paper is the following. Section two pro-
vides a brief description of the theoretical model weighted
trust graph (WTG). A visual tool to design and create in-
stances of WTG is described in section three. Section four
details the knowledge based system used to simulate the
WTG instances designed with the previously described vi-
sual tool. Finally, section five covers conclusions and ongo-
ing work.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1901

2. A BRIEF INTRODUCTION TO WEIGHTED
TRUST GRAPH (WTG)

Weighted Trust Graphs (WTG) [6] is a formalism that al-
lows authorization and delegation relationships to be mod-
elled. Authorization and delegation credentials have an as-
sociated index that is used to define the trust or confidence
level between the entities involved regarding the attribute
encoded in the credential, e.g. Alice may issue a creden-
tial to Bob granting attribute InternetAccess with a trust
level of 0.5. In a real situation the trust level can be used
to change authorization decisions based on context informa-
tion. There may be cases in which a trust level of 0.5 is
enough and cases in which it is not. The trust level can also
be used to evaluate the degree of responsibility of the issuer
of the credential in the case of a bad use of the attribute.

One of the mayor advantages of WTG is that it allows
users to define more complex policies and provides a graph-
ical representation for them. Another difference from pre-
vious proposals is that in WTG, delegation statements are
defined separately from authorization ones, so a delegation
credential does not implicitly give authorization rights.

Credentials are represented using edges in a graph. Thus,
both terms are used equally. We consider a credential as a
4-tuple:

(Issuer, Subject, Type, Attribute)

where

1. Issuer is the issuer of the authorization or delegation
statement,

2. Subject is whom this statement refers to,

3. Type is used to include the extra information needed
for defining authorization policies in credentials,

4. Attribute is the attribute granted or denied to the sub-
ject.

The type of a credential consists of a 3-tuple composed of
the following parameters:

• Weight, which represents the level of trust in this cre-
dential.

• Delegatable, which shows whether the statement is
delegatable or not.

• Sign, which represents the sign of the statement (neg-
ative or positive).

If we want to include time constraints, it should be part
of the credential Type and we should use a 4-tuple.

Then, a credential is defined as follows.
A credential is a 4-tuple of the form (Issuer, Subject,

Type, Attribute) where Issuer ∈ S, Subject ∈ S, Type =
(w, d, s) ∈ D × {0, 1} × {0, 1} and Attribute ∈ A.

• S is the set of subjects in the system;

• D is the domain where we evaluate the credential. In
general, it could be any real number, but for our frame-
work we restrict it to D = [0, 1]. We consider it as the
level of trust that the issuer has on this credential: ’1’
stands for fully trustable credential, while ’0’ stands
for null or empty credentials.

• A is the set of Attributes.

Delegation credentials can be chained, resulting in a dele-
gation path. Delegation paths have also an associated weight,
computed as the product of the weights of all the certificates
in the path. A delegation policy is a criteria used to define
whether or not attributes are effectively delegated to a par-
ticular user. The mere existence of a delegation certificate is
not enough. We represent by delegation(holder, attrResp,
attrId) that holder has been delegated attribute attrId by
attrResp. As mentioned before, attribute attrId by attrResp
is different from attrId by attrResp2, so attributes only
have a local meaning. A simple and efficient delegation pol-
icy is used in this paper. It consists of the following cri-
teria, delegation(holder, resp, attrId) holds if the greatest
weight of the positive delegation paths from resp to holder
is greater than the corresponding of the negative delegation
paths.

An authorization path consists of a delegation path plus a
consecutive authorization credential. The weight of an au-
thorization path is the product of the weight of the delega-
tion path and the authorization credential. In order to rep-
resent that holder is authorized by attrResp to make use of
the attribute attrId, the predicated authorization(holder,
attrResp, attrId) is used. Authorization policies consist of
criteria for deciding whether or not a user is authorized to
perform a certain operation. WTG defines several autho-
rization policies, we opt here for a pessimistic approach so
authorization policies will consist of a lower bound for the
minimal authorization path. Authorization policies are de-
fined by attribute managers, who are in charge of restricting
usage of the attributes. An authorization policy is repre-
sented by policy(attrResp, attrID, bound).

In WTG, users share their own resources with other users
and consume other users’ services and resources. Our model
uses attribute certificates to define authorization and delega-
tion policies. Attributes are connected to privileges, e.g. The
attribute Friend defined by Bob may be used to define who
is granted permission to access some of his services, but can
also be connected to other attributes, e.g. Attribute Brother
can be connected to the attribute Friend in the sense that
all privileges assigned to owners of Friend should also be
assigned to owners of Brother.

When we talk about attributes, we normally only use the
ID of the attribute but the manager or creator of the at-
tribute should also be taken into account, this is why an at-
tribute is defined as a tuple, (AttributeManager, AttributeID).
The attribute manager or source of attribute (SA), is the one
which defines the attributes and its links with privileges and
other attributes, so (Bob, Friend) is the attribute Friend
defined by Bob, which is different from (Alice, Friend) al-
though they have the same ID. An attribute is meaningless
outside the scope of the SA, so (Alice, Friend) is not mean-
ingful in Bob’s authorizations. If we want to give meaning to
an external attribute in our authorizations we should define
what we call an attribute subscription (AS), which consists
of a pair of attributes, eventually from different domains, in
which the first one is said to be subscribed to the second
one.

3. WTG VISUAL EDITOR
The previous section (section 2) details a theoretical model

to implement controlled delegation. In order to apply the

proposed model it is highly recommended to use a visual
tool. This is why we implemented the WTG Visual Editor.

Several libraries are required for the deployment of the
tool: OpenSSL, QT, GraphML, and PIGALE. An owner
version of OpenSSL [11] is used to manage the attribute
certificates related to the WTG graph. PIGALE, based
on QT libraries, is the graphical support library used to
draw graphs. The language selected to store the graphs is
GraphML, based on XML.

There are two possible ways of creating a WTG instance.
The first one is the usual way, i.e. by drawing elements in
the editor and the second is by selecting a group of attribute
certificates. These certificates store in the extension field the
information needed to create the graph. The defined exten-
sion is named WeightPathIdentifier and its ASN.1 represen-
tation is detailed in the following paragraph. More detailed
information about extension data and how use it, can be
founded in [6, 10].

WeightPathIdentifier EXTENSION ::=

{

SYNTAX WeightPathIdentifierSyntax

IDENTIFIED BY { id-ce-WeightPathIdentifier }

}

WeightPathIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF ArcsId

ArcsId ::= SEQUENCE {

Origin IssuerSerial,

Destination HolderSerial,

Weight REAL (0..1),

Delegable BIT,

Sign BIT

}

Figure 1 details a graphical design using the visual editor.
On the left (canvas) the user includes the actors (nodes) in-
volved in the delegation and authorization sentences (edges).
There are three types of actors: Source Authority (SoA), At-
tribute Authority (AA) and End User (EF). The description
of these roles corresponds to those described in the ITU doc-
ument [9]. First, the user draws two actors and then
draws the relationship between these actors, the del-
egation (normal line) and authorization (slotted lines) sen-
tences. Afterwards, the user assigns the weight to the sen-
tences (numbers over edges).

Figure 1: WTG instance in the Visual Editor

Template 1 Attribute Template

(deftemplate certificate

(slot issuer (type SYMBOL))

(slot holder (type SYMBOL))

(slot attr_Resp (type SYMBOL))

(slot attr_ID (type SYMBOL))

(slot delegation (type INTEGER) (allowed-values 0 1) (default 0))

(slot sign (type INTEGER) (allowed-values -1 1) (default 1))

(slot weight (type FLOAT) (range 0.0 1.0) (default 1.0))

(slot inferred (type SYMBOL) (allowed-values yes no) (default no)))

Once the WTG instance is designed, the visual tool of-
fers two useful functionalities, automatic creation of the re-
lated Attributed Certificate and a simulation that returns
those users which fullfil the authorization policies requisites.
These functionalities are located in the right hand side of the
application, Create Certificates and Apply Policy buttons
respectively.

The automatic creation of the attribute certificates related
to WTG allows the user to avoid this tedious and complex
task. Moreover, the manual creation of the attribute cer-
tificates may result in mistakes in the data of the certificate
extension.

The simulation functionality allows the user to simulate
the performance of the designed instance of WTG. This al-
lows us to establish whether users can do specific tasks and
carry out appropiate changes to the instace until we obtain
the desired result. The simulation engine is detailed in the
following section.

4. DESIGN AND DESCRIPTION OF THE
KNOWLEDGE BASED SYSTEM

As shown in the previous section (section 3), there is a
need for a simulation engine to test the expected behaviour
of WTG instances designed with the visual tool. To im-
plement the simulation engine, we were inspired by knowl-
edge based system. In particular, the selected language was
CLISP.

The issuance of attributes is done by means of attribute
certificates, with some extension, according to the ITU-T
X.509 framework [9]. The Issuer, Holder and Attribute ID
are the corresponding fields from ITU-T X.509. The other
fields are: The Attribute Manager, as said previously is re-
sponsible for the attribute contained in the certificate. The
Delegation field is 1 for delegation certificates and 0 for au-
thorization certificates. The Sign field indicates whether
the certificates assert attributes or deny them. Revocation
is carried out by issuing a new negative certificate instead
of by revoking existing certificates. The next field, Weight,
is used to define a fine grain delegation and authorization.
It offers the issuer the possibility of distinguishing between
different authorization and delegation levels. In this way,
different holders may receive different weights depending on
the trust relationships between the issuer and the holder.
The last field, inferred indicates whether the certificate has
been inferred or not.

Then, an attribute certificate is described in CLIPS by
using the following template,

As said before, attributes are described by an ID and its
manager. In order to connect attributes belonging to dif-
ferent managers, we use attribute subscriptions. In CLIPS

we use the following template to describe attribute subscrip-
tions,

Template 2 Attribute Subscription

(deftemplate attr_subs

(slot attrResp1 (type SYMBOL))

(slot attrID1 (type SYMBOL))

(slot attrResp2 (type SYMBOL))

(slot attrID2 (type SYMBOL)))

If an attribute is subscribed to a second one, the second
will be “translated” to the first one when an authorization
decision is made in the domain of the first attribute man-
ager, e.g. If (Alice, Friend) is subscripted to (Bob, Friend),
Alice is stating that Bob’s friends are also her friends, so she
is delegating her attribute authority to Bob. To describe at-
tributes we use both the “pair” notation, (Alice, Friend), or
the “dot” notation, Alice.Friend, in the text. More over, if
we have two consecutive subscriptions, we can chain them.
The purpose of this rule is merely to explore the relations of
all the attributes in the systems.

Rule 4.1 Attribute Subscription Transitiveness

(defrule attr_subs_transitiveness

(attr_subs (attrResp1 ?resp1) (attrID1 ?id1) (attrResp2 ?resp2) (attrID2 ?id2))

(attr_subs (attrResp1 ?resp2) (attrID1 ?id2) (attrResp2 ?resp3) (attrID2 ?id3))

=>

(assert (attr_subs (attrResp1 ?resp1) (attrID1 ?id1) (attrResp2 ?resp3) (attrID2 ?id3))))

New attribute certificates can be derived from others using
attribute subscriptions. As said before if attribute one is
subscribed to attribute two, attribute two certificates have
to be translated to attribute one certificates. Then, if there
is an attribute certificate regarding attribute two, the same
attribute, but regarding attribute one shall be inferred. The
inferred certificate will have the inferred field set to yes.

Rule 4.2 Attribute subscription and certificate rule

(defrule attr_subs_certificate

(attr_subs (attrResp1 ?resp) (attrID1 ?id) (attrResp2 ?resp2) (attrID2 ?id2))

(certificate (issuer ?a) (holder ?b) (attrResp ?resp2)(attrID ?id2)

(delegation ?del) (sign ?s) (weight ?w))

=>

(assert (certificate (issuer ?a) (holder ?b) (attrResp ?resp)

(attrID ?id) (delegation ?del) (sign ?s) (weight ?w) (inferred yes))))

Delegation is effective only when the delegation policy
holds, so the existence of delegation certificates is not enough.
We use a specific delegation policy which checks whether the
higher weight of all positive delegation credentials for the
same holder is higher than the lower weight of all negative
delegation credentials. Negative delegation certificates are
intended to deny delegation, so if the “best” positive certifi-
cate has a weight greater than the“best”negative certificate,
delegation becomes effective.

Rule 4.3 Delegation policy rule

(defrule delegation

(certificate (issuer ?resp) (holder ?holder) (attrResp ?resp) (attrID ?id)

(delegation 1) (sign 1) (weight ?w_plus))

(forall (certificate (issuer ?resp) (holder ?holder) (attrResp ?resp)

(attrID ?id) (delegation 1) (weight ?w_minus)) (test (<= ?w_minus ?w_plus)))

=>

(assert (delegation (holder ?holder) (attrResp ?resp) (attrID ?id))))

We represent paths of certificates by deriving an inferred
certificate. Two credentials can be chained in the case where,

1. The first credential is a positive delegation credential,
i.e. sign = 1 and delegation = 1.

2. The holder of the first credential has been delegated
the corresponding attribute, i.e. delegation(issuer1,
resp, id) holds.

3. They are consecutive, i.e. the holder of the first cre-
dential is the issuer of the second one.

4. The attributes of the two credentials are the same.

As said before, the resulting path will be stored in a cer-
tificate with the inferred field set to yes. The weight of this
virtual certificate will be the product of the weights of the
two chained certificates. Consequently, the longer the chain
is, the lower the weight will be. The sign and delega-
tion fields of the inferred certificates are taken from
the second certificate. The CLIPS rule used to chain
certificates is,

Rule 4.4 Certificate chain rule

(defrule chain

(delegation (holder ?holder1) (attrResp ?resp) (attrID ?id))

(certificate (issuer ?issuer1) (holder ?holder1) (attrResp ?resp)

(attrID ?id) (delegation 1) (weight ?x) (sign 1))

(certificate (issuer ?holder1) (holder ?holder2) (attrResp ?resp)

(attrID ?id) (delegation ?del) (weight ?y) (sign ?s))

=>

(assert (certificate (issuer ?issuer1) (holder ?holder2) (attrResp ?resp)

(attrID ?id) (delegation ?del) (weight (* ?x ?y)) (sign ?s) (inferred yes))))

In an arbitrary environment, the two rules defined until
now could be in conflict because of loops. In order to avoid
this, we could prevent CLIPS from generating new inferred
certificates in case a previous certificate exists with the same
fields but with a greater weight. A path with a loop will
have a lower weight than the same path without the loop,
as the weight of the path is computed by multiplying the
weights of the certificates in the path and these weights are
between zero and one. Therefore paths with loops are natu-
rally discarded, but in order to optimize the program, such
a constraint could be explicitly defined at the begining of
rule 4.4.

In [2], Toumas Aura analyzes the structure of delegation
networks and somehow concludes that the effective delega-
tion network is a Directed Acyclic Graph (DAG). For more
information on DAG, see [4]. In DAGs there are no loops, in
fact they correspond to partial order sets, so applying these
rules to DAG is straightforward.

By using the delegation policy rule and the certificate
chain rule, the authorization and delegation information is
spread throughout the system. This has to be complemented
by users defining authorization policies for their attributes.
The matching of services, privileges and attributes is out-
side the scope of this paper. Once the attribute is consid-
ered valid for a requester, all the privileges linked to it will
be available to him/her. Therefore, the manager of the at-
tribute has to define authorization or activation policies for
their attributes. Those policies consist of a lower bound for
the lowest positive authorization weight, given that there are
no negative authorization certificates. The higher the bound
is, the more restrictive the policy will be. An authorization
policy is defined using the following CLIPS template,

Template 3 Attribute activation policy

(deftemplate policy

(slot attr_Resp (type SYMBOL))

(slot attr_ID (type SYMBOL))

(slot bound (type FLOAT) (range 0.0 1.0) (default 0.0)))

Then with the authorization rule, Figure 4.5, the effec-
tive granting of an attribute can be checked. This rule has
a higher priority so inference stops as soon as the desired
authorization predicates are inferred.

Rule 4.5 Authorization policy rule

(defrule authorization

(declare (salience 10))

(policy (attrResp ?resp) (attrID ?id) (bound ?x))

(certificate (issuer ?resp) (holder ?holder)

(attrResp ?resp)(attrID ?id) (delegation 0) (sign 1) (weight ?w))(test (> ?w 0))

(not (exists (certificate (issuer ?resp) (holder ?holder)

(attrResp ?resp) (attrID ?id) (delegation 0) (sign -1) (weight ?w))(test (> ?w 0))))

(forall (certificate (issuer ?resp) (holder ?holder)

(attrResp ?resp)(attrID ?id) (delegation 0) (sign 1) (weight ?w))(test (< ?x ?w)))

=>

(assert (authorization (holder ?holder) (attrResp ?resp) (attrID ?id))))

4.1 Goal oriented search
The previously presented set of rules will infer all the dele-

gation and authorization relationships in the system. When
trying to simulate the behavior of the set certificates de-
fined with the visual tools, we have to take into account
their size. If there are too many certificates, the inference
using the previous rules will take too long. If we want to
restrict the scope of the inference, i.e. focus on particular
entities or certificates, we have to let CLIPS know our in-
ference goal. CLIPS by itself does not manage goal oriented
inference, so we have to include some details in the previous
rules to make a CLIPS implementation usable. Those rules
defined here, in this section, will replace the previous ones
in the case where we want to CLIPS to work in goal oriented
mode.

For each request, a tuple of the form

(authorization
(holder Requester) (attrResp Attr_Resp) (attrID Attr_ID))

has to be found in the CLIPS facts set. This fact will be
the inference goal.

Once the Goal is clear, we have to decide if we want the
inference to be started by the user responsible for the at-
tribute or by the requester, i.e. chaining certificates starting
from the beginning or from the end. As the bidirectional
search has been proven to be more efficient [1, 3], we try to
start chaining certificates from both sides.

Attributes are chained backward and only attribute sub-
scriptions leading to the requested one will be taken into
account. To inform CLIPS about the desired inferred di-
rection, we use facts of the form, valid issuerAttr Resp,
valid holderRequester and valid attrAttr RespAttr ID.
These facts will be used to refine the rules defined in the
previous section so that new facts are near to the desired
ones.

We start redefining rules about attributes. Rule 4.6 is re-
stricted so the inferred attribute subscription is a subscrip-
tion of a valid attribute with some other one. In Rule 4.7,

Holder

SA

Fordwars Backwards Bidirectional

Figure 2: Different search algorithms in graphs

restriction consists of checking that the inferred certificate
is a certificate about a valid attribute. The resulting rules
are, Rule 4.6 and Rule 4.7.

Rule 4.6 Goal oriented attribute subscription transitiveness

(defrule attr_subs_transitiveness_goal

(attr_subs (attrResp1 ?resp1) (attrID1 ?id1)(attrResp2 ?resp2)(attrID2 ?id2))

(attr_subs (attrResp1 ?resp2) (attrID1 ?id2)(attrResp2 ?resp3)(attrID2 ?id3))

(valid_attr ?resp1 ?id1)

=>

(assert (attr_subs (attrResp1 ?resp1) (attrID1 ?id1) (attrResp2 ?resp3) (attrID2 ?id3))))

Rule 4.7 Goal oriented attribute subscription and certifi-
cate rule

(defrule attr_subs_certificate_goal

(valid_attr ?resp ?id)

(attr_subs (attrResp1 ?resp) (attrID1 ?id) (attrResp2 ?resp2) (attrID2 ?id2))

(certificate (issuer ?a) (holder ?b) (attrResp ?resp2)

(attrID ?id2)(delegation ?del) (sign ?s) (weight ?w))

=>

(assert (certificate (issuer ?a) (holder ?b) (attrResp ?resp)

(attrID ?id) (delegation ?del) (sign ?s) (weight ?w) (inferred yes))))

Together with these rules, we have to define a new rule,
Rule 4.8, to derive new valid attributes, i.e. those which
CLIPS will look for.

Rule 4.8 Valid attributes

(defrule valid_attribute

(attr_subs (attrResp1 ?resp1) (attrID1 ?id1) (attrResp2 ?resp2) (attrID2 ?id2))

(valid_attr ?resp1 ?id1)

=>

(assert (valid_attr ?resp2 ?id2)))

Lets now start redefining the rest of the rules. When
chaining two certificates, either the issuer of the first one
or the holder of the second one has to be a valid issuer or
holder respectively and also the attribute has to be a valid
attribute. This premise modifies Rule 4.4 to obtain Rule 4.9

Rule 4.9 Goal oriented certificate chain rule

(defrule chain_goal

(delegation (holder ?holder1) (attrResp ?resp)(attrID ?id))

(certificate (issuer ?issuer1) (holder ?holder1)

(attrResp ?resp) (attrID ?id) (delegation 1) (weight ?x) (sign 1))

(certificate (issuer ?holder1) (holder ?holder2)

(attrResp ?resp)(attrID ?id) (delegation ?del) (weight ?y) (sign ?s))

(or (valid_issuer ?issuer1) (valid_holder ?holder2))

(valid_attr ?resp ?id)

=>

(assert (certificate (issuer ?issuer1) (holder ?holder2)

(attrResp ?resp)(attrID ?id) (delegation ?del) (weight (* ?x ?y)) (sign ?s)(inferred yes))))

Moreover, when checking delegation effectiveness, only
certificates about valid attributes have to be taken into ac-
count. This leads to a modification of Rule 4.3, which turns
into Rule 4.10.

Rule 4.10 Goal Oriented delegation policy rule

(defrule delegation

(certificate (issuer ?resp) (holder ?holder) (attrResp ?resp)

(attrID ?id) (delegation 1) (sign 1) (weight ?w_plus))

(forall (certificate (issuer ?resp) (holder ?holder)

(attrResp ?resp)(attrID ?id) (delegation 1) (weight ?w_minus))

(test (<= ?w_minus ?w_plus)))

(valid_attr ?resp ?id)

(valid_issuer ?resp)

=>

(assert (delegation (holder ?holder) (attrResp ?resp) (attrID ?id))))

In order to generate new valid issuers and holders we need
to define these two rules,

Rule 4.11 Valid holder

(defrule valid_holder

(certificate (issuer ?issuer) (holder ?holder) (attr_Resp ?resp) (attr_ID ?id))

(valid_issuer ?issuer)

(valid_attr ?resp ?id)

=>

(assert (valid_holder ?holder)))

Rule 4.12 Valid issuer

(defrule valid_issuer

(delegation (holder ?holder) (attrResp ?resp) (attrID ?id))

(valid_issuer ?resp)

(valid_attr ?resp ?id)

=>

(assert (valid_issuer ?holder)))

With this modification, CLIPS follows the steps marked
by the valid attributes, issuers and holders. In this way the
computation is more efficient when asking a single request.
So when the simulation is focuses on particular elements,
this approach should be taken.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have implemented a simulation engine

for a simplification of the WTG authorization model, and
both a neutral and a goal oriented search algorithm have
been implemented. Certificates are translated into CLIPS
facts and then the program runs, providing answers to the
authorization requests. The experimental results prove that
using goal oriented algorithm is more efficient because the
corresponding authorization predicate is inferred in fewer
inference steps and less time. A formal proof for the algo-
rithm is outside the scope of this work, in [6, 5] there is more
information on the described algorithms.

This work complements WTG by allowing designers and
security administrators to check if the defined certificates
reflect the desired behavior of the system, before distributing
the certificates.

6. REFERENCES
[1] Tuomas Aura Fast access control decisions from

delegation certificate databases. Third Australasian
Conference on Information Security and Privacy, pages
284–295, 1998.

[2] Tuomas Aura On the structure of delegation networks
Proc. 11th IEEE Computer Security Foundations
Workshop, 1998, IEEE Computer Society Press.

[3] Tuomas Aura Comparison of graph-search algorithms
for authorization verification in delegation networks, In
the proceedings of 2nd Nordic Workshop on Secure
Computer Systems NORDSEC’97, Espoo, Finland,
November 1997.

[4] Carlos Cotta, Jose M. Troya Analyzing Directed
Acyclic Graph Recombination Computational
Intelligence. Theory and Applications : International
Conference, 7th Fuzzy Days Dortmund, Germany,
October 1-3, 2001, Proceedings.

[5] Isaac Agudo, Javier Lopez and Jose A. Montenegro
Graphical Representation of Authorization Policies for
Weighted Credentials In 11th Australasian Conference
on Information Security and Privacy. (ACISP’06), pp.
383-394. LNCS 4058, Springer. Melbourne, Australia.
July 2006.

[6] Isaac Agudo, Javier Lopez and Jose A. Montenegro. A
representation model of trust relationships with
delegation extension. In 3rd International Conference
on Trust Management, iTrust 2005, volume 3477 of
Lecture Notes in Computer Science, pages 116 – 130.
Springer, 2005.

[7] Yan Zhang Chun Ruan, Vijay Varadharajan.
Logic-based reasoning on delegatable authorizations. In
Foundations of Intelligent Systems : 13th International
Symposium, ISMIS, 2002.

[8] Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based trust management
framework. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pages 114–130.
IEEE Computer Society Press, May 2002.

[9] ITU-T X.509, ISI/IEC 9594-8, Information technology -
Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks.
08/2005.

[10] Isaac Agudo, Javier Lopez, Jose A. Montenegro A
Graphical Delegation Solution for X.509 Attribute
Certificates ERCIM News. SPECIAL THEME:
Security and Trust Management No. 63, Octubre 2005,
pp. 33-34. ISSN: 0926-4981

[11] Jose A. Montenegro, Fernando Moya A practical
approach of X509 Attribute Certificate Framework as
support to obtain Privilege Delegation 1st European
PKI Workshop: Research and Applications. Isla de
Samos, Grecia. Junio 2004 LNCS 3093,
Springer-Verlag, pp. 160-172. ISBN 3-540-22216-2

