
Reliability Considerations in Mobile Devices

I. Voyiatzis
Department of Informatics,
Technological Educational

Institute of Athens,
Greece

voyageri@otenet.gr

D. Kavvadias
Department of Mathematics

University of Patras
Greece

kavadias@ceid.gr

H. Antonopoulou
TEI of Patras &

Computer Engineering and
Informatics Department,

University of Patras,
Greece

antonopl@cti.gr

S. Sinitos

Department of Informatics,
Technological Educational

Institute of Athens,
Greece

ssocratis@yahoo.com

ABSTRACT

The problem of reliability in current chips has been the subject of

numerous researchers. Mobile devices, commonly used in

multimedia communications require low power during both

normal operation and testing. In this paper a novel algorithm is

presented for embedding test sets containing don’t care values

into sequences generated by binary counters. Therefore, both test

time and power consumed during testing of the chips can be

considerably reduced.

Keywords

Low power testing, Mobile device reliability.

1. INTRODUCTION
The reliability problem in current electronic devices is the subject

of ongoing research [1]. Mobile devices, apart from the ever-

existing need for low power during normal operation suffer from

an increasing demand for low power during testing. Various

schemes have been proposed in order to provide efficient low-

power testing capabilities. One class of proposed solutions,

namely Built-In Self Test (BIST) schemes has been shown to be

irreplaceable for testing mobile devices; BIST schemes utilize

on-chip circuitry to generate test patterns and verify the

respective responses of the circuit. Therefore. they drive down

the cost of test and boost the quality of the resulting testing

scheme possessing various advantages, e.g. low cost, high quality

of the delivered IC for both modeled and non-modeled faults and

the possibility for performing at-speed test. It is for these (and

other) reasons that BIST schemes seem to have been well

accepted by the IC design and manufacturing community [2].

The BIST circuitry of a combinational CUT comprises a test

generator (TG) that generates the required test patterns (and

applies them to the CUT inputs) and a Response Verifier (RV)

that compresses the CUT responses and evaluates the compressed

output. Pseudorandom BIST schemes utilize sequences generated

by modules that can be found on-chip (e.g. counters or

accumulators) or can be easily implemented by modifying

existing registers (e.g. Linear Feedback Shift Registers, LFSRs

[3]). The main advantages of the pseudorandom testing paradigm

include the low hardware overhead and the simplicity of the

BIST control. Counters have been successfully utilized as BIST

pattern generators in the BIST context [5], [8], since these

modules commonly exist into current devices.

Among the pseudorandom schemes that have been proposed, the

test set embedding paradigm that tries to embed a given test set

into the sequence generated by a pseudorandom generator has

gained attention by researchers [4], [5], [6], [7]. A test set

embedding scheme typically utilizes a test set T and a hardware

generator G and tries to embed T into the sequence generated by

G, in such a way that the length of the selected subsequence is

minimized. The advantage of test set embedding stems from the

fact that the pseudorandom generator used has moderate or low

hardware overhead.

Firstly, Lempel et al, utilized theory of discrete logarithms to

embed test patterns into LFSR-generated sequences [4]. Kagaris

and Tragoudas utilized counters, and by using negation and

permutation of the counter outputs succeeded to generate

complete test sets into the thereof generated sequences within

acceptable time limits [5], [8]. Dorsch [6] proposed an algorithm

for embedding test patterns, and, as a next step, whole test sets

into sequences generated by accumulators. In a recent work [9],

an algorithm was presented that, given an n-stage accumulator

accumulating a constant pattern B, calculates in O(n) time, the

location of any given pattern V into the generated sequence.

In this paper we propose a novel algorithm that, given a test set

containing don’t care (X) values, calculates a minimum sequence

generated by a binary counter that generates all the test patterns of

the test set. Therefore, the power generated for the testing of the

module is deteriorated.

In order to provide the framework in which the proposed

algorithm operates, we shall present the typical procedure one

would follow in order to generate a test set for a given circuit. At

first, the description of the CUT is entered into an Automatic

Test Pattern Generation (ATPG) tool e.g. [12]. The ATPG tool

generates test patterns (usually containing don’t care values).

Next, the test set is compressed, in an attempt to decrease the

number of patterns. In effect, some of the ‘X’ values are replaced

with 1’s or 0’s (some times arbitrarily) without necessarily

increasing the fault coverage. The output of the tool is thus a test

set containing 0’s and 1’s.

The above-mentioned procedure is viewed differently from the

BIST designer viewpoint. BIST engineers, especially those

targeting the problem of embedding test patterns, firstly simulate

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Mobimedia’07, August 27-29, 2007, Nafpaktos, Greece.

Copyright 2007 ICST 978-963-06-2193-9

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1890

pseudorandom patterns in portions of a predetermined number

e.g., 32K patterns. When the simulation comes to a point where a

few portions (e.g. 3 consecutive applications of 32K patterns) do

not detect any new faults, the remaining faults are labeled as

‘non-randomly testable’ or so-called ‘hard-to-detect’ faults [8]. It

is for these faults that test patterns (containing don’t cares) are

generated and test embedding is applied. The rationale of this

approach is that if hard-to-detect faults are detected with a

pseudorandom sequence of adequate length, then pseudo-

randomly testable faults will be also detected. Experimental

results indicate that this approach gives fruitful results, e.g. in

[4], [5], [6], [8].

The exploitation of don’t care values drives down the number of

required patterns as is shown experimentally in the sequel.

In this paper we present a novel algorithm for Embedding Test

sets containing don’t care values (TEX) into counter-generated

sequences that, given a test set containing vectors with don’t care

bits, calculates an optimal subsequence of the sequence generated

by a binary counter that contains the required test set.

The paper is organized as follows. In Section 2 some definitions

and Lemmas are provided, that are utilized in Section 3 where the

proposed algorithm is presented, exemplified and analyzed; in

Section 4 experimental results of the application of the proposed

algorithm into some test sets are presented. We conclude the

paper in Section 5.

2. DEFINITIONS, NOTATIONS AND

LEMMAS
We denote by L(V) the location of an n-bit pattern V in the

sequence generated by an n-stage counter starting from the all-

zero value, i.e. the number of cycles that the counter needs to

operate in order to generate V. For example, for n=3, the location

of V=6 in the generated sequence is L(6) = 6. Furthermore, the

distance of two patterns V1 and V2 in the sequence generated by

a counter is the difference L(V1) - L(V2).

Definition 1: Consider an n-bit vector V containing k don’t care

bits, 0<=k<=n. The expanded list of V is a list of 2k vectors,

each one of consisting only of ‘0’ and ‘1’, in such a way that all

2k combinations of ‘0’ and ‘1’ appear into all positions held by

‘X’ in the vector V.

From Definition 1, if V has k don’t care bits, then there are

exactly 2k vectors in its expanded list. For example, let n = 5 and

V=01X1X. Then k = 2 and the expanded list of V consists of the

2k = 4 binary vectors: {01010, 01011, 01110, 01111}.

Definition 2: Consider a test set T comprising of t test vectors

containing don’t care values and the t expanded lists L1, L2, …,

Lt of the t test vectors V1, V2, …, Vt respectively. Let Ti be a

vector belonging to one (or more) of the expanded lists of Vi,

1≤i≤t. The including list of a vector Ti in the test set is a list of

the including lists this vector belongs to.

For example, let us consider the test set consisting of 9 5-bit test

vectors, given in Figure 1(a). The expanded lists of the test

vectors of the test set are presented in Figure 1(b). The decimal

notation of each vector is presented in Figure 1(c) for reference

purposes. Then, the including list of V=3 is {L7, L9}, while the

including list of V=19 is {L3, L7, L9}. In Figure 2 the including

lists of all the test vectors of the test set presented in Figure 1 are

presented.

V1 = 101XX

V2 = X10XX

V3 = 100XX

V4 = 0111X

V5 = X10X0

V6 = X00X0

V7 = XX011

V8 = XX101

V9 = X00X1

(a)

L1 = {10100, 10101, 10110, 10111}

L2 = {01000, 01001, 01010, 01011, 11000, 11001, 11010, 11011}

L3 = {10000, 10001, 10010, 10011}

L4 = {01110, 01111}

L5 = {01000, 01010, 11000, 11010}

L6 = {00000, 00010, 10000, 10010}

L7 = {00011, 01011, 10011, 11011}

L8 = {00101, 01101, 10101, 11101}

L9 = {00001, 00011, 10001, 10011}

(b)

L1 = {20, 21, 22, 23}

L2 = {8, 9, 10, 11, 24, 25, 26, 27}

L3 = {16, 17, 18, 19}

L4 = {14, 15}

L5 = {8, 10, 24, 26}

L6 = {0, 2, 16, 18}

L7 = {3, 11, 19, 27}

L8 = {5, 13, 21, 29}

L9 = {1, 3, 17, 19}

(c)

Figure 1. (a) Test set for the c17 benchmark (b) corresponding

expanded lists (c) decimal notation

V Including list of V V Including list of V

0 {L6}

1 {L9} 17 {L3, L9}

2 {L6} 18 {L3, L6}

3 {L7, L9} 19 {L3, L7, L9}

5 {L8} 20 {L1}

8 {L2, L5} 21 {L1, L8}

9 {L2} 22 {L1}

10 {L2, L5} 23 {L1}

11 {L2, L7} 24 {L2, L5}

13 {L8} 25 {L2}

14 {L4} 26 {L2, L5}

15 {L4} 27 {L2, L7}

16 {L3, L6} 29 {L8}

Figure 2. Including lists of the vectors of the expanded lists of

Figure 1(b)

Definition 3: Consider a test set T with t vectors Ti, 1≤=i≤t,

containing don’t care values. The covering list of the test set T is

a list, each element of which is a vector belonging to one (or

more) of the expanding lists of the vectors Ti that belong to T, (in

ascending order) together with the including list of each test

vector.

For example, the covering list for the test set under consideration

is presented in Figure 3.

L = { 0 {L6}

 1 {L9}

 2 {L6}

 3 {L7, L9}

 5 {L8}

 8 {L2, L5}

 9 {L2}

 10 {L2, L5}

 11 {L2, L7}

 13 {L8}

 14 {L4}

 15 {L4}

 16 {L3, L6}

 17 {L3, L9}

 18 {L3, L6}

 19 {L3, L7, L9}

 20 {L1}

 21 {L1, L8}

 22 {L1}

 23 {L1}

 24 {L2, L5}

 25 {L2}

 26 {L2, L5}

 27 {L2, L7}

 29 {L8}

}

Figure 3. Covering List for the test set of Figure 1

In the sequel we will say that the pair of vectors V1, V2, V1<V2

covers list L1 if L1 belongs in the including list of any vector Vi

for V1≤Vi≤V2.

In the sequel, we shall say that a pair of vectors V1, V2, covers

the test set T if it covers the lists of all vectors of T. For example,

the pair of vectors (14, 25) covers the test set T, since it covers all

lists L1 ..L9 of the test set.

Definition 4: We will say that a pair of vectors (V1, V2)

minimally covers the test set T if it covers the test and the

difference V2-V1 is the minimum among the pairs that cover the

test set.

For example, the pair of vectors (15,24) minimally covers the test

set under consideration. Indeed, it is easy to see that it covers the

test set T. Furthermore, the distance 24-15=9 is the minimum

among the pairs that cover the test set.

Lemma 1: If the pair of vectors (V1, V2) covers the test set, then

all pairs (V1, V3) for V3 > V2 cover the test set.

Proof: Since all lists are covered by V1, V2, and V3>V2, all lists

are covered by (V1, V3) Q.E.D.

Lemma 2: Let Vt be the last (larger in value) vector in the

expanded lists of the test set and V1 a vector in the expanded list.

Then, if the pair (V1, Vt) does not cover the test set, no pair (V2,

V3) for V1≤V2≤V3 covers the test set.

Proof: If (V1, Vt) does not cover the test set, then there is (at

least) one list Li that is not covered by the pair (V1, Vt). This list

cannot be covered by the pair (V2, V3), since V2≥V1. Q.E.D.

For example, in Table I, the pair (16,29) does not cover the test

set. Therefore, none of the pairs whose first vector is V2, with V2

>=16 can cover the test set. These “hopeless” pairs are presented

in the Table 1.

3. THE PROPOSED ALGORITHM

Given the definitions of the previous Section, the proposed TEX

algorithm operates in 3 steps as outlined below:

Algorithm TEX (T, t, n)

//T is a test set, containing t test vectors Ti, (1≤i≤t). Each vector in

the test set contains n-tuples of ‘1’, ‘0’ and ‘X’.

Step 1. Construct the expanded list Li for every test vector Ti

in T.

Step 2. Construct CL, the covering list of the test set.

Step 3. For all pairs of numbers (Vi, Vj) in CL, calculate the

lists covered by the pair (Vi, Vj). Calculate the

distance of all pairs covering the test set T. Among

the pairs that cover the test set, the pair having the

smallest distance is chosen as the best solution for the

considered generator.

The following Observations can be used to drastically reduce the

time required by the TEX algorithm. For a justification of

Observation 1, see Lemma 1; for a justification of Observation 2,

see Lemma 2.

Observation 1: If pair (Vi, Vj) generates all lists, there is no

point in examining pairs (Vi, Vk) for k>j, since the distance will

be greater.

For example, in Table I, the pair (13, 24) covers the test set; thus,

there is no reason to examine pairs (13, 25), (13, 26) e.tc., since

the respective distance (D) will be certainly greater. Taking into

account Observation 1, the number of tried pairs in this example

reduces by 71 (grey shaded vectors in Table I).

Observation 2: Let Vn be the greatest vector that belongs to the

expanded lists of all vectors of the test set. If the pair (Vi, VN)

does not generate the test set, no pair (Vj, Vk) for Vk>=Vj>=Vi

will cover the test set.

For example, in Table I, since the pair (16, 29) (last try having 16

as the first vector) does not generate all lists, there is no point in

trying pairs whose first vector is 17, 18, …. With Observation 2,

the number of tried pairs is further reduced by another 78 pairs.

Therefore, thanks to observations (1) and (2) a total reduction of

71 + 78 = 149 / 325 ≈ 45% is achieved.

In order to perform an analysis of the proposed algorithm, we

shall calculate the complexity of each step as follows.

Step 1. Requires the generation of the including list 1 of each

vector of the test set. If t is the number of unspecified

(don’t care) bits of a test vector, the complexity of

this step is of the order O(2t). Therefore, the

complexity of the step is of the order

∑
=

t

i

ki

1

2 (1)

Where ki is the number of unspecified bits in Ti,

1<=i<=t.

Step 2. The complexity of this step is of the order O(nlogn)

required by the insertion sort algorithm to insert the

patterns into the sorted list.

Step 3. The complexity of this step is of the order O(n2),

where n is the number of test patterns in the covering

list. Since the number of test patterns depends on the

number of the unspecified bits in the original test set,

the complexity is upper bounded by O((∑
=

t

i

ki

1

2)2).

The upper bound lies on the fact that some (if not

many) vectors are contained in the lists of more than

one vector, therefore the number of patterns in this

step is (much) less than the one calculated by (1).

4. SIMULATIONS AND EXPERIMENTS
In order to investigate the applicability of the proposed

algorithm, we have applied it into randomly-generated test sets

for various values of n, the number of bits and for various values

of the number of X, the don’t care values. The utilized test sets

are presented in the Appendix.

In Table 2 we present the results of the conducted experiments.

Initially we generated randomly test patterns containing

unspecified bits of various values of n and computed the length

of the sequence required by a binary counter to generate the test

patterns. Then we filled the unspecified values with 0 and 1, in

three ways: all X-values were substituted by 0 (column denoted

‘All-0’) or 1(column denoted ‘All-1’), or the unspecified bits

were filled randomly (column denoted ‘Random’). We calculated

the length of the sequence required to generate the resulting test

set in each case.

In Table 2 in the first column we present the value of the number

of the bits (n). In the second column we present the length of the

sequence calculated by the proposed scheme. In the next columns

we present the length of the sequence required to generate the

patterns resulting after substituting ‘X’ with either ‘0’ (second

column), ‘1’ (third column) or randomly ‘1’ or ‘0’ (fourth

column), as well as the increase in the number of required cycles.

From Table 2 we can conclude that not only the proposed scheme

always results in a shorter test sequence than all the other

sequences (as expected), but also this reduction increases as the

number of bits increases.

It should be noted that the presented results come as a

straightforward application of the proposed scheme into the

sequence generated by a simple binary counter. However, the

proposed algorithm can be applied to a wide variety of BIST

generators, e.g. counter with shifted outputs, accumulators

accumulating a constant value, or even the -ubiquitous- LFSRs.

5. CONCLUSIONS

The problem of reliability of current electronic systems has been

the subject of various researchers, e.g. [1]. Mobile devices call

for an unprecedented need for low power during both normal

operation and testing. Reducing the length of the required test

patterns reduces both test time and consumed power. Test set

embedding schemes [4]-[9] utilize generators that either exist or

can be easily implemented on-chip and try to embed complete

test sets within a subsequence (as short as possible) of the

sequence generated by the utilized hardware. Test sets extracted

from well-known vendor tools contain don’t-care (i.e. ‘X’) values

which can be set to ‘0’ or ‘1’ in order to drive down the number

of test patterns

In this paper, a novel algorithm has been presented that can be

utilized in order to embed test sets containing don’t care (X)

values into sequences generated by binary counters. Conducted

experiments reveal that the proposed scheme results in

considerably shorter sequences compared to filling the X values

with all-‘0’, all-‘1’ or random filling. Therefore, both test time

and consumed power can be considerably reduced. The proposed

scheme may prove useful for the testing of mobile devices.

6. REFERENCES
[1] S. Zezza, M. Grangetto, M. Martina, F. Vacca, G. Masera,

“Error Correcting Arithmetic Coding for JPEG 2000:

Memory and Performance Analysis”, MobiMedia 2006, 2nd

International Mobile Multimedia Communications

Conference September 18-20, 2006, Alghero, Sardinia, Italy.

[2] Abramovici M., Breuer M., Freidman A., “Digital Systems

Testing and Testable Design”, Computer science Press, 1990.

[3] Dufaza C., Gambon G., “LFSR-based Deterministic and

Pseudorandom Test Pattern Generator Structures”, Proc.

European Test Conference, pp. 27-34, 1991.

[4] Lempel M., Gupta S., Breuer A., “Test Embedding with

Discrete Logarithms”, IEEE Trans. Computer-Aided Design

of Integrated Circuits and Systems, vol. 14, no 5, May 1995.

[5] Kagaris D., Tragoudas S., “On the Design of Optimal

Counter-based Schemes for test set embedding”, IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems,

vol. 18, no.2, February 1999.

[6] Dorsch R., Wunderlich H., “Accumulator-Based

Deterministic BIST”, International Test Conference, pp. 412-

421, 1998.

[7] Boubezari S., Kaminska B., “A Deterministic BIST

Generator Based on Cellular Automata Structures”, IEEE

Trans. Computers, vol. 44, no 6, June 1995.

[8] Kagaris D., Tragoudas S. Majumdar A., “On the use of

Counters for reproducing Deterministic Test Sets”, IEEE

Transactions on Computers, vol. 45, no. 12, December 1996.

[9] Voyiatzis I., “Test vector embedding into Accumulator

generated sequences: a linear time solution”, IEEE

Transactions on Computers, April 2005.

[10] D. Coppersmith, “Fast Evaluation of Logarithms in Fields of

Characteristic Two”, IEEE Trans. Inf. Theory, July 1984, pp.

587-594.

[11] Pohligg St., Hellman M., “An Improved Algorithm for

computing Logarithms over GF(p) and its Cryptographic

Significance”, IEEE Trans. Inf. Theory, Jan 1978, pp. 106-

110.

[12] TestGen, version TG3.0.2 User Guide, Synopsys Inc., 1999.

Table 1. Hopeless vectors for the example test set
17,17

17,18 18,18

17,19 18,19 19,19

17,20 18,20 19,20 20,20

17,21 18,21 19,21 20,21 21,21

17,22 18,22 19,22 20,22 21,22 22,22

17,23 18,23 19,23 20,23 21,23 22,23 23,23

17,24 18,24 19,24 20,24 21,24 22,24 23,24 24,24

17,25 18,25 19,25 20,25 21,25 22,25 23,25 24,25 25,25

17,26 18,26 19,26 20,26 21,26 22,26 23,26 24,26 25,26 26,26

17,27 18,27 19,27 20,27 21,27 22,27 23,27 24,27 25,27 26,27 27,27

17,29 18,29 19,29 20,29 21,29 22,29 23,29 24,29 25,29 26,29 27,29 29,29

Table 2. Considered test sets and results

 All-0 All-1 Random

 Test set Initial

#cycles
#Cycles Increase #Cycles Increase #Cycles Increase

n=10 #1 642 931 45% 704 10% 753 17%

 #2 332 824 148% 511 54% 442 33%

 #3 459 666 45% 638 39% 563 23%

n=12 #4 1834 1982 8% 2552 39% 2378 30%

 #5 677 2358 248% 1708 152% 1893 180%

 #6 1987 3079 55% 2609 31% 2705 36%

n=15 #7 15893 24635 55% 20867 31% 29223 84%

 #8 10774 24394 126% 17864 66% 25942 141%

 #9 3222 22599 601% 10688 232% 23073 616%

 Average 148% 73% 129%

Appendix: Test sets utilized in our experiments
#test set test vectors #test set test vectors #test set test vectors

#1 0100xxxx1x

xx11x11x0x

1xxx0xx111

xxxxx11110

0xx1x11x1x

1111xxxxx1

 #4 011x01001x1x

1x1x11xx0xx0

1xxx0x1x11xx

011x11xx101x

0101x11x1x10

1101xx1x10x0

#7 1xx0111x0x1x010

1xx01x1x0xx011x

0x001x000x10xx1

11x01x0010x110x

1xx001x111x11xx

0x11x11x1xx0x11

#2 xxxx01001x

xx1xx1100x

1xxx0x1111

x11xxx1110

0xx1x11x1x

1101xx1x10

#5 100101001x1x

1x1x1x1x0xx0

1xxx100111xx

x111xx11101x

x001x11x1x10

100xxx1x10x0

#8 1xx0111x0x1x010

xxx0xx1x0xx0x11

0xx01x000x10xx1

11x0xx0010x1101

1xxx01x111x11xx

0x11x11x1xx0x11

#3 x11x01001x

xx1x11xx0x

1xxx0x1x11

011x11xx10

0101x11x1x

1101xx1x10

#6 1xx0111x0x1x

1xx01x1x0xx0

0x001x000x10

11x01x0010x1

1xx001x111x1

0x11x11x1xx0

#9 x0x0111x0x1x010

xx10x01x0x10x11

x0x01x0001x0x11

1x00x10x10x1101

xxxx01x111111xx

1x11x11x1xx0x11

	1. INTRODUCTION
	2. DEFINITIONS, NOTATIONS AND LEMMAS
	3. THE PROPOSED ALGORITHM
	4. SIMULATIONS AND EXPERIMENTS
	5. CONCLUSIONS
	6. REFERENCES

