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ABSTRACT 

The problem of reliability in current chips has been the subject of 

numerous researchers. Mobile devices, commonly used in 

multimedia communications require low power during both 

normal operation and testing. In this paper a novel algorithm is 

presented for embedding test sets containing don’t care values 

into sequences generated by binary counters. Therefore, both test 

time and power consumed during testing of the chips can be 

considerably reduced. 
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1. INTRODUCTION 
The reliability problem in current electronic devices is the subject 

of ongoing research [1]. Mobile devices, apart from the ever-

existing need for low power during normal operation suffer from 

an increasing demand for low power during testing. Various 

schemes have been proposed in order to provide efficient low-

power testing capabilities. One class of proposed solutions, 

namely Built-In Self Test (BIST) schemes has been shown to be 

irreplaceable for testing mobile devices; BIST schemes utilize 

on-chip circuitry to generate test patterns and verify the 

respective responses of the circuit. Therefore. they drive down 

the cost of test and boost the quality of the resulting testing 

scheme possessing various advantages, e.g. low cost, high quality 

of the delivered IC for both modeled and non-modeled faults and 

the possibility for performing at-speed test. It is for these (and 

other) reasons that BIST schemes seem to have been well 

accepted by the IC design and manufacturing community [2]. 

The BIST circuitry of a combinational CUT comprises a test 

generator (TG) that generates the required test patterns (and 

applies them to the CUT inputs) and a Response Verifier (RV) 

that compresses the CUT responses and evaluates the compressed 

output. Pseudorandom BIST schemes utilize sequences generated 

by modules that can be found on-chip (e.g. counters or 

accumulators) or can be easily implemented by modifying 

existing registers (e.g. Linear Feedback Shift Registers, LFSRs 

[3]). The main advantages of the pseudorandom testing paradigm 

include the low hardware overhead and the simplicity of the 

BIST control. Counters have been successfully utilized as BIST 

pattern generators in the BIST context [5], [8], since these 

modules commonly exist into current devices.  

Among the pseudorandom schemes that have been proposed, the 

test set embedding paradigm that tries to embed a given test set 

into the sequence generated by a pseudorandom generator has 

gained attention by researchers [4], [5], [6], [7]. A test set 

embedding scheme typically utilizes a test set T and a hardware 

generator G and tries to embed T into the sequence generated by 

G, in such a way that the length of the selected subsequence is 

minimized. The advantage of test set embedding stems from the 

fact that the pseudorandom generator used has moderate or low 

hardware overhead. 

Firstly, Lempel et al, utilized theory of discrete logarithms to 

embed test patterns into LFSR-generated sequences [4]. Kagaris 

and Tragoudas utilized counters, and by using negation and 

permutation of the counter outputs succeeded to generate 

complete test sets into the thereof generated sequences within 

acceptable time limits [5], [8]. Dorsch [6] proposed an algorithm 

for embedding test patterns, and, as a next step, whole test sets 

into sequences generated by accumulators. In a recent work [9], 

an algorithm was presented that, given an n-stage accumulator 

accumulating a constant pattern B, calculates in O(n) time, the 

location of any given pattern V into the generated sequence.  

In this paper we propose a novel algorithm that, given a test set 

containing don’t care (X) values, calculates a minimum sequence 

generated by a binary counter that generates all the test patterns of 

the test set. Therefore, the power generated for the testing of the 

module is deteriorated. 

In order to provide the framework in which the proposed 

algorithm operates, we shall present the typical procedure one 

would follow in order to generate a test set for a given circuit. At 

first, the description of the CUT is entered into an Automatic 

Test Pattern Generation (ATPG) tool e.g. [12]. The ATPG tool 

generates test patterns (usually containing don’t care values). 

Next, the test set is compressed, in an attempt to decrease the 

number of patterns. In effect, some of the ‘X’ values are replaced 

with 1’s or 0’s (some times arbitrarily) without necessarily 

increasing the fault coverage. The output of the tool is thus a test 

set containing 0’s and 1’s.  

The above-mentioned procedure is viewed differently from the 

BIST designer viewpoint. BIST engineers, especially those 

targeting the problem of embedding test patterns, firstly simulate 
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pseudorandom patterns in portions of a predetermined number 

e.g., 32K patterns. When the simulation comes to a point where a 

few portions (e.g. 3 consecutive applications of 32K patterns) do 

not detect any new faults, the remaining faults are labeled as 

‘non-randomly testable’ or so-called ‘hard-to-detect’ faults [8]. It 

is for these faults that test patterns (containing don’t cares) are 

generated and test embedding is applied. The rationale of this 

approach is that if hard-to-detect faults are detected with a 

pseudorandom sequence of adequate length, then pseudo-

randomly testable faults will be also detected. Experimental 

results indicate that this approach gives fruitful results, e.g. in 

[4], [5], [6], [8]. 

The exploitation of don’t care values drives down the number of 

required patterns as is shown experimentally in the sequel.  

In this paper we present a novel algorithm for Embedding Test 

sets containing don’t care values (TEX) into counter-generated 

sequences that, given a test set containing vectors with don’t care 

bits, calculates an optimal subsequence of the sequence generated 

by a binary counter that contains the required test set.  

The paper is organized as follows. In Section 2 some definitions 

and Lemmas are provided, that are utilized in Section 3 where the 

proposed algorithm is presented, exemplified and analyzed; in 

Section 4 experimental results of the application of the proposed 

algorithm into some test sets are presented. We conclude the 

paper in Section 5.  

2. DEFINITIONS, NOTATIONS AND 

LEMMAS 
We denote by L(V) the location of an n-bit pattern V in the 

sequence generated by an n-stage counter starting from the all-

zero value, i.e. the number of cycles that the counter needs to 

operate in order to generate V. For example, for n=3, the location 

of V=6 in the generated sequence is L(6) = 6. Furthermore, the 

distance of two patterns V1 and V2 in the sequence generated by 

a counter is the difference L(V1) - L(V2). 

Definition 1: Consider an n-bit vector V containing k don’t care 

bits, 0<=k<=n. The expanded list of V is a list of 2k vectors, 

each one of consisting only of ‘0’ and ‘1’, in such a way that all 

2k combinations of ‘0’ and ‘1’ appear into all positions held by 

‘X’ in the vector V.  

From Definition 1, if V has k don’t care bits, then there are 

exactly 2k vectors in its expanded list. For example, let n = 5 and 

V=01X1X. Then k = 2 and the expanded list of V consists of the 

2k = 4 binary vectors: {01010, 01011, 01110, 01111}. 

Definition 2: Consider a test set T comprising of t test vectors 

containing don’t care values and the t expanded lists L1, L2, …, 

Lt of the t test vectors V1, V2, …, Vt respectively. Let Ti be a 

vector belonging to one (or more) of the expanded lists of Vi, 

1≤i≤t. The including list of a vector Ti in the test set is a list of 

the including lists this vector belongs to.  

For example, let us consider the test set consisting of 9 5-bit test 

vectors, given in Figure 1(a). The expanded lists of the test 

vectors of the test set are presented in Figure 1(b). The decimal 

notation of each vector is presented in Figure 1(c) for reference 

purposes. Then, the including list of V=3 is {L7, L9}, while the 

including list of V=19 is {L3, L7, L9}. In Figure 2 the including 

lists of all the test vectors of the test set presented in Figure 1 are 

presented. 

V1 = 101XX 

V2 = X10XX 

V3 = 100XX 

V4 = 0111X 

V5 = X10X0 

V6 = X00X0 

V7 = XX011 

V8 = XX101 

V9 = X00X1 

(a) 

L1 = {10100, 10101, 10110, 10111}  

L2 = {01000, 01001, 01010, 01011, 11000, 11001, 11010, 11011}  

L3 = {10000, 10001, 10010, 10011}  

L4 = {01110, 01111}  

L5 = {01000, 01010, 11000, 11010}  

L6 = {00000, 00010, 10000, 10010}  

L7 = {00011, 01011, 10011, 11011}  

L8 = {00101, 01101, 10101, 11101}  

L9 = {00001, 00011, 10001, 10011}  

(b) 

L1 = {20, 21, 22, 23} 

L2 = {8, 9, 10, 11, 24, 25, 26, 27} 

L3 = {16, 17, 18, 19} 

L4 = {14, 15} 

L5 = {8, 10, 24, 26} 

L6 = {0, 2, 16, 18} 

L7 = {3, 11, 19, 27} 

L8 = {5, 13, 21, 29} 

L9 = {1, 3, 17, 19} 

(c) 

Figure 1. (a) Test set for the c17 benchmark (b) corresponding 

expanded lists (c) decimal notation 

V Including list of V  V Including list of V 

0 {L6}    

1 {L9}  17 {L3, L9} 

2 {L6}  18 {L3, L6} 

3 {L7, L9}  19 {L3, L7, L9} 

5 {L8}  20 {L1}  

8 {L2, L5}  21 {L1, L8} 

9 {L2}  22 {L1} 

10 {L2, L5}  23 {L1} 

11 {L2, L7}  24 {L2, L5} 

13 {L8}  25 {L2} 

14 {L4}  26 {L2, L5} 

15 {L4}  27 {L2, L7} 

16 {L3, L6}  29 {L8} 

Figure 2. Including lists of the vectors of the expanded lists of 

Figure 1(b) 

 

Definition 3: Consider a test set T with t vectors Ti, 1≤=i≤t, 

containing don’t care values. The covering list of the test set T is 

a list, each element of which is a vector belonging to one (or 

more) of the expanding lists of the vectors Ti that belong to T, (in 

ascending order) together with the including list of each test 

vector.  

For example, the covering list for the test set under consideration 

is presented in Figure 3. 



 

L = { 0 {L6} 

 1 {L9} 

 2 {L6} 

 3 {L7, L9} 

 5 {L8} 

 8 {L2, L5} 

 9 {L2} 

 10 {L2, L5} 

 11 {L2, L7} 

 13 {L8} 

 14 {L4} 

 15 {L4} 

 16 {L3, L6} 

 17 {L3, L9} 

 18 {L3, L6} 

 19 {L3, L7, L9} 

 20 {L1}  

 21 {L1, L8} 

 22 {L1} 

 23 {L1} 

 24 {L2, L5} 

 25 {L2} 

 26 {L2, L5} 

 27 {L2, L7} 

 29 {L8} 

}   

Figure 3. Covering List for the test set of Figure 1 

 

In the sequel we will say that the pair of vectors V1, V2, V1<V2 

covers list L1 if L1 belongs in the including list of any vector Vi 

for V1≤Vi≤V2.  

In the sequel, we shall say that a pair of vectors V1, V2, covers 

the test set T if it covers the lists of all vectors of T. For example, 

the pair of vectors (14, 25) covers the test set T, since it covers all 

lists L1 ..L9 of the test set.  

Definition 4: We will say that a pair of vectors (V1, V2) 

minimally covers the test set T if it covers the test and the 

difference V2-V1 is the minimum among the pairs that cover the 

test set.  

For example, the pair of vectors (15,24) minimally covers the test 

set under consideration. Indeed, it is easy to see that it covers the 

test set T. Furthermore, the distance 24-15=9 is the minimum 

among the pairs that cover the test set.  

Lemma 1: If the pair of vectors (V1, V2) covers the test set, then 

all pairs (V1, V3) for V3 > V2 cover the test set.  

Proof: Since all lists are covered by V1, V2, and V3>V2, all lists 

are covered by (V1, V3) Q.E.D. 

Lemma 2: Let Vt be the last (larger in value) vector in the 

expanded lists of the test set and V1 a vector in the expanded list. 

Then, if the pair (V1, Vt) does not cover the test set, no pair (V2, 

V3) for V1≤V2≤V3 covers the test set.  

Proof: If (V1, Vt) does not cover the test set, then there is (at 

least) one list Li that is not covered by the pair (V1, Vt). This list 

cannot be covered by the pair (V2, V3), since V2≥V1. Q.E.D. 

For example, in Table I, the pair (16,29) does not cover the test 

set. Therefore, none of the pairs whose first vector is V2, with V2 

>=16 can cover the test set. These “hopeless” pairs are presented 

in the Table 1. 

3. THE PROPOSED ALGORITHM 

Given the definitions of the previous Section, the proposed TEX 

algorithm operates in 3 steps as outlined below: 

Algorithm TEX (T, t, n) 

//T is a test set, containing t test vectors Ti, (1≤i≤t). Each vector in 

the test set contains n-tuples of ‘1’, ‘0’ and ‘X’.  

Step 1. Construct the expanded list Li for every test vector Ti 

in T.  

Step 2.  Construct CL, the covering list of the test set.  

Step 3.  For all pairs of numbers (Vi, Vj) in CL, calculate the 

lists covered by the pair (Vi, Vj). Calculate the 

distance of all pairs covering the test set T. Among 

the pairs that cover the test set, the pair having the 

smallest distance is chosen as the best solution for the 

considered generator.   

The following Observations can be used to drastically reduce the 

time required by the TEX algorithm. For a justification of 

Observation 1, see Lemma 1; for a justification of Observation 2, 

see Lemma 2. 

Observation 1: If pair (Vi, Vj) generates all lists, there is no 

point in examining pairs (Vi, Vk) for k>j, since the distance will 

be greater.  

For example, in Table I, the pair (13, 24) covers the test set; thus, 

there is no reason to examine pairs (13, 25), (13, 26) e.tc., since 

the respective distance (D) will be certainly greater. Taking into 

account Observation 1, the number of tried pairs in this example 

reduces by 71 (grey shaded vectors in Table I).  

Observation 2: Let Vn be the greatest vector that belongs to the 

expanded lists of all vectors of the test set. If the pair (Vi, VN) 

does not generate the test set, no pair (Vj, Vk) for Vk>=Vj>=Vi 

will cover the test set.  

For example, in Table I, since the pair (16, 29) (last try having 16 

as the first vector) does not generate all lists, there is no point in 

trying pairs whose first vector is 17, 18, …. With Observation 2, 

the number of tried pairs is further reduced by another 78 pairs. 

Therefore, thanks to observations (1) and (2) a total reduction of 

71 + 78 = 149 / 325 ≈ 45% is achieved.   

In order to perform an analysis of the proposed algorithm, we 

shall calculate the complexity of each step as follows.  

 

Step 1. Requires the generation of the including list 1 of each 

vector of the test set. If t is the number of unspecified 

(don’t care) bits of a test vector, the complexity of 

this step is of the order O(2t). Therefore, the 

complexity of the step is of the order  

∑
=

t

i

ki

1

2  (1) 



Where ki is the number of unspecified bits in Ti, 

1<=i<=t.  

Step 2.  The complexity of this step is of the order O(nlogn) 

required by the insertion sort algorithm to insert the 

patterns into the sorted list.  

Step 3.  The complexity of this step is of the order O(n2), 

where n is the number of test patterns in the covering 

list. Since the number of test patterns depends on the 

number of the unspecified bits in the original test set, 

the complexity is upper bounded by O((∑
=

t

i

ki

1

2 )2). 

The upper bound lies on the fact that some (if not 

many) vectors are contained in the lists of more than 

one vector, therefore the number of patterns in this 

step is (much) less than the one calculated by (1).  

 

4. SIMULATIONS AND EXPERIMENTS 
In order to investigate the applicability of the proposed 

algorithm, we have applied it into randomly-generated test sets 

for various values of n, the number of bits and for various values 

of the number of X, the don’t care values. The utilized test sets 

are presented in the Appendix.  

In Table 2 we present the results of the conducted experiments. 

Initially we generated randomly test patterns containing 

unspecified bits of various values of n and computed the length 

of the sequence required by a binary counter to generate the test 

patterns. Then we filled the unspecified values with 0 and 1, in 

three ways: all X-values were substituted by 0 (column denoted 

‘All-0’) or 1(column denoted ‘All-1’), or the unspecified bits 

were filled randomly (column denoted ‘Random’). We calculated 

the length of the sequence required to generate the resulting test 

set in each case.  

In Table 2 in the first column we present the value of the number 

of the bits (n). In the second column we present the length of the 

sequence calculated by the proposed scheme. In the next columns 

we present the length of the sequence required to generate the 

patterns resulting after substituting ‘X’ with either ‘0’ (second 

column), ‘1’ (third column) or randomly ‘1’ or ‘0’ (fourth 

column), as well as the increase in the number of required cycles. 

From Table 2 we can conclude that not only the proposed scheme 

always results in a shorter test sequence than all the other 

sequences (as expected), but also this reduction increases as the 

number of bits increases. 

It should be noted that the presented results come as a 

straightforward application of the proposed scheme into the 

sequence generated by a simple binary counter. However, the 

proposed algorithm can be applied to a wide variety of BIST 

generators, e.g. counter with shifted outputs, accumulators 

accumulating a constant value, or even the -ubiquitous- LFSRs.  

5. CONCLUSIONS 

The problem of reliability of current electronic systems has been 

the subject of various researchers, e.g. [1]. Mobile devices call 

for an unprecedented need for low power during both normal 

operation and testing. Reducing the length of the required test 

patterns reduces both test time and consumed power. Test set 

embedding schemes [4]-[9] utilize generators that either exist or 

can be easily implemented on-chip and try to embed complete 

test sets within a subsequence (as short as possible) of the 

sequence generated by the utilized hardware.  Test sets extracted 

from well-known vendor tools contain don’t-care (i.e. ‘X’) values 

which can be set to ‘0’ or ‘1’ in order to drive down the number 

of test patterns  

 

In this paper, a novel algorithm has been presented that can be 

utilized in order to embed test sets containing don’t care (X) 

values into sequences generated by binary counters. Conducted 

experiments reveal that the proposed scheme results in 

considerably shorter sequences compared to filling the X values 

with all-‘0’, all-‘1’ or random filling. Therefore, both test time 

and consumed power can be considerably reduced. The proposed 

scheme may prove useful for the testing of mobile devices. 
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Table 1. Hopeless vectors for the example test set 
17,17            

17,18 18,18           

17,19 18,19 19,19          

17,20 18,20 19,20 20,20         

17,21 18,21 19,21 20,21 21,21        

17,22 18,22 19,22 20,22 21,22 22,22       

17,23 18,23 19,23 20,23 21,23 22,23 23,23      

17,24 18,24 19,24 20,24 21,24 22,24 23,24 24,24     

17,25 18,25 19,25 20,25 21,25 22,25 23,25 24,25 25,25    

17,26 18,26 19,26 20,26 21,26 22,26 23,26 24,26 25,26 26,26   

17,27 18,27 19,27 20,27 21,27 22,27 23,27 24,27 25,27 26,27 27,27  

17,29 18,29 19,29 20,29 21,29 22,29 23,29 24,29 25,29 26,29 27,29 29,29 

 

Table 2. Considered test sets and results 

   All-0 All-1 Random 

 Test set Initial 

#cycles 
#Cycles Increase #Cycles Increase #Cycles Increase 

n=10 #1 642 931 45% 704 10% 753 17% 

 #2 332 824 148% 511 54% 442 33% 

 #3 459 666 45% 638 39% 563 23% 

n=12 #4 1834 1982 8% 2552 39% 2378 30% 

 #5 677 2358 248% 1708 152% 1893 180% 

 #6 1987 3079 55% 2609 31% 2705 36% 

n=15 #7 15893 24635 55% 20867 31% 29223 84% 

 #8 10774 24394 126% 17864 66% 25942 141% 

 #9 3222 22599 601% 10688 232% 23073 616% 

   Average 148%  73%  129% 

 

Appendix: Test sets utilized in our experiments 
#test set test vectors #test set test vectors #test set test vectors 

#1 0100xxxx1x 

xx11x11x0x 

1xxx0xx111 

xxxxx11110 

0xx1x11x1x 

1111xxxxx1 

 #4 011x01001x1x 

1x1x11xx0xx0 

1xxx0x1x11xx 

011x11xx101x 

0101x11x1x10 

1101xx1x10x0 

#7 1xx0111x0x1x010 

1xx01x1x0xx011x 

0x001x000x10xx1 

11x01x0010x110x 

1xx001x111x11xx 

0x11x11x1xx0x11 

#2 xxxx01001x 

xx1xx1100x 

1xxx0x1111 

x11xxx1110 

0xx1x11x1x 

1101xx1x10 

#5 100101001x1x 

1x1x1x1x0xx0 

1xxx100111xx 

x111xx11101x 

x001x11x1x10 

100xxx1x10x0 

#8 1xx0111x0x1x010 

xxx0xx1x0xx0x11 

0xx01x000x10xx1 

11x0xx0010x1101 

1xxx01x111x11xx 

0x11x11x1xx0x11 

#3 x11x01001x 

xx1x11xx0x 

1xxx0x1x11 

011x11xx10 

0101x11x1x 

1101xx1x10 

#6 1xx0111x0x1x 

1xx01x1x0xx0 

0x001x000x10 

11x01x0010x1 

1xx001x111x1 

0x11x11x1xx0 

#9 x0x0111x0x1x010 

xx10x01x0x10x11 

x0x01x0001x0x11 

1x00x10x10x1101 

xxxx01x111111xx 

1x11x11x1xx0x11 
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