
Protecting Free-Roaming Mobile Agent against Multiple
Colluded Truncation Attacks

S.Venkatesan
Department of CSE,

Anna University
Chennai-600025, India

venkalt_s@yahoo.co.in

C.Chellappan
Professor, Department of CSE

Anna University,
Chennai-600025, India
drcc@annauniv.edu

ABSTRACT
Mobile agent environment is one of the emerging technology to
reduce the network traffic. Various security issues are identified
and protected. Now the new security issue in this environment is
the multiple colluded truncation attacks in the Free-roaming
mobile agents. This paper proposes the identity verification
mechanism to protect the multiple colluded truncation attacks
The identification is verified from the beginning dummy offer of
the creator of the agent.

Categories and Subject Descriptors
C.2.0 [General] : Security and protection I.2.11 [Distributed
Artificial Intelligence]: Intelligent Agent D.2.0 [General]:
Protection Mechanism

General Terms
Security, Algorithms,Theory

Keywords
Free-Roaming mobile agent, colluded attacks, Truncation attacks,
encapsulated offer

1.INTRODUCTION
Mobile agents are software programs to perform computation in
various hosts and then bring the results to the owner of the agent.
Roaming agents are moving from one node to another node by
the respective statements of the owner but the free-roaming
agents are moving from one host to another host without any
respective migration paths by the owner. i.e., depends upon the
requirements and the current conditions, the current host will
select the next host for agent. In the free-roaming mobile agent
environment, security is the main issue. That the malicious host
may modify, delete or insert (malicious) data in the results of the
mobile agents, which they collected from the previous hosts. For
this types of attacks the various methods of prevention protocols
are proposed and solved.

Nevertheless another one type of attack is raised is the multiple
colluded attack. i.e, more than one host colluded together to
discard the single data or the stream of data between the
hosts.The general cryptographic mechanism is used for the
protocols.

2.PREVIOUS WORKS
Yee[1] proposed the Partial Result Authentication Code(PRAC)
to protect mobile agents results. Here the agent and its originator
maintain a list of secret keys or a key generating function. The
agent uses a key to encapsulate the collected offer and then
destroys the key. However, a malicious host may keep the key or
the key generating function. When the agent revisits the host
or visits another host conspiring with it, a previous offer or series
of offers would be modifed, without being detected by the
originator and also the carrying of list of keys by the free roaming
agents for all the system is not possible.

Karjoth et al.[2] extends the above schemes for the efficient
security purposes. Each host generates a signing key for its
successor and certifies the corresponding verification key. Using
the received signature/verification key pair, a host signs its partial
result and certifies a new verification key of the next host. This
technique will avoid the modification attack in above scheme, but
not a two-colluder attack. In this attack two visited hosts can
collude to discard the partial results collected between their
respective visits. Here it uses digital signatures and hash
functions to protect a chain relation

Karnik et al.[3] This protocol uses an encrypted checksum to
build a backward chain relation to link an agents previous result
with the agents data generated at the currently visited host. It
guarantees that only new data can be added to the results of the
agent collected and no data can be deleted from them. It does not
support two-colluder attacks. It is the compact method of the
above scheme.

Corradi et al.[4] Here the protocol uses the backward and forward
chaining. At each host, the protocol runs a hash function to
compute a cryptographic proof of a result from the previous host,
a result generated at the current host, and the identity of next hop.
Like other protocols, this protocol cannot defend two-colluder
truncation attacks.

Cheng et al.[5] This protocol provide the co-signing mechanism
to defend the two-colluder truncation attacks. Here a preceding

http://www.go2pdf.com
ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBIMEDIA 2007, August 27-29, Nafpaktos, GreeceCopyright © 2007 ICST 978-963-06-2670-5DOI 10.4108/ICST.MOBIMEDIA2007.1759

host co-signs a result generated at the current host. Attackers
need their preceding non-attackers to co-sign fake offers when
they launch two-colluder truncation attacks, and then their
actions can be detected. Here also the publicly verifiable forward
integrity propriety, this protocol generates a pair of one time
secret private and public keys at each host for its successor.

Yao et al.[6] Songsiri[7] Here the Trusted Third Party is used to
store the collected offers. To defend a stemming attack, a special
case of two-colluder truncation attacks, the protocol needs to be
modified and requires a two-way authentication.

Zhou et al.[8][9] In this protocol, the one time signature key pair
is generated by each host rather than the preceding host. The
protocol also defends the truncation attack with a special loop. It
requires its preceding host to co-sign encrypted data. The co-
signers cannot check the encrypted data, malicious hosts may ask
their preceding hosts to sign encrypted documents and use these
signatures against the co-signers later. This protocol cannot
defend multiple-colluder truncation attacks.

Darren et al.[11] This protocol will defend the two-colluder
truncation attack with the help of the one hop backward and two-
hop forward chaining method. And also it will defend the
multiple colluder truncation attacks. It will avoid the fake stem
attack and then the interleaving attack. It has the drawback that
the two-colluders in the adjacent means it will not defend the
attack.

Our new protocol addresses all the issues found in the previously
available protocols, especially solutions to the multiple colluder
truncation attacks. This paper is discussed as follows. In segment
3, we describe the common mobile agent security properties
discussed in the previous papers. In segment 4, we analyze the
new protocol and its mobile agent properties. In segment 5 &6,
we analyze the protection for various attacks and at last in the
segment 7, we conclude the specialty of this protocol.

3.NOTATIONS AND SECURITY
PROPERTIES
We use the similar notations used in the other schemes
[2][5][9][11].

Table. 1.Notations

Notations Descriptions
S0=Sn+1 Originator or Creator or Owner.
o0 Offer from S0 to identify the agent

instance on return.
oi Offer from Si.

S1,S2… Sn Hosts and also its identity
ri Random number generated by Si.
Pbi , Pri Public and Private key of the host Si.
tPbi , tPri Temporary Public and Private key

of the host Si.
EncPbi(m) Message m is encrypted with the

public key Pbi of Si.

SigPri(m) Signature of Si on message m with
its private key Pri.

H(m) Hash function.

Oi , 1<=i<=n Encapsulated offer.

Ci , 1<=i<=n Cryptographically encrypted offer of
Si.

Assume that the agent has a chain of encapsulated offers O0, O1,
….Oi ,…Om. The following mobile agent security properties are
based on assumption [2][5][11].

Data confidentiality: Each offer oi is encrypted by S0’s public key
Pb0. Only the originator can decrypt the offer Oi.

Non-repudiability: Each offer oi is signed by Si as SigPri(oi). Si
cannot deny its offer oi after S0 receives the offer and verifies the
signature.

Forward privacy: None of the identities of the creators of offer oi
can be extracted by anyone except the originator S0.

Strong forward integrity: Assume an attacker Sm holds
encapsulation offers O0, O1,…, Oi-1, Oi,…, Om-1, and modifies or
replaces Oi-1 with Oi-1’. Oi-1 is one of the components in the
checksum hi=H(Oi-1, ri, Si+1, Si+2) in the encapsulated offer Oi.
Since Oi is intact, the chain relation hi=H(Oi-1, ri, Si+1, Si+2)) must
be hold true, i.e. H(Oi-1’, ri, Si+1, Si+2)= H(Oi-1, ri, Si+1, Si+2)This
violates the assumption that the hash function H is collision-free.
It is impossible for an attacker to modify or replace any offer
without changing the next encapsulated offer if a collision free
hash function is used in the protocol.[11].

Publicly verifiable forward integrity: Any one can verify the
encapsulated offers Oi by checking whether the chain is valid at
Oi.

Insertion defense: No offer can be inserted at i unless explicitly
allowed; i.e, by the multiple hosts colluded with one another..

Truncation defense: Assume an attacker Sm truncates all
encapsulated offers after Oi+1, and then appends its own offer Om.
The new chain of encapsulated offers is now O0, O1,…, Oi, Oi+1,
Om. Since Oi is intact, the chain relation hi=H(Oi-1, ri, Si+1, Si+2)
must be hold true, i.e. hi=H(Oi-1, ri, Si+1, Si+2) = H(Oi-1, ri, Si+1,
Sm).This violates the assumption that the hash function H is
collision-free. [11].

4. PROPOSED PROTOCOL
Our protocol builds a chain relation to all the previous
encapsulated offers and forwards it to the next host. The
encapsulated offers consist of the hash function and then the
encrypted offer which consist of the generated offer and random
number by the visited hosts S0,S1,S2,S3,S4…. The protocol is
discussed in below.

4.1 Agent at the Creator (S0)
The creator S0 creates and starts the agent with the dummy offer
o0 and random number r0. And then signs the offer Sigpr0(o0) for
Non- repudiability and encrypt those data EncPb0 (Sigpr0(o0), r0)
with the help of the public key Pb0 and selects the next host S1 .
Also it generated the temporary public and private key (tPbi , tPri
) for sign in the identity of the next host Sigtpr0(S1).

http://www.go2pdf.com

S0 : Generate offer o0
Compute C0 = EncPb0(Sigpr0(o0), r0)
Generate tPr0 ,tPb0
Decide next host S1
h0 = H(Sigpr0(S0), Sigtpr0(S1), tPb0 ,r0)

O0 = SigPr0(C0, h0)
S0→ S 1: O0

At last S0 signs the final encapsulated offer with the its private
key Pr0 and sends its offer to the next selected host S 1.

4.2 Agent at S1
Agent migrates from S0 to S1 and carries the encapsulated offer
O0. After receiving the encapsulated offer, S1 can verify the
encapsulated offer for the integrity that is to check whether he is
the recipient or not and also the offer from the previous host is
reliable. This is by the public key Pb0 of the sender.

S1: Receive O0
Recover C0, h0 by Pb0
Ver(Sigpr0(S0),Sigtpr0(S1),tPb0) recover S1 ,S0

Where S1(identity) is recovered by tPb0 and the S0(identity) is
recovered by Pb0 and verify the identity sequence from the
beginning.

Generate offer o1
Compute C1 = EncPb0(Sigpr0(o1), r1)
Generate tPr1 ,tPb1
Decide next host S2
h1 = H(Sigpr0(S0), Sigtpr0(S1),

Sigtpr1(S2 ,tPb0), tPb1 ,r0)
O1 = SigtPr1(C1, h1

S1→ S2: O0, O1, tPb1

The process of the each host is depicted in the flowchart
from previous Host

No

Yes

Yes

to Next Host

After that it will generates its offer o1 and random number r1 and
then computes encrypted C1 with the public key of creator Pb0.

4.3 Agent at S2
After receiving the encapsulated offers, host S2 recovers the
encapsulated offers O1 by the help of the tPb1 and O0 by the help
of Pb0. After that the identity of the two encapsulated offers O0
,O1 are recovered. The recovered identities of O0 is S0 , S1 and the
identities of O1 is S0 , S1 ,S2 . Now the last two identities of the O0
and first two identities of O1 is compared O0 (S0 , S1) = O1 (S0
,S1). If both are same the next process will proceeds otherwise it
sends the agent back to its home.

S2 : Receive O0, O1, tPb1
Recover C1, h1 by tPb1
Recover C0, h0 by Pb0
Ver(Sigpr0(S0), Sigtpr0(S1),Sigtpr1(S2 ,tPb0),

tPb1 ,r0)) recover S0 ,S1, S2
Ver(Sigpr0(S0),Sigtpr0(S1),tPb0)recoverS0 ,S1

After that it will generates its offer o1 and random number r1 and
then computes encrypted C2 with the public key of creator Pb0.

Generate offer o2
Compute C2 = EncPb0(Sigpr2(o2), r2)
Generate tPr2 ,tPb2
Decide next host S3

h2 = H(Sigtpr0(S1), Sigtpr1(S2 ,tPb0),
Sigtpr2(S3, tPb1), tPb2 ,r3)

O2 = SigtPr2(C2, h2)
S1→ S2: O0, O1, O2, tPb2

4.4 Agent at Si
Si receives the all previous encapsulated offers and verify the
identities.

Si : Receive O0, O1, , O2, , O3, … Oi-1, tPbi-1
Recover Ci-1 ,hi-1 by tPbi-1

Recover C0, h0 by Pb0
Ver(Sigtpri-3(Si-2,tPbi-4),Sigtpri-2(Si-1,tPbi-3),

Sigtpri-1(Si,,tPbi-2), tPbi-1 ,r0))
recover Si-2 ,Si-1, Si

Ver(Sigpr0(S0), Sigtpr0(S1),Sigtpr1(S2 ,tPb0),
tPb1 ,r0)) recover S0 ,S1, S2

Ver(Sigpr0(S0),Sigtpr0(S1),tPb0)recoverS0 ,S1

It will recover the identities in the following format and compares
the last two and first two identities. If both are same, the host
decides no attack on that data else attack is identified and then the
host sends the agent to its home. It will match from O0 to Oi-1
for the reliability of the chain.

Receive Offers

Recover identity
from Offers

Is chain
identity valid?

Computes its Offer
and appends in chain

Sends agent to its
home

http://www.go2pdf.com

O i : Si-1 Si Si+1
O i-1 : Si-2 Si-1 Si

O2 : S1 S2 S3
O1 : S0 S1 S2
O0 : S0 S1

Fig.1. Comparison Representation

Fig.1 represents the comparison function done in the each visited
host. Each host will have the three identities except the host S0 .
The Host identity represented in the diagonal is the next visiting
host, which selected by the current host. Now the identity of the
hosts are compared one by one with the help of first two identity
and then the last two identity of the current and the previous host.
Which is contained in the hash function. After the verification
process, the host Si generates its offer and made the hash function
and forwards the agent to its next host Si+1.

Generate offer oi
Compute Ci = EncPb0(Sigpri(oi), ri)
Generate tPri ,tPbi
Decide next host Si+1

hi = H(Sigtpri-2(Si-1 ,tPbi-3), Sigtpri-1(Si ,tPbi-2),
Sigtpri(Si+1, tPbi-1), tPbi ,ri)

Oi = SigtPri(Ci, hi)
Si→ Si+1: O0, O1, , O2, , O3, … Oi ,tPbi

4.5 Agent return to home S0
At last agent returns to its home and give the collected offers to
its owner. The owner will recover all the encapsulated offers O0,
O1, , O2, , O3, … Oi-1, Oi , Oi+1, … On with the help of the public
key. where On is recovered by the tPbn and then On-1 is
recovered by the help of the tPbn-1 which is already available in
the hast function of On. After that the offer o0, o1, , o2, , o3, … oi-1,
oi , oi+1, … on are recovered by the public key of the originator
Pb0.

O0, O1,….Oi-1,tPbi-1

O0, O1,… On,tPbn

O0
O0, O1,O2,O3,tPb3

O0, O0, O1, tPb1

O0,O1,O2,tPb2

Fig.2. Agent Migration

Fig.2. shows the agent migration from the owner to the other host
to collect the offer and return back to the owner.

4.6 Security properties
Data Confidentiality: Only the originator can decrypt the offer oi
because it is encrypted by the public key Pb0 of the host S0

Non-repudiability: Each offer oi is signed by its host Si as
Sigpri(oi). So Si cannot deny its offer oi after S0 receives.

Forward privacy: Even though the identities of the creators of
offer oi extracted by anyone but they are not able read or update
the offer except the originator S0. Because of the encryption
mechanism EncPb0(Sigpri(oi), ri).

Strong Forward Integrity: None of the encapsulated offers can be
modified because the each and every encapsulated offers includes
the chain relation S0, S1 ,S2 and S1,S2 ,S3 . If any results get
modified, the chain relation will not followed and then the
current host identifies the attack and sends the agent to its home.
Random number ri also generated by the host for the purpose of
the integrity. It is available in both the hash function and the
encrypted function. The random number ri in the both will be
checked for the integrity. There may be chance to attack the part
of the encapsulated offer. Oi = SigtPri(Ci, hi). There is the
possibility to change the Ci and make the new offer Oi ’=
SigtPr2(C1‘,hi). Which will be identified during the decryption,
with the help of ri

Insertion Resilience: No offer can be inserted in the middle and
also no more than one offers can be inserted into the chain
(Revisiting attack[8]) by the host, because the identities will
repeat more than once in the chain. For example S0,S1,S1 and
S1,S1,S2, now the host S2 compares the chain and identifies the
dual insertion by the single host with its identity. Same way the
modification H(Sigtpri-2(Si-1 ,tPbi-3), Sigtpri-1(Si‘, tPbi-2), Sigtpri(Si+1,
tPbi-1), tPbi ,ri) = H(Sigtpri-2(Si-1 ,tPbi-3), Sigtpri-1(Si ,tPbi-2),
Sigtpri(Si+1, tPbi-1), tPbi ,ri) also identified because it violates the
hash function.

Truncation Resilience: No offer oi or sequence of offers from oi
, oi+1, … om can be truncated and then the append the new offer.
Because the comparison function is ended with the owner
encapsulated offer O0, so it can be easily identified by the
following function.

Ver(Sigtpri-3(Si-2,tPbi-4),Sigtpri-2(Si-1,tPbi-3),
Sigtpri-1(Si,,tPbi-2), tPbi-1 ,r0))

recover Si-2 ,Si-1, Si

Ver(Sigpr0(S0), Sigtpr0(S1),Sigtpr1(S2 ,tPb0),
tPb1 ,r0)) recover S0 ,S1, S2

Ver(Sigpr0(S0),Sigtpr0(S1),tPb0)recoverS0 ,S1

Public Verifiable Forward Integrity: Any host can recover the
encapsulated offer O0…….Oi to verify the hi by the help of the
temporary public key generated by the previous host. The
offer Oi = SigtPri(Ci, hi) is recovered by the help of tPbi which is
received with the chain O0, O1, , O2, , O3, … Oi-1, Oi , tPbi. Then

S3

S2

S4

S1

Si

S0

http://www.go2pdf.com

the Oi contains the temporary public key for Oi-1. Likewise it will
recover the chain.

5. MULTIPLE COLLUDED TRUNCATION
ATTACKS
Various mechanism is provided to defend the truncation attacks.
Darren et al.[11], pointed to protect the two-colluder truncation
attacks which will also avoid the attacks by the single host[2].
And also the they provide the protection for Multiple (three or
more) colluded attacks while they are not in the adjacent place.
But our proposed protocol, can protect the multiple colluded
attackers when they are in the adjacent places also because the
chain relation is maintained in the form of the previous, current
and then the next host identities. In the chain S0,…,Si-1, Si,
Si+1,…, Sx, Sx+1,…, Sm-1 , Sm if Si, Si+1, and Sm are colluded to
attack the sequence of offers from Oi, , Oi+1, …… Om. Now the
offers will be O0, O1, , O2, , O3, … Oi-1, Oi‘,Oi+1‘, … Om‘. Now
this chain is forwarded to the host Sm+1. This host will recover
this offers and verify the identifies as represented in the Fig.1.

6.GROWING A FAKE STEM ATTACK &
INTERLEAVING ATTACK
Attacker truncates the offers Oi and appends fake offers is
referred as growing a fake stem attack[2]. Attackers breaks the
chain and provide the space for inserting the fake offers is
interleaving attack[10]. In this protocol, there is no opportunities
for this type of attack because each will maintain the identity, by
the identity the fake stem and Interleaving attack will easily
identified as described in the Insertion resilience.

7.CONCLUSION
Our protocol uses the identity chain relation with the collected
offer. So the free roaming agent will be protected from the two-
colluded or multiple-colluded attacks. It can also avoid the
Growing of fake stem attack[2], Revisiting attack[8] and
Interleaving attack[10]. In this method we can avoid the
concentration of the previous host while we reach the next host in
the previous protocol[11]. This method will avoid the network
traffic and also very much useful in the Distributed environments
(which will be used to help the free roaming mobile agent in the
E-Commerce & E-learning environments to collect the results.

8.ACKNOWLEDGMENT
This Work is supported by the NTRO, Government of India.
NTRO provides the fund for collaborative project “smart and
secure environment” and this paper is modeled for this project.
Authors would like to thanks the project coordinators and the
NTRO members.

9. REFERENCES
[1] B.S. Yee. “A sanctuary for mobile agents”. Technical Report

CS97-537, UC San Diego, Department of Computer Science
and Engineering, April 1997.

[2] G. Karjoth, N. Asokan, and C. Gülcü. “Protecting the
computation results of freeroaming agents”. In Proc. Second
International Workshop on Mobile Agents (MA’98), K.
Rothermel and F. Hohl, editors, LNCS 1477, pp.195 - 207,
Springer-Verlag, 1998.

[3] N. M. Karnik and A. R. Tripathi. “Security in the Ajanta
Mobile Agent System”. Technical Report TR-5-99,
University of Minnesota, Minneapolis, MN 55455, U. S.A.,
May 1999.

[4] A. Corradi, R. Montanari, and C. Stefanelli. “Mobile agents
Protection in the Internet Environment”. In The 23rd Annual
International Computer Software and Applications
Conference (COMPSAC ’99), pages pp. 80–85, 1999.

[5] J. Cheng and V. Wei. “Defenses against the truncation of
computation results of free-roaming agents”. In 4th

International Conference on Information and
Communications Security, volume LNCS 2513, pages 1– 12,
December 2002.

[6] M. Yao, E. Foo, E. P. Dawson and K. Peng. “An Improved
Forward Integrity Protocol for Mobile Agents”. In
proceedings of 4th International Workshop on Information
Security Applications (WISA 2003), volume 2908 of Lecture
Notes in Computer Science, pages 272-- 285. Springer-
Verlag, 2004. ISBN: 3-540-20827-5.

[7] Suphithat Songsiri. "A New Approach for Computation
Result Protection in the Mobile Agent Paradigm". In
Proceedings of the 10th IEEE Symposium on Computers and
Communications (ISCC 2005), 27-30 June 2005, Murcia,
Cartagena, Spain.

[8] J. Zhou, J. Onieva, and J. Lopez. "Analysis of a Free
Roaming Agent Result-Truncation DefenseScheme”. In
Proceedings of 2004 IEEE Conference on Electronic
Commerce, pages 221--226, San Diego, USA, July 2004,
IEEE Computer Society Press.

[9] J. Zhou, J. Onieva, and J. Lopez. "Protecting Free Roaming
Agents against Result-Truncation Attack". In Proceedings of
60th IEEE Vehicular Technology Conference, pages 3271--
3274, Los Angles, USA, September 2004, IEEE Vehicular
Technology Society Press.

[10] V. Roth. “On the robustness of some cryptographic
protocols for mobile agent protection.” In Proceedings of
the 5th International Conference on Mobile Agents (MA
2001), volume 2240 of Lecture Notes in Computer Science,
pages 1–14. Springer-Verlag, 2001.

[11] D.Xu, L.Harn, M.Narasimhan, J.Luo. “An Improved Free-
Roaming Mobile Agent Security Protocol against Colluded
Truncation Attacks.” In Proceedings of the 30th Annual
international Computer Software and Applications
Conference(COMPSAC,06), Volume 2, Page(s):309 – 314
,Chigago,Sept. 2006,IEEE Computer Society Press.

http://www.go2pdf.com

