
Supporting Smart Space Infrastructures: A Dynamic

Context-Model Composition Framework
Sailesh Sathish

Nokia Research Center
Visiokatu 1

Tampere, Finland
+358504835679

sailesh.sathish@nokia.com

Cristiano di Flora
Nokia Research Center

Visiokatu 1
Tampere, Finland

cristiano.di-flora@nokia.com

ABSTRACT

Smart spaces are environments where intelligent devices can

provide end-users with personalized and context-aware services.

The biggest barriers against effective realization of smart spaces

are the lack of interoperability between different ubiquitous

computing infrastructures and standardized way of service

operations. From this perspective, we present a framework for

smart space interaction supporting interoperability and based on

ongoing standardization efforts. The framework supports dynamic

composition of context models based on multi-device and service

interactions taking into account security and privacy issues. We

show how we align ongoing W3C standardization efforts with key

elements of the framework such as composition models and state-

based mart space application development approaches. We

conclude by providing our thoughts and plans about future

extensions and interoperability needed between specifications for

effective smart space realizations.

Keywords

Context models, smart spaces, adaptive applications.

1. INTRODUCTION
A smart space is a multi-user multi-device dynamic interaction

environment that is aware of its physical environment and that

works on top of heterogeneous networking technologies and

software platforms. Smart spaces are defined by certain physical

boundaries within which they can provide user applications with a

set of ambient services. Ambient services are mostly particular to

the domain of interaction and can characterize the smart

environment the user is interacting with. Some examples of such

services are tangible interactive objects, audio processing and

routing systems, ambient video render, multimodal interaction

services and environment control systems.

As an example, let us consider a user with a mobile device in a

smart room. She uses the mobile browser to browse her favorite

music site. She selects a list of songs and clicks on play. The

media player loads on her browser. The browser window now

shows an icon for a stereo player that is present in the room. She

now notices the player and uses the volume control of the stereo

to change the volume of the song running in the media player

within the browser. She can also use the stereo stop, pause,

forward controls to control the playback of the songs. Thus, she

can exploit intelligent systems within the room as tangible

controls providing more natural interaction modes.

Realizing effective smart spaces on top of existing ubiquitous

computing standards and solutions is quite a challenging task due

to the following main reasons:

• Smart space services are only a sub-set of the overall

infrastructure of a smart space that applications should

be capable of exploiting. Indeed, the smart space should

be capable of enhancing existing services by composing

multiple services together so as to add new composite

capabilities dynamically to the smart space.

• Applications within smart spaces should be capable of

detecting changes in context and to adapt themselves

accordingly. Adaptation should regard contents,

presentation and provided services. To support such

different types of adaptation, the core of a smart space

infrastructure should expose an easily accessible,

efficient and standardized data access model that can be

used by providers and consumers of smart space data for

communication1.

• Effective interaction of end-users with a real-world

smart space requires novel multi-disciplinary solutions

to design and realize technologically complex and easy-

to-use smart spaces, i.e., requires user-experience and

system-support research activities to be aligned and to

cross-pollinate each other.

We recognize that all the challenges above must be addressed in

order to enable an effective framework for smart space application

development. However, in this paper we discuss our experiences

with addressing the first two ones, and we do not discuss the

1 We use the term “consumers” to indicate services or applications

that use available data to provide adaptive features to the end-

user- By “providers” we mean those services or applications

that provide context data to consumers. Providers can range

from intelligent data providers capable of taking raw data from

sources such as sensors or modality processors providing higher

level abstractions to low-level sensors providing raw data.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Mobimedia'07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece

Copyright 2007 ICST 978-963-06-2670-5

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1708

issues related to the required multi-disciplinary research. More

specifically, in this paper we present a framework for smart space

interaction supporting interoperability and based on ongoing

standardization efforts. The framework supports dynamic

composition of context models based on multi-device and service

interactions, and it takes explicitly into account security and

privacy issues.

This paper is organized as follows. Section 2 takes a brief look at

related work within smart spaces and infrastructure support for

context models. Section 3 introduces the delivery context model

that forms part of the client framework for adaptive applications.

Section 4 describes our framework in detail. In Section 5 we show

how we aligned ongoing W3C standardization efforts with key

elements of the framework especially with composition models

and state-based approaches towards smart space application

development. Section 6 concludes our paper by providing our

view and plans about future extensions and interoperability

needed between specifications for effective smart space

realizations.

2. RELATED WORK
State-of-the-art research has proposed multiple approaches and

insights into how context models and smart spaces interact, thus

resulting in the creation of new architectural patterns. The work

by Nixon et al. [7] on context adaptive smart spaces looks at

providing context models to application adaptation. More

specifically, it looks at the implications of providing context

information on tiered architectural patterns. The functional

interfaces between the layers change based on context, and the

effect is reflected back on the presentation to the user. Integrating

a context layer into a tiered architecture introduces an additional

vertical layer as opposed to horizontal nature of tiered

architecture. This is so because context models can provide input

and output services uniformly to each layer and is independent

from the general functionality the architecture is supposed to

support. Other approaches utilize topographical models through

use of overlapping spatial and temporal models [8] for smart

space data access.

Related work by Chen et al. [2, 3] describes a context model

through use of a brokering engine providing a shared model for

context access. Here, standard web ontology languages are used

for describing ontology in order to use a common vocabulary. Our

framework supports ad-hoc build up of smart spaces through

multi-device composition where individual models can be

combined. The combined models, done by using standardized

composition mechanisms, provide the core infrastructure for our

smart space. The work by Christopoulou et al. [4] describes

another model using ontology-based context management and

reasoning for UbiComp applications.

In the area of inter-connected provision, several existing

technologies aim at providing interoperable solutions for

connected devices and services. For example, the Universal Plug

and Play (UPnP) [16] specifications aim at enabling pervasive

peer-to-peer network connectivity for personal mobile/stationary

devices. The devices are able to connect to a network, advertise

their capabilities as well as service descriptions and learn about

other devices at run-time. Jini [5] is a Java-based technology for

establishing Java-based networks through which users

immediately access network resources and services. Salutation

[13] is another technique for service discovery and service

management. This offers an open, independent standard

abstracting away from operating systems constructs,

communication protocol or hardware restraints. Web Services is

an example of a Service Oriented Architecture based on HTTP

and XML and defines a suite of protocols aimed at data transfer,

discovery and service description.

Our framework aims at providing an abstraction layer on top of

such technologies mainly viewing them as provisioning systems.

We support a central data sharing model for hosting

representations of interconnected services enabling easier

discovery and notifications of data within a smart space. Section 3

outlines requirements for such a central model and introduces a

related ongoing standardization work within W3C called Delivery

Context Client Interfaces (DCCI).

3. SMART SPACE CONTEXT MODEL
The smart space framework presented in this paper relies on a

specific context-model related to ongoing W3C standardization

efforts (the so-called Delivery Context Client Interfaces context

access model). In this Section we briefly describe the main

requirements of a smart space context model, and we show how

W3C’s delivery context model supports those requirements.

3.1 Context models requirements
Any generalized smart space environment built to support

heterogeneous applications should support a common

communications infrastructure. The same should also support

discovery of data sources and cater for dynamic topology of

environment. Towards this end, we take a cue from a design

pattern that evolved from Artificial Intelligence (AI) called

blackboard [1]. The blackboard is essentially a repository for

processed and non-processed data where processors are allowed

to build abstractions from lower layers. The blackboard approach

is meant for non-deterministic environments where a direct

solution path to a problem cannot be pre-determined. The data

providers put data into the blackboard while the consumers or

processors can take this data. Each processor can either consume

or further process the data and put it back on the blackboard.

Going by the requirements of smart spaces, a data communication

model that is needed is not exactly the blackboard in the AI sense.

Most smart space applications follow a set of deterministic paths

even though unpredictability may characterize the responses of

the elements in the system. Also, the model needs to support

certain structures capable of capturing relations between the data

sources. However, the central concept of the blackboard in

provisioning a platform for data repository, access and abstraction

creation is valid here. Here, the role of the representation model is

to organize provider data and provide support for consumer

application access to those data. The representation model should

provide uniform access methods for both consumers and

providers to the maximum extend possible.

The representation model also needs to reflect the underlying

dynamic nature of the environment it is operating in. This means

that the model should cater for addition and removal of data

sources and address dynamic value changes of these sources. In

addition to an efficient access mechanism for both providers and

consumers, the model should be capable of managing dynamic

notifications to consumers. Since the dynamic nature of context

data varies between sources, it is imperative that the model put in

adequate mechanisms through which controlled notifications can

be sent to interested consumers.

For highly dynamic sources, the model should provide a way to

limit notifications as required by the calling consumer. This is

difficult as in most cases the onus can be on the data provider.

The provider can expose interfaces that support parameters for

data rate control or provide solicited information only. On the

other hand, consumers can control rate at which they are notified

by embedding notification code within notification handlers they

provide to the model. Another way would be to introduce a new

filtering language that would be supported by the model but this

needs standardization and may not span when multiple consumers

demand different notification rates.

3.2 Delivery Context Client Interfaces
The World Wide Web Consortium (W3C) has been involved in

standardizing a context access model specifically designed for

client-side access. The specification, called Delivery Context

Client Interfaces (DCCI) [7], follows a Document Object Model

(DOM)-like interface for context access. The term “Delivery

Context” [9] is defined as a set of attributes that characterizes the

capabilities of the access mechanism, the preferences of the user

and other aspects of the context into which a web page is to be

delivered. DCCI is meant for web applications where scripts

running within a web page can use similar DOM manipulation

methods to access delivery context. DCCI represents context data

as an ordered hierarchy in accordance with ontology. Ontology

describes the terms, concepts and relations between the concepts

for a domain. W3C is also working on ontology for delivery

context. DCCI interfaces derive from DOM Element interfaces

adding additional methods for searching properties, additional

attributes and structures as well as DCCI specific events and

exceptions. DCCI follow the DOM Event model [14] where

calling applications can add event listeners that listen for

particular events denoting changes to the DCCI tree. The listeners

call event handlers that handle the event fired by a particular

property node. The event model follows the same DOM event

phases of capture, target and bubble. DCCI supports both static

and dynamic properties and hence events are fired when either the

value of a node changes or there is a topology change to DCCI

tree.

As mentioned, DCCI is essentially a client consumer interface

access model. The same can be extended to be a blackboard

consumer access interface since it should be possible to model

smart space data as hierarchical. The level of standardization that

DCCI has undergone and the provisions within DCCI interfaces

to provide extensions counts in its favor. However, the biggest

advantage is that if DCCI gets widely adopted within client

devices as the de-facto standard for context access, building a

composite capability by combining multiple DCCI trees (DOM

trees) to form a blackboard central should be straightforward. The

W3C is working on a remote DOM synchronization protocol

aimed at synchronizing multiple trees called REX [12] that can be

utilized here. Thus, the two obvious advantages would be a

standardized consumer access model for smart spaces and a

mechanism for multi-device capability composition model. It is

also important that DCCI gets accepted as generic access interface

for all applications and not just the web domain. Section 4

introduces our proposed framework for smart space infrastructure

with the DCCI model forming the central access mechanism for

common data communication.

4. SMART SPACE FRAMEWORK
Our proposed framework for smart space infrastructure is shown

in Figure 1. The Data Representation Model and Access module

provides the “view” of data that the framework exposes to

consumers. The adopted data representation model is compliant

with the DCCI mechanism described in Section 3.2. The data

representation model only provides the view and access to the

model while the actual data can be locally stored or distributed

within the network indicated by the External Data Repository in

Figure 1. Data within the representation model are managed by

the Data Manager component. Another function of the data

manger is to perform intelligent abstractions and aggregation of

data provided by data providers. The abstractions can be

constructed based on semantic rules provided by users, developers

and other services. The Data Abstraction module is responsible

for building abstraction data objects utilizing certain rule sets,

domain constructs and raw data objects.

Figure 1: Smart Space Infrastructure Framework

The domain-specific constructs and primary data objects are

provided by the Data Manager, and they comply with smart

space ontology. The adopted ontology describes concepts and

relations of data objects within a domain. The ontology can

contain information about what abstractions are possible within a

domain including where and how the abstractions can be

represented within the data representation model. Since

representing all possible abstractions within ontology was not

possible and would have required complex dynamic ontology

management (which is outside the scope of this paper), the

ontology provides descriptions of “allowable” abstractions using a

known set of base constructs. The information about how the

actual abstractions are constructed using the allowed base

constructs can be represented through different sets of semantic

rules. When dynamic rule sets are created, the Data Manager can

ensure integrity of the representation model by working

simultaneously with the ontology constructs to ensure that the

newly added rule sets are valid and allowed by the ontology.

The Ontology Manager is responsible for maintaining and

managing the ontology while providing the ontology interface to

the Data Manger. The Security Management module is

responsible for providing security and authentication services for

the framework. This module depends on security and access

policies provided through authorized channels. The security

model is discussed in more detail in Section 4.1.

Provider Interfaces enable all providers with a unified entry

point to access the Data Representation Model. Depending on

the granted access type, the provider interface can constrain the

view to externals. Local data can directly use the provider

interface, while network based services would use some protocol

languages for communication. For network-based providers, the

provider interface can convert the corresponding object pointers

to a unique identifier that can identify the provider. This would

abstract the model view from providers ensuring blocking system

data space from external services. Moreover, since the ontology

determines where within the data representation model the

provider can provide data to, providers are spared the complexity

of knowing where exactly to provide their data to. Providers are

granted access based on their service description, metadata and fit

to the domain ontology.

The Protocol Semantics and Ontology module provides support

for translations between different protocols that operate in inter

and intra-domain mode. The discovery and session control

module is responsible for discovering services and session

establishment based on ambient services discovered. The protocol

ontologies provide ontological description of semantics employed

by each protocol used for communication.

4.1 Security
As part of the framework, we have developed a security

framework based on classification of consumers. The security

policy deals with mapping each provider and consumer to a

particular class where specific rights have been assigned for each

type of class. The solution aims at minimizing the risk of

supplying invalid or incorrect information to the calling

application or of creating bogus properties within the framework

by malicious programs.

The policy involves utilizing the metadata interface of DCCI node

interface that gives additional information about the property. The

security module exposes security classes, which define security

rights for components. The term “component” refers to a software

program that can be a consumer or provider, an application, or a

physical component (such as sensors, audio modules). The

components need to register to one of the classes according to a

class identifier, which is assigned to the components by an

operating system or a middleware component.

For external service providers, the class identifier should be

obtained either through a third party assignment service or via

direct negotiation with device middleware component through

metadata verifications. The exact formats and process for class

identifier procurement is out of scope of this paper. The class

identifier is generated in such a way that one part of the identifier

will determine which class is in question, and the other part of the

identifier uniquely identifies the component or application within

said class. The class identifiers are used to determine, which class

the programs can be registered to.

 The components will register to one of these classes based on the

specific priority (class identifiers) that has been assigned to them.

The security module will look at the particular class to which a

component belongs, and then grants the appropriate rights

accordingly. Sometimes, it may be required that the class right

itself be modified based on certain situational requirements. This

means that even the class rights have to be managed. To deal with

this, each class is given a set of default rights.

In addition to the default rights, each class is also associated with

a modifiable schema that can override the default behavior. The

schema will be maintained by the security component and each

interaction request will be validated against the schema before

execution. The schema can be edited by the user, operating system

or underlying implementation. The classification of specific

classes, the components that belong to each class and rights

associated with each class is outside the scope of this paper.

4.2 Implementation
As part of framework development, we implemented an instance

of the proposed context model. The implementation is based on a

previous specification of Delivery Context Client Interfaces that

was then called Delivery Context: Interfaces (DCI). The main

difference between DCI and DCCI lies in that while DCCI

interfaces derive from DOM Element interfaces, the DCI

interfaces derived from DOM Node interfaces. The change was

made due to serialization requirements that were identified for

certain use cases by the working group. The implementation was

carried out as an extension to Mozilla Firefox browser. On the

data provisioning front, we have integrated a SIP-event based

provisioning system with the framework utilizing a mock

taxonomy of data provider representations for client applications.

Due to space constraints of this paper, we refer to [10] and [11]

for more detailed information on implementation and the provider

framework.

5. ADDRESSING SMART SPACE

REQUIREMENTS
The delivery context model and smart space framework described

in previous sections can provide consumer applications with an

infrastructure for accessing system and environment information.

The smart space environment and its existing services can be

augmented by exploiting composite capabilities of multi-devices

that operate within the environment. The individual capabilities of

devices should be combined along with smart space services to

provide applications with a single logical view to a composite

capability. This would create new possibilities for adaptive

applications. For example, an application running on a unimodal

platform would be able to support multi-modal interaction when a

device supporting speech recognition resource is discovered. We

also need an effective way to model smart space applications

capable of supporting and reacting to dynamic aspects of

composite models. Section 5.1 describes how the data

representation model and access module in Figure 1 translates to

composition models when migrating to multi-device

environments. Section 5.2 looks at state-machine based approach

to smart space application development while outlining some

requirements for existing standards addressing this domain.

5.1 Composition Models
DCCI supports a tree model for data representation and access.

Hence, in theory it is possible to combine and merge multiple

DCCI trees together. Supporting multi-device environment and

services would mean combining different DCCI trees (similar to

DOM tree merging) into a composite tree structure. The

underlying data models can be locally resident within the devices

while the new tree provides a composite view and thereby a

logical blackboard. There is thus the need for a DOM

synchronization protocol. The W3C’s Remote Events for XML

(REX) activity is addressing the issue of remote DOM

synchronization and an extension of this protocol can be used for

DCCI tree synchronization. Synchronizing and combining

different DCCI trees raises several issues such as validation of

each node against a composite ontology, dynamic changes to

nodes and topology, response times and network reliability. When

considering merging of different trees, redundancy of different

nodes within the trees need to be accounted. Finding redundant

nodes may not be easy as the system needs to ascertain that the

nodes are dissimilar. This means comparing not just the main

node information but also the metadata as well as authenticate that

the providers of those nodes are different. It is not clear at this

point whether these issues need to be addressed at the protocol or

framework level. The activity should also define a standard URI

for the composite tree as well as mechanisms for discovery and

access of the composite tree root node within a particular smart

space.

5.2 Application Modeling
Adaptation of a smart space application can be seen as state

transitions triggered by a change in context where applications or

services jump from one state to another. Each state would be

characterized by state specific actions that can be rendered by

ambient devices or services and the application code can be

specific to the device in which it is run. The ideal smart space

development environment should encompass a standardized

framework for developing state machines that can utilize a

centralized blackboard context mechanism. The framework should

support running service specific code by delegating control to

ambient platforms when a respective state is reached. The state

transitions would be triggered by events that are fired due to

context changes within the data model. The W3C’s State Chart

XML (SCXML) [13] is a general-purpose event based state

machine language that can be an ideal candidate suited for writing

smart space state machines. SCXML allows using custom actions

through the common SCXML paradigm. It is the use of such

custom actions, that goes beyond the standard SCXML actions,

that makes SCXML an attractive candidate for running ambient

controls within a smart space. The specifics of SCXML

mechanisms are beyond the scope of this paper.

To support a centralized context access model, the smart space

development framework should support a uniform discovery

mechanism for the context model. Any declarative markup that

contains state machines should be able to add event handlers to

specific objects of interest within the context model so that

notifications can be handled. The event handlers can trigger the

state transitions. Information about the target object that triggered

the transition can be used to upload specific processing code

either through a direct interface or done through the blackboard

(similar to distributed processing). The specific type information

of objects can be accessed through its metadata representation

within the blackboard conforming to specific ontologies. The

mechanisms and protocols for how interaction occurs between

state machines, a DCCI-type context model and services that have

representations within the DCCI model are not clear at this point

and need to be investigated in more detail.

6. CONCLUSION
In this paper we discussed how we extended our existing

framework for delivery context model and access in order to

support development of applications for smart spaces. We

proposed an approach to achieve composition and interaction of

services across multiple devices based on building and describing

composite smart space capabilities by assembling individual

context models together. Our context model uses the W3C DCCI

representation. DCCI represents data as tree structure where

merging trees would address composition requirements. The W3C

REX specification can be modified from simple serialization of

DOM nodes for tree synchronization to address issues such as

node redundancy, dynamic sessions and logical composition

creation issues that can be raised when supporting smart space

specific data models. On the application authoring front, we view

smart space applications as state machines that can utilize context

models. The W3C SCXML specification can be used as a

candidate for authoring such applications with extensions for

smart spaces. For effective and widespread adoption of smart

space concepts, we believe that the approach of combining

multiple standards together with appropriate extensions should go

a long way in its realization.

7. ACKNOWLEDGMENTS
The authors thank fellow colleagues at Nokia Research Center

and W3C for their vision and support towards this work.

8. REFERENCES
[1] Frank Buschmann,, Regine Meunier, Hans Rohnert, Peter

Sommerlad, and Michael Stal. Pattern-Oriented Software

Architecture: A System Of Patterns. West Sussex, England:

John Wiley & Sons Ltd., 1996

[2] Harry Chen, Tim Finin and Anupam Joshi, An Intelligent

Broker for Context-Aware Systems, poster paper for

UbiComp 2003, October 12-15, Seattle, Washington.

[3] Harry Chen, Tim Finn and Anupam Joshi, An ontology for

context-aware pervasive computing environments. In: The

Knowledge Engineering Review, archive volume 18(3),

September 2003.

[4] Eleni Christopoulou, Christos Goumopoulos and Achilles

Kameas, An ontology-based context management and

reasoning process for UbiComp applications. In:
Proceedings of the joint conference on Smart objects and

ambient intelligence: innovative context-aware services:

usages and technologies, 2005.

[5] Jini Network Technology, available at www.sun.com/jini

[6] Keith Waters, Sailesh Sathish, Rafah Hosn, and Dave Ragett,

Delivery Context: Interfaces (DCI) Accessing Static and

Dynamic Properties, World Wide Web Consortium

Candidate Recommendation October 2006. Available at:

http://www.w3.org/TR/DPF/

[7] Paddy Nixon, Simon Dobson, Sotirios Terzis and Feng

Wang, Architectural Implications for Context Adaptive

Smart Spaces. In: IEEE International Workshop on

Networked Appliances. 2002.

[8] Rene Meier, Anthony Harrington, Thomas Termin and

Vinny Cahill, A Spatial Programming Model for Real Global

Smart Space Applications. In: Proceedings of Distributed

Applications and Interoperable Systems, 6th IFIP WG 6.1

International Conference, DAIS 2006, Bologna, Italy, June

14-16, 2006.

[9] Roger Gimson, Sailesh Sathish and Rhys Lewis, Delivery

Context Overview (DCO) for Device Independence, W3C

Working Group Note, March 2006. Available at:

http://www.w3.org/TR/di-dco/

[10] Sailesh Sathish and Olli Pettay, Delivery context access for

mobile browsing. In: Proceedings of International Multi-

Conference on Computing in the Global Information

Technology (ICCGI), August 2006, Bucharest, Romania.

[11] Sailesh Sathish, Dana Pavel and Dirk Trossen, Context

service framework for the mobile Internet. In: Proceedings of

International Workshop on System Support for Future

Mobile Computing Applications (FUMCA2006), in

conjunction with Eighth international conference on

Ubiquitous Computing (UbiComp), September 2006, Irvine,

California.

[12] Remote Events for XML 1.0, available at :

http://www.w3.org/TR/rex/

[13] Salutation consortium, specifications available at

http://www.salutation.org/whitepaper/bylaws.pdf

[14] State Chart XML, available at:

http://www.w3.org/TR/2005/WD-scxml-20050705/

[15] Tom Pixley, Document Object Model (DOM) Level 2 Events

Specification, W3C Recommendation November, 2000.

Available at: http://www.w3.org/TR/2000/REC-DOM-Level-

2-Events-20001113/

[16] Universal Plug and Play Specification (UPnP), available at

www.upnp.org

