
A Bandwidth Dependent Smoothing Algorithm for
Interactive Video Streaming in UMTS Systems

Pietro Camarda
Politecnico di Bari
Via E. Orabona, 4

70125 – BARI (ITALY)
+39 080 5963642

camarda@poliba.it

Domenico Striccoli
Politecnico di Bari
Via E. Orabona, 4

70125 – BARI (ITALY)
+39 080 5963301

d.striccoli@poliba.it

Mariella Ragno
Politecnico di Bari
Via E. Orabona, 4

70125 – BARI (ITALY)
+39 080 5963301

mariellaragno@yahoo.it

ABSTRACT
In the recent past, a growing number of services, such VBR video
transmission, have been implemented in UMTS cellular systems.
In such a context, to reduce the high bit rate variability of VBR
streams, several smoothing techniques, performed at server side,
have been developed. They regularize the bit rate of transmitted
data maintaining, at the same time, a constant video quality at
receiving side.
In this paper, a novel smoothing algorithm, the Buffer Dependent
Smoothing Algorithm (BDSA), has been developed and
analyzed. It schedules VBR video data, taking into account both
the feedback information on the real residual free buffer size
coming from the client terminal, and the available bandwidth
information. Numerical results show the BDSA effectiveness, in
terms of losses, if compared with the classical smoothing
algorithms known by literature.

Keywords
 Video Streaming, UMTS, Smoothing, Interactivity, Available
Bandwidth.

1. INTRODUCTION
In about ten years, cellular systems brought a significant
revolution in the telecommunication world, developing a growing
number of services for an ever growing number of users.
Packetized data transmission, peculiar characteristic of Internet,
is widely adopted in the Universal Mobile Telecommunication
System (UMTS) standard, actually developed by the 3rd
Generation Partnership Project (3GPP) organization [10]. UMTS
is mainly thought for mobile multimedia content transmission
(pictures, video streaming, video conference, TV programs, etc.)
with relatively high Quality of Service degrees. One of the most
important issues of UMTS systems is to transmit multimedia
streams over UMTS networks, guaranteeing at the same time a
high Quality of Service over wireless networks with highly

variable conditions (variable bit rates, network delays, jitters,
handover, etc.) [8]. Thus, the need to regularize the stream bit
rate at transmission side, to avoid channel congestions,
guaranteeing continuous and lossless playback at receiving side is
particularly felt [4].

In Figure 1 a model of streaming architecture for UMTS is
represented, considering the specifications illustrated in [8].

Figure 1. UMTS architecture for video streaming.

Multimedia streams are transmitted to the final users through the
UMTS core network, utilizing the Real-time Transport Protocol
(RTP) [20] over the User Datagram Protocol (UDP), particularly
suitable for the transmission of real-time applications. As shown
in Figure 1, the Real Time Control Protocol (RTCP) [1][17],
implemented at transport layer, is utilized to send feedback
information about the video stream transmission “status” to the
server. This feedback channel is useful for two main reasons.
Firstly, it enhances the user interactivity with the streaming
server, allowing operations like the fast forward, rewind or pause
on the video stream. Secondly, it periodically carries on several
information on the main client terminal characteristics. This
operation is performed through a RTCP packet called Next
Application Data Unit (NADU). As specified in detail in [1], the
fields of a NADU packet are: Playout Delay (PD) that indicates
the time interval (in ms) between the actual Applications Data
Unit (ADU) and the following, Next Sequence Number (NSN),
representing the sequence number of the next packet to be
codified, and the Free Buffer Space (FBS) that indicates the free
space in the receiver buffer, expressed in multiples of 64 bytes.
By the NADU examination, a large number of information can be
derived that provide an important feedback on the dynamic
“evolution” of the transmission. This can be fruitfully exploited

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Mobimedia'07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece.

Copyright 2007 ICST 978-963-06-2670-5.

RTCP feedback

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1691

to improve the quality of the provided service at server side.

Several types of codecs and multimedia contents are supported in
the UMTS PSS standard [1]. In particular, to increase video
quality, MPEG-4 and H.264 video compression standards are
recommended [16][21]. Nevertheless, the traffic produced by
such compressed stream is usually highly variable in time [9].
Furthermore, as stated in [7], the wireless channel fluctuations
can easily bring to repeated errors that combine with the Variable
Bit Rate (VBR) nature of compressed streams.
To improve wireless signal quality and reduce losses of VBR
streams, a first solution could be the bit rate reduction through
work-ahead smoothing techniques [19][6]. Smoothing algorithms
presented in literature are all based on the reduction of the stream
peak rate and bit rate variability by transmitting whenever
possible, ahead of playback time, Constant Bit Rate (CBR) pieces
of the video stream. The CBR entity varies from piece to piece
according to a scheduling algorithm that smoothes the video
stream bursty bit rate. The receiving buffer present in the UMTS
terminal stores the smoothed data, and the original unsmoothed
video stream leaves the buffer for decoding and playing.
Obviously, smoothed stream bit rates must be chosen
appropriately to avoid receiver buffer overflows and underflows,
with the aim to guarantee a continuous playback at the client side
without frame losses, as will be more clear in the sequel.

The main purpose of this work is to present a novel smoothing
algorithm particularly suitable for on-line interactive applications
in UMTS wireless networks. The proposed algorithm takes into
account the feedback information on the buffer fill level, coming
from the client terminal. It is able to take into account also the
available bandwidth information to regularize the scheduled
stream bit rate and reduce losses both for available bandwidth
lack during transmission, and for buffer overflow/underflow at
receiving side.

2. SMOOTHING PRINCIPLES
Let us suppose that a VBR video stream is composed by N video
frames, each of them of size id bytes ()1 i N≤ ≤ , as described
in [6]. At the server side, the stream data are scheduled according
to the particular smoothing algorithm. At the client side, the
smoothed video data enter the buffer and the original unsmoothed
video frame sequence leaves it for decoding and playout. Let us
now consider the client buffer model in the thk discrete time slot,
assumed as the basic time unit. A discrete time slot, or frame
time, is supposed to be the time interval in which a video frame is
transmitted (1/25 s for PAL). To guarantee a feasible
transmission, the cumulative input data to the receiving buffer at

thk discrete time, ()S k , should arrive quickly enough to avoid
buffer underflow. The buffer underflow and overflow curves are
respectively:

1
()

k

i
i

D k d
=

= ∑ ;
1

() ()
k

i
i

B k b d D k b
=

= + = +∑ . (1)

So it has to be:

1
() () () ()

k

i
D k S k s i B k

=

≤ = ≤∑ (2)

where ()s i represents the smoothed stream bit rate in the thi
discrete time slot. The smoothed stream transmission plan will
result in a number of CBR segments, and the correspondent
smoothed cumulative transmission plan ()S k is given by a
monotonically increasing and piecewise linear path that lies
between the ()D k and ()B k curves [6].

Several studies on the impact of available bandwidth information
on the smoothed transmission plan can be found in literature. An
available bandwidth dependent smoothing algorithm, the
Network Constrained Smoothing (NCS), is considered in [2]. It
takes into account available bandwidth constraints and schedules
the single video stream over a server-side transmission. This
simple technique considers future network traffic knowledge to
derive available bandwidth. The multimedia data are then divided
into equal-sized intervals in which a CBR segment is scheduled.

Another example of bandwidth dependent smoothing algorithm
can be found in [14]. In this work, network calculus is exploited
to optimize the client buffer size, playback delay and look-ahead
delay in such a way to generate a lossless video stream schedule
respecting particular traffic envelopes, i.e., curves representing
the maximum traffic that can be sent to the network. Smoothing
developed in [14] can be applied in combination with other
existing smoothing algorithms like the one illustrated in [19] to
further minimize other metric, like number of bandwidth changes
or rate variability.

A Rate Constrained Bandwidth Smoothing (RCBS) is presented
in [5] for interactive video streams delivery. It minimizes the
amount of buffering needed by smoothing when a maximum
constant rate constraint is given, simply by prefetching video data
only when the rate constraint is violated, and leaving the original
unsmoothed data unchanged when they maintain under the
bandwidth constraint. In this way, if compared with the classical
smoothing techniques previously illustrated (CBA, MCBA,
MVBA, etc.), the buffering needed for smoothing is greatly
reduced and client buffers can store much more data for VCR
functionalities (stop, pause, rewind and examine operations).

Other interesting works on video smoothing take into account the
minimization of bandwidth occupied by smoothed VBR streams.
In [3] a smoothing scheme is proposed, based on the

()SLWIN α smoothing scheme proposed in [18]. It dynamically
adapts the sliding window size to smooth bursty traffic,
minimizing occupied bandwidth and computational cost.

Another approach is suggested in [13], where a Monotonic
Decreasing Rate (MDR) scheduler is implemented. It allows only
monotonic decreasing rate allocations, reducing bandwidth
requirements and greatly simplifying the admission test
computational complexity, necessary to establish if a new video
stream can be admitted to a system with limited bandwidth
resources. A large number of simulations test the algorithm
performance.

The dynamic bandwidth allocation issue for RCBR smoothed
streams is tackled in [15]. The purpose of this work is twofold.
Firstly, a source traffic prediction method is adopted. It is able to
predict with sufficient accuracy bandwidth level changes of
smoothed video traffic. Secondly, bandwidth prediction is used to
decide in advance both channel rate and duration. RCBR
algorithm is considered also in [12], where a network testbed is
set up to analyze RCBR smoothing performance. RCBR scheme
is chosen because it simplifies buffering and scheduling
requirements in network switches for VBR streams. RCBR
scheme is compared with traditional CBR schemes in this
testbed, testifying significant improvements in terms traffic data
loss.

In this work, a novel smoothing algorithm for VBR video
streams, particularly suitable for UMTS network, is proposed and
analyzed. It is called for simplicity Buffer Dependent Smoothing
Algorithm (BDSA). It is an “on-line” algorithm, since several
UMTS applications require an on-the-fly computation of the
schedule, during stream running. The main novelty of this

algorithm is that it takes into account the feedback information on
the buffer fill level, periodically coming from the client terminal.
This kind of approach can be very useful in the context of
interactive applications, where the client can perform a variety of
actions that cannot be known at server side, but could modify the
buffer fill level accordingly. The feedback information on the real
buffer fill level coming from the client can be exploited to
modify on-the-fly the stream schedule at transmission side, in
such a way to avoid bit losses due to buffer overflows and
underflows. Regarding this aspect, the periodicity of RTCP
control packets carrying the buffer information is generally
comprised between 1 second (25 frame times, according to PAL
standard) and 5 seconds (125 frame times). This time value is
established at the beginning of the video stream session.

Furthermore, the proposed algorithm adapts the scheduled stream
bit rate to the available bandwidth. Smoothed bit rate is reduced
whenever available bandwidth drastically falls down and
increased whenever it raises up again, to guarantee continuous
decoding without quality degradation. Let us note that the
available bandwidth profile should be known in advance, in the
same temporal observation window where scheduled data will be
transmitted in the network channel. Nevertheless, there are
statistical predictive techniques of bandwidth estimation [11] that
could predict the bandwidth behaviour, especially for noisy
wireless channels, that is the case of UMTS applications. Since
bandwidth prediction is not the purpose of this study, in this work
we suppose that bandwidth profile is a priori known. When
sufficient bandwidth is available for transmission, BDSA
performs the “smoothest” transmission plan, with minimum
scheduled rate variability and peak rate, exploiting the same basic
principles of the MVBA schedule [19]. Let us note that BDSA
can be fruitfully applied both to VBR and CBR video streams. In
the latter case, the constant stream bit rate is varied in
consequence of the available bandwidth and the free buffer
information. Nevertheless, since the best smoothing performance
are obtained for VBR streams, in this work we will consider only
MPEG compressed VBR flows.

The rest of the paper is structured as follows. In Section 3 the
BDSA is presented and analyzed, with particular reference to the
off-line and on-line contexts. In Section 4 the BDSA is compared
with the existing MVBA algorithm, that does not take into
account the buffer feedback nor the available bandwidth
information. Finally, in Section 5 some conclusion on the
proposed algorithm are provided.

3. THE BDSA PRESENTATION
In this section, the BDSA algorithm is presented and illustrated.
It is a server side algorithm that smoothes the VBR video stream
taking into account both the buffer fill level information coming
from the client terminal, and the available bandwidth profile. As
specified in [17], the real free buffer level is periodically
provided by RTCP packets to the streaming server as a multiple
of 64 bytes. This novel algorithm has been essentially developed
for on-line UMTS applications, but its principles can easily be
applied to the off-line case, in which all the stream information is
a priori known.

Let us suppose a temporal observation window of N video
frames, and that the available bandwidth does not influence the
schedule. The BDSA aim is to generate a transmission plan that
minimizes both the scheduled peak rate and rate variability,
always respecting the ()D k and ()B k bounds as defined by (1)
and (2). Nevertheless, since the buffer information varies in time,
the ()B k curve is modified as follows:

() () ()B k D k b k= + (3)

where ()b k is the free buffer profile, considered as a function of
the frame time k.

The algorithm acts as follows. Supposing to know the stream
frame size kd , the buffer variation profile ()b k in a generic time

interval []1 2,k k , the maximum bit rate maxc is calculated, as the
maximum bit rate without overflowing the client buffer:

1 2

1
max 1

1

() (())min
k k k

B k D k qc
k k+ ≤ ≤

⎧ ⎫− +
= ⎨ ⎬

−⎩ ⎭
 (4a)

where q is the initial buffer level in 1k (in bytes), ()B k is
defined by (3) and 1()D k is the lower bound in 1k .

The latest time instant where maxc is reached over []1 2,k k is:

1 2

1
max1

1

() (())maxB k k k

B k D k qk k c
k k+ ≤ ≤

⎧ ⎫− +⎪ ⎪= =⎨ ⎬
−⎪ ⎪⎩ ⎭

 (4b)

Similarly minc is defined as the minimum bit rate calculated
without emptying the buffer:

1 2

1
min 1

1

() (())max
k k k

D k D k qc
k k+ ≤ ≤

⎧ ⎫− +
= ⎨ ⎬

−⎩ ⎭
 (4c)

and the latest time instant where minc is reached over []1 2,k k is:

1 2

1
min1

1

() (())maxD k k k

D k D k qk k c
k k+ ≤ ≤

⎧ ⎫− +⎪ ⎪= =⎨ ⎬
−⎪ ⎪⎩ ⎭

. (4d)

The transmission plan is feasible only if max minc c≥ in []1 2,k k .

Exploiting this concept, BDSA spans all the temporal window of
N video frames. Starting from the first frame time 1k , in each
discrete time k , maxc , minc , Bk and Dk as defined in (4a)-(4d)
are calculated. Besides, the maximum and minimum feasible bit
rates in k are calculated, respectively:

() 1
max

1

() 1
min

1

() (())

() (())

k

k

B k D k qc
k k

D k D k qc
k k

⎧ ⎧ ⎫− +
=⎪ ⎨ ⎬

−⎪ ⎩ ⎭
⎨

⎧ ⎫− +⎪ = ⎨ ⎬⎪ −⎩ ⎭⎩

 (5)

If there is k such that ()
min max

kc c> , surely a buffer underflow

occurs in k ; the scheduled bit rate will thus be maxc in 1[, 1]k k − ,

with 1 1k k= − . Similarly, if ()
max min

kc c> a buffer overflow

occurs. The scheduled bit rate will be minc in 1[, 1]k k − , and

1 1k k= − .

This procedure originates the “smoothest” transmission plan
among all the feasible transmission plans. It means that it has the
minimum rate variability and the minimum peak rate. The
analytical proof of this can be found in [19].

The so built transmission plan takes into account the real buffer
fill level information taken into account in ()b k . Nevertheless,
BDSA considers also available bandwidth fluctuations. This

further improvement makes the BDSA schedule more robust
towards data transmissions over wireless channels, that are more
subject to noise and bandwidth drops. To respect bandwidth
limitations, BDSA implements a control over the scheduled bit
rate ()s k , that must satisfy the following three conditions in
each discrete time k :

() (1) () ()S k S k s k B k= − + ≤ (6a)

() (1) () ()S k S k s k D k= − + ≥ (6b)

() ()s k w k≤ (6c)

for each 1 k N≤ ≤ , and with the initial condition (0) 0S = .
()w k is the available bandwidth information at the discrete

frame time k . The (6) mean that the BDSA schedule faces
available bandwidth drops, at the same time trying to avoid
buffer overflows and underflows.

The logic followed by BDSA is based on the following main
steps. If no bandwidth constraints are present, BDSA behaves
exactly like MVBA, optimizing the transmission plan in terms of
peak rate and rate variability. If available bandwidth is lower than
needed by MVBA schedule, BDSA reduces the bit rate, adapting
it to the available bandwidth profile. The scheduled bits
exceeding the available bandwidth profile that would be lost
because of bandwidth limitation are put in a “lost_bits” variable
and redistributed along the entire transmission plan by increasing
the scheduled bit rate ()s k in the thk frame time by Δ bits in
the time intervals where available bandwidth allows it, that is, for
each k respecting the condition: '() ()s k w k≤ .

This way of operation guarantees the condition (6c), but not (6a)
and (6b). BDSA must thus prevent also buffer underflows and
overflows. For this reason, BDSA first searches frame times in
which buffer overflows or underflows occur. Let us note that,
after the bit rate reduction due to the bandwidth limitation, the
first critical condition found by BDSA, if any, is surely a buffer
underflow. In fact, the MVBA schedule does never present buffer
overflows; thus the bit rate decrease due to bandwidth limitations
can only bring to buffer underflows. If a buffer underflow
condition is found, the scheduled bit rate is increased by adding

undΔ bits in all the time period in which ()S k does not respect
the (6b), but always verifying the (6c). This amount of bits is
taken from the “lost_bits” variable; if they are not sufficient to
totally avoid the buffer underflow, the “lost_bits” variable will
become null and losses will still occur. Let us note that this
procedure of increasing the bit rate to avoid a buffer underflow,
can also bring to a buffer overflow in other time intervals of the
schedule.

If a buffer overflow occurs, the scheduled bit rate is decreased by
reducing the bit rate of ovΔ in a time interval that includes the
entire overflow time period. Since this operation is a bit rate
decrease, again the “lost_bits” variable increases and its content
can be redistributed to compensate bit lacking due to buffer
underflows. This suggests that this procedure can be iteratively
repeated since the “lost_bits” variable reaches its minimum, or
becomes null. Experimented bit losses will be given by the sum
of the “lost_bits” variable and the losses occurred for buffer
underflows.

The available buffer information is known by the stream server
dynamically, in a time interval btΔ , expressed in frame times,
that ranges from 25 (1 second) to 125 (5 seconds). BDSA takes
into account this information by modifying the schedule
on-the-fly, during the stream running, and taking into account the

last available buffer information coming to the server from the
client. This is performed as follows. When the new buffer
information ()real ba k t⋅ Δ arrives to the server at time bk t⋅ Δ ,
considered as a multiple of btΔ , BDSA calculates:

() () ()sched b b ba k t B k t S k t⋅ Δ = ⋅ Δ − ⋅ Δ (7)

and compares it with ()real ba k t⋅ Δ . If
() ()real b sched ba k t a k t⋅ Δ ≠ ⋅ Δ , only the remaining part of the

schedule, starting from bk t⋅ Δ until its end, is modified, by taking
into account ()real ba k t⋅ Δ . This procedure is repeated each btΔ
seconds, when the new buffer information arrives to the server,
until the end of the schedule.

In Figure 2 the implementation of the BDSA taking into account
the on-the-fly buffer information is presented, through its
pseudo-code.

1. Load stream (N video frames);
2. Assign (1)scheda b= ;

3. Assign ()d i , ()w i 1 i N∀ ≤ ≤ ;

4.
1

() ()
i

j

D i d j
=

= ∑ ; () min[(1) (1), ()]schedB i D i a D N= − + ;

5. [1:] [, (1),]schedS N BDSA D a B= ;

6. Assign btΔ
7. 1k = ;
8. WHILE bk t NΔ ≤
9. Store ()real ba k t⋅ Δ coming from client;
10. IF () ()real b sched ba k t a k t⋅ Δ ≠ ⋅Δ
11. '() min[(1) (), ()]real bB i D i a k t D N= − + Δ bk t i N∀ ⋅Δ ≤ ≤ ;
12. [:] [, (), ']b real bS k t N BDSA D a k t B⋅ Δ = ⋅Δ
13. END
14. 1k k= + ;
15. () () ()sched b b ba k t B k t S k t⋅ Δ = ⋅Δ − ⋅Δ
16. END

Figure 2. Pseudo-code for the BDSA application.

Lines from 1 to 4 define the main parameters: video stream
frames, initial buffer level, available bandwidth and upper and
lower limits. Line 5 calculates the entire BDSA schedule with the
initial buffer level b . Supposing the real available buffer level

()real ba k t⋅ Δ coming at the server each btΔ seconds (line 6), it is
compared with ()sched ba k t⋅ Δ derived by the schedule through
(7). If the two values are different (line 10), the schedule is
calculated in line 12, starting from bk t⋅ Δ and exploiting the
modified values of the buffer capacity ()real ba k t⋅ Δ and
consequently of the upper bound 'B (line 11). Line 15 calculates
the new available buffer capacity after the next btΔ seconds as
derived by the schedule, to compare it with the real available
buffer coming during the following iteration. The procedure of
lines 9-15 is repeated until the stream end.

4. BDSA PERFORMANCE
In this Section, we test the BDSA effectiveness by comparing it
with the MVBA smoothing algorithm already presented in
literature, taking into account available bandwidth and buffer size
fluctuations together with receiving smoothing buffer sizes
information. Experiments are repeated for different VBR video
streams. We choose MVBA as meter of comparison, because is
the most effective in reducing the scheduled peak rate and the
rate variability of a VBR video stream.

Figure 3 represents a first comparison between BDSA and
MVBA schedules. Simulation has performed for a piece of
10.000 video frames of the “Star Wars” film, MPEG-4
compressed with high quality. In Figure 3 the cumulative
schedule has been represented for both algorithms, together with
the buffer overflow (upper bound) and underflow (lower bound)
curves, in a time interval of 3.000 frame times.

1000 1500 2000 2500 3000 3500 40001

1.5

2

2.5

3

3.5

4

4.5

5

5.5 x 107

Time (frame)

C
um

ul
at

iv
e

da
ta

 (b
it)

MVBA cumulative schedule
BDSA cumulative schedule
Upper bound
Lower bound

Figure 3. A zoom of BDSA and MVBA cumulative
transmission plans.

BDSA schedule has been obtained by randomly varying the
buffer capacity; the effect of this variation is testified by the
abrupt changes of the buffer overflow profile in Figure 3. The
MVBA schedule is calculated supposing a constant buffer
capacity of 512 kB, which corresponds to the maximum buffer
level simulated for MVBA. In this experiment, no available
bandwidth limitation has been supposed, so that it does not
influence the BDSA transmission schedule. As can be clearly
observed by Figure 3, MVBA schedule repeatedly crosses the
upper bound curve, thus provoking a buffer overflow at receiving
side. BDSA schedule remains always confined between the upper
and lower bounds; no losses occur. From this considerations it
can be understood that MVBA performs always worse than
BDSA since the former does not take into account the buffer
information coming to the server from the client terminal.

Now let us analyze BDSA and MVBA performance in presence
of available bandwidth limitations. This situation can happen
very often in the context of cellular UMTS networks, where data
transmission occur in the open space and are subject to noise and
interferences. Figure 4 represents this comparison between
BDSA and MVBA. The available buffer randomly varies
between 128 kB and 512 kB, starting with this last value. To
further stress the system, a bandwidth drop has been simulated at
the beginning of the transmission of a piece of “The silence of the
lambs” video stream, MPEG-4 coded with high quality. The
observation window has length 10.000 video frames. The drop
occurs during the first 2.000 video frames. In this way, BDSA
can not perform an effective work-ahead schedule to avoid in
advance bit losses for bandwidth limitation; it is forced to
redistribute bits that would be lost only after the drop.

As can be seen from Figure 4, BDSA follows the bandwidth
profile, and compensates the lower scheduled bit rate, if
compared with MVBA, by increasing it immediately when
available bandwidth rises again. The difference between the two
schedules is clearly visible until the 3.000th frame time; after that,
BDSA and MVBA schedules coincide, according with the BDSA
aim to maintain the MVBA main features. Losses experimented
by MVBA are much more than BDSA ones. In fact, MVBA
losses occur both at transmission side, due to the initial

bandwidth drop, and at receiving side, due to buffer underflow.
This underflow occurs because the amount of bits arriving at
receiver are less than scheduled by MVBA, because of the hard
bandwidth limitation. BDSA will instead experiment only losses
for buffer underflow, due to its ability to take into account the
bandwidth limitation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100005

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 x 104

Time (frame)

B
it

ra
te

 (b
it/

s)

Available bandwidth
BDSA schedule
MVBA schedule

Figure 4. Another example of BDSA and MVBA schedules

with an initial bandwidth drop.

Figure 5 represents the distribution of BDSA bit losses during the
bandwidth drop simulated in Figure 4. They all occur during the
first 1.000 video frames, because of buffer underflows. This is
obvious, since the bandwidth drop occurs at the beginning of the
schedule and BDSA is not able to prevent frame losses by
increasing the scheduled bit rate in advance.

0 500 1000 1500 20000

2

4

6

8

10

12 x 104

Time (frame)

Lo
st

 b
its

Figure 5. Lost bit distribution for buffer underflow during

the bandwidth drop.

Another scenario has been implemented by simulating an
available buffer reduction in correspondence of a bandwidth drop
in a time window of 10.000 video frames, to simulate the
simultaneous lack of bandwidth and buffer resources. Figure 6
shows the resulting schedules. Available buffer profiles lowers
from 512 kB to 128 kB twice: between the 2.500th and the 4.000th
frame times, and between the 7.000th and 8.000th frame times.
The bandwidth profile is illustrated in Figure 6.

The particularity of the result shown in Figure 6 is that BDSA
schedule does not follow the bandwidth profile during the last
part of the bandwidth drop (between the 4.000th and 4.500th video
frames). This happens because the available buffer requirement is
more stringent than available bandwidth, forcing the BDSA
schedule to further lower its bit rate. Bit rate is increased

immediately after the bandwidth drop, when also the available
buffer value is of 512 kB. Also in this case, MVBA presents
consistent bit losses during the bandwidth drop.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100005

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 x 104

Time (frame)

B
it

ra
te

 (b
it/

s)

Available bandwidth
BDSA schedule
MVBA schedule

Figure 6. BDSA and MVBA schedules in presence of
simultaneous available bandwidth and buffer drops.

5. CONCLUSIONS
In this paper a new smoothing algorithm, BDSA, has been
proposed, that regulates the transmitted bit rate of video streams
transmitted over UMTS networks taking into account available
bandwidth constraints and the feedback information on available
buffer periodically coming from the client. Thanks to a simple
and efficient bit redistribution along the entire schedule, BDSA is
able to minimize frame losses. Its great flexibility of
implementation in several situations (off-line or on-line
smoothing of single VBR or CBR video stream, or stream
aggregates) makes it particularly suitable to be implemented in
real-time video streaming in UMTS systems, where critical
available bandwidth conditions often occur.

6. REFERENCES
[1] 3GPP TS 26.234. Transparent End-To-End Packet-Switched

Streaming Service (PSS): Protocols and Codecs (Release 6).
http://www.3gpp.org/ftp/Specs/archive/26_series/26.234/26
234-630.zip.

[2] Bewi, C., Pereira, R., Merabti, M. Network Constrained
Smoothing: Enhanced Multiplexing of MPEG-4 Video. In
Proceedings of the 7th International Symposium on
Computers and Communications (ISCC’02) (Taormina,
Italy, July 1-4, 2002), 114-119.

[3] Chang, R.-I, Chen, M.-C., Ho, J.M.. and Ko, M.T. An
Effective and Efficient Traffic Smoothing Scheme for
Delivery of Online VBR Media Streams. In Proceedings of
the IEEE INFOCOM’99 (New York, USA, Mar. 1999).

[4] Elsen, I., Hartung, F., Horn, U., Kampmann, M., and Peters,
L. Streaming Technology in 3G Mobile Communication
System. IEEE Computer (Sept 2001).

[5] Feng, W.-C. Rate-constrained bandwidth smoothing for the
delivery of stored video. In Proceedings of the SPIE
Multimedia Computing and Networking (San Jose, CA, Feb.
1997).

[6] Feng, W.-C., and Rexford, J. Performance Evaluation of
Smoothing Algorithms for Transmitting Prerecorded
Variable-Bit-Rate Video. IEEE Transactions on Multimedia,

1, 3 (Sept. 1999), 302-313.

[7] Fitzek, F., Seeling, P., and Reisslein, M. Video streaming in
wireless internet. Electrical Engineering and Applied Signal
Processing Series (2004).

[8] Fröjdh, P., Horn, U., and Kampmann, M. Adaptive
Streaming within the 3GPP Packet-Switched Streaming
Service. IEEE Network (Mar./Apr. 2006).

[9] Grossglauser, M., and Bolot, J.-C. On the Relevance of
Long-Range Dependence in Network Traffic. IEEE/ACM
Transaction on Networking, 7, 5 (Oct. 1999), 629-640.

[10] Holma, H., and Toskala, A. WCDMA for UMTS : Radio
Access for Third Generation Mobile Communications. John
Wiley, 2004, 3rd edition.

[11] Hu, N., and Steenkiste, P. Evaluation Characterization of
Available Bandwidth Probing Techniques. IEEE Journal on
Selected Areas in Communications, 21, 6 (Aug. 2003),
879-894.

[12] Kishore, M., and Liang, Y. An Empirical Study on
Renegotiated CBR for VBR Video Services Based on
Network Testbed. IEEE Transactions on Broadcasting, 52,
3 (Sept. 2006), 362-367.

[13] Lai, H., Lee, J.Y., and Chen, L. A Monotonic Decreasing
Rate Scheduler for Variable-Bit-Rate Video Streaming.
IEEE Transactions on Circuits and Systems for Video
Technology, 15, 2 (Feb. 2005), 221-231.

[14] Le Boudec, J.-Y., and Thiran, P. Network Calculus: A
Theory of Deterministic Queueing Systems for the Internet.
Book Springer Verlag (May 2004).

[15] Lee, M. Video Traffic Prediction Based on Source
Information and Preventive Channel Rate Decision for
RCBR. IEEE Transactions on Broadcasting, 52, 2 (Jun.
2006), 173-183.

[16] Mitchell, J.L., Pennebaker, W.B., Fogg, C.E., and LeGall,
D.J. MPEG video compression standard. Chapman & Hall,
1996.

[17] Ott, J., Wenger, S., Sato, N., Burmeister, C., and Rey, J.
Extended RTP Profile for RTCP-based Feedback
(RTP/AVPF). Internet Draft,
draft.ieft.avt.rtcp.feedback-08.txt (Jan. 2004).

[18] Rexford, J., Sen, S., Dey, J., Kurose, J.,and Towsley, D.
Online Smoothing of Variable-Bit-Rate Streaming Video.
IEEE Transactions on Multimedia, 2, 1 (Mar. 2000), 37-48.

[19] Salehi, J.D., Zhang, Z.-L., Kurose, J., and Towsley, D.
Supporting Stored Video: Reducing Rate Variability and
End-to-End Resource Requirements Through Optimal
Smoothing. IEEE/ACM Transactions On Networking, 6, 4
(Aug. 1998), 397-410.

[20] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V.
RTP: A transport protocol for real time applications. RFC
3550 (Jul. 2003).

[21] Stochkammer, T., and Hannuskela, M.M. H. 264/AVC
video for wireless transmission. IEEE Wireless
Communications (Aug. 2005).

