
Prototyping of a WLAN system using C++ based
Architecture Exploration

Nikolaos S. Voros

Dept. of Communication Systems and Networks
 TEl of Mesolonghi

Ethniki Odos Antiriou Nafpaktou, Varia
Nafpaktos 30300, Greece

voros@teimes.gr

Konstantinos Masselos
Dept. of Computer Science

and Technology
University of Peloponnese

 Terma Karaiskaki, Tripolis, 22100, Greece
kmas@uop.gr

ABSTRACT
Wireless Local Area Networks (WLANs) are currently
considered as one of the most popular application domains. In
this paper the protyping of a WLAN system on a platform
including microprocessors and FPGAs is described. The
prototyping started from architecture exploration using a C++
library for hardware/software codesign. The developed prototype
allowed evaluation of the system performance and the
architecture decisions. The use of the systematic architecture
exploration allowed making correct decisions early in the design
cycle thus avoiding time consuming iterations from lower design
stages (necessary when constraints are not met by the final
implementation).

Keywords
Wireless systems, architecture exploration, hardware/software
codesign.

1. INTRODUCTION
There have been several standardization efforts in wireless

communications (including GPRS, EDGE, and UMTS), aimed at
meeting the expected increased requirements of users and
applications. In addition, and complementary to the mobile
telephony data transmission standards developed in Europe,
Japan and US standards for Wireless Local Area Networks
(WLANs) in the 2.45 GHz and 5 GHz bands have been
developed as well. In the unlicensed band of 2.45 GHz the IEEE
802.11b [1] standard has provided to the users up to 11 Mbit/s
transmission rates. The IEEE 802.11a [2] and the HIPERLAN/2
[3] protocols were specified to provide data rates of up to 54
Mbit/s for short-range (up to 150 m) communications in indoor
and outdoor environments.

The volumes of WLAN components (Access Points and
Network Interface Cards) shipments imply implementation of
WLAN systems as single integrated circuits (Systems-on-Chip)
for cost reduction. This is more important for Network Interface
Cards that have larger volumes and tighter size constraints.
Prototyping on platforms with discrete components, such as
microprocessors and FPGAs, is an important step in the
development of a System-on-Chip since it allows efficient
functional and performance verification of the design and
validation of major architecture decisions.

In this paper the prototyping of the HIPERLAN/2 system on
the ARM integrator platform [3] is described. ARM integrator
includes a number of ARM processor based modules and a
number of FPGA based modules organized around an AMBA bus
located in the main board. The prototyping allows emulation of
the finally targeted System-on-Chip implementation, offers a
test-bed for the functional debugging of the developed protocol-
stack, allows algorithmic performance evaluation (for the
baseband part) through field measurements and validation of the
architecture decisions (also in view of the final System-on-Chip
implementation).

The prototyping of the HIPERLAN/2 system on the ARM
integration platform is guided by systematic architecture
exploration based on C++. The adoption of this systematic
architecture exploration approach allows making correct
architecture decisions early in the design cycle. This eliminates
time consuming iterations from lower level design stages (to
refine architecture in case where performance and cost
constraints are not met).

The rest of the paper is organized as follows: Section 2
provides an overview of the HIPERLAN/2 system. Section 3
provides details on the functional specification of the
HIPERLAN/2 system, while Section 4 details the architecture
exploration phase, which has been based on OCAPI-xl
environment. Section 5 presents concrete results for the final
system implementation, and Section 6 concludes by providing a
summary of the proposed approach.

2. OVERVIEW OF HIPERLAN/2 WLAN
SYSTEM

The HIPERLAN/2 system [4, 5, 6] is composed of two types
of devices: the Mobile Terminals (MT) and the Access Points
(AP). Typical architectures of the Access Point and the Mobile
Terminal are presented in Figure 2.

The HIPERLAN/2 basic protocol stack and its functions are
shown in Figure 3. The convergence layer (CL) offers a service
to the higher layers. The DLC layer consists of the Error Control
function (EC), the Medium Access Control function (MAC) and
the Radio Link Control function (RLC). It is divided in the data
transport functions, located mainly on the right hand side (user
plane), and the control functions on the left hand side (control
plane).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
Mobimedia'07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece.
Copyright 2007 ICST 978-963-06-2670-5.

mailto:voros@teimes.gr
mailto:kmas@uop.gr
fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.MOBIMEDIA 2007, August 27-29, Nafpaktos, GreeceCopyright © 2007 ICST 978-963-06-2670-5DOI 10.4108/ICST.MOBIMEDIA2007.1619

Figure 2. Architectures of AP – MT

Figure 3. HIPERLAN/2 protocol stack and functions

The medium access control (MAC) is a centrally scheduled
TDMA/TDD scheme. It consists of a sequence of MAC frames of
equal length with 2 ms duration. Each MAC frame consists of
several phases: Broadcast (BC) phase, Downlink (DL) phase,
Uplink (UL) phase, Direct Link Phase (DiL), Random access
phase (RA).

The MAC/DLC layer is basically structured in two levels of
computing:

• A lower level dedicated to critical timing tasks: medium
access, acknowledgement, timestamp, CRC, encryption,
etc.

• An upper level dedicated to less critical timings tasks
like fragmentation, association, authentication, device
management, data transfer to/from the host, power save
queuing etc.

MAC/PHY
Interface Data Scrambler Convolutional

encoder

Rate
independent

puncturing P1

Rate dependent
puncturing P2

InterleaverConstellation
mapper

Pilot
Insertion

IFFTCyclic prefix
insertion

Phy burst
formation

Preambles

Figure 4. HIPERLAN/2 transmitter block diagram
Timing and frequency
synchronization and

corection

Cyclic
Prefix

Extraction
FFT

Channel
estimation and

frequency domain
equalization

Constellation
decoder

Rate
dependent

depuncturing
De-interleaverViterbi

decoder

Rate
independent
depuncturing

DescramblerMAC/PHY
interface

Figure 5. HIPERLAN/2 receiver block diagram

The baseband part of the physical layer of HIPERLAN/2 is
based on orthogonal frequency division multiplexing (OFDM)
[7]. The physical layer provides several modes with different
coding and modulation schemes, which are selected by link
adaptation. BPSK, QPSK and 16QAM are the supported
subcarrier modulation schemes. Furthermore, 64QAM can be
used in an optional mode. Reference block diagrams of

HIPERLAN/2 transmitter and receiver are presented in Figure 4
and Figure 5 respectively.

Table 1. Computational complexity of transmitter tasks in
different physical layer modes

Table 2. Computational complexity of receiver tasks in

different physical layer
modes

Both the transmitter and the receiver include tasks with

different granularities with respect to the bitwidth of their
operands. The tasks can be broadly classified into fine grain
tasks that operate on groups of small number of bits and, to
coarse grain tasks that operate on words (groups of larger
number of bits). Different types of data manipulating operations
are performed by the different tasks. Coarse grain tasks perform

mainly arithmetic operations (e.g. multiplications, additions) on
their input data. Fine grain tasks perform logic level operations
and some simple arithmetic operations. The types of operations
performed by the different tasks and their computational
complexities for all the different physical layer modes are
presented in Table 1 and Table 2. Indicative computational
complexities are given in MOPS (assuming that all operations
e.g. arithmetic, logical are treated the same). However, taking
into consideration the main type of processing given in second
column, the real complexities become more clear. Some of the
tasks have complexities that remain stable for all the physical
layer modes (e.g. FFT), while some other tasks have
complexities dependent on the physical layer mode (e.g.
convolutional encoding, Viterbi decoding).

Part of the timing critical MAC/DLC functionality is
associated with timed state machines (e.g. medium access).
Some other tasks such as encryption (can be possibly included in
DLC functionality) require some arithmetic processing.

3. FUNCTIONAL SPECIFICATION OF
HIPERLAN/2 SYSTEM

The functionality of the targeted system has been specified
through the development of an executable model in ANSI C, for
the MAC sub-layer and the baseband part of physical layer. The
size of the model is 20000 lines of code. The structure of the
ANSI C model is shown in Figure 6.

The model of the baseband processing part of HIPERLAN/2
system is divided into two parts: complex numbers based
algorithms (mapping, OFDM, PHY bursts) and binary
algorithms (scrambling, FEC, interleaving).

A number of configuration parameters are supported for the
physical layer modules:

• width and position of point in fixed point, numbers
(separate for frequency domain, time domain, FFT
calculations, FFT twiddle factors, channel correction and
CFO cancellation multipliers),

• number of soft bits in Viterbi algorithm soft value
representation,

• time synchronization threshold, duration and time-outs,
• the highest confidence level threshold of the de-mapper,
• sizes of internal buffers (FFT buffers, receiver command

buffer, receiver data buffer).
The submodules of the physical layer are implemented as

procedures, which get as standard parameters: request type,
command, command parameters and data. Shared data are
represented as global variables. Each submodule has a global
variable, the value of which indicates the procedure where output
will be directed. By default, the value of this variable
corresponds to the next module in the physical layer hierarchy.
Each physical layer module calls the next one, when the data
portion requested by the next module interface is ready. Control
information (commands) is forwarded synchronously with data,
except of shared FFT modules and Viterbi algorithm internals.

Significant part of the high level design of the MAC layer is
common for Access Point and Mobile Terminal devices. The
high-level design of the MAC layer focuses on external interfaces
of the sub-layer. In contrast to physical layer, MAC layer’s
module intercommunication is activated when a logically

finished data structure is completely ready. Information is
transferred in the form of memory pointers, or copied to some
buffer.

Figure 6. Structure of the ANSI C model of the targeted
functionality

4. ARCHITECTURE EXPLORATION
Place Architecture exploration is related to the stages of the

design flow that link high level specifications with
implementation detailed design steps (HDL coding for hardware,
C/C++ coding for software). The major decisions made during
architecture exploration include the allocation of different types
of processing resources and the assignment of the targeted
functionality tasks on the allocated resources. Given the
complexity of modern applications, making such decisions in a
non systematic way (i.e. based on designer’s experience) and
with no tool support leads, in most cases, to implementations that
either do not meet the system’s constraints, or are cost
inefficient, or both. Systematic architecture exploration methods
are essential to ensure correct architecture decisions early enough
in the design flow, in order to eliminate the time consuming
iterations from low level design stages in the cases where
performance and cost constraints are not met. There are basically
two types of architecture exploration approaches: the tool
oriented design flow and the language oriented design flow.
Example of a tool oriented design flow is the N2C by CoWare
[8]. In the design flows supported by such tools, the refinement
process of a design from unified and un-timed model towards
RTL is tool specific. Examples of language oriented design flows
are OCAPI-xl [9] and SystemC [10]. Language based approaches
are more flexible and give the designer more freedom.

4.1 The OCAPI-xl environment
The architecture exploration for the HIPERLAN/2 system

has been performed using OCAPI-xl C++ library [9]. OCAPI-xl
is a C++ based design environment for development of
concurrent, heterogeneous HW/SW applications. The

MAC layer

PHY Controller

Binary
algorithmsTransmit Receive

Complex-based
analysis

Radio
interface

Transmit Receive

R
SS

Re
ce

iv
e

 re
qu

es
t

co
nt

ro
l

in
fo

rm
at

io
n

Transmit Receive

PHY layer

Command Feedback

Feedback Controller

RSS

RSS

En
ab

le
/d

is
ab

le
R

SS
 m

ea
su

re
m

en
t

Legend: control data data + control

Tx
power

Carrier
frequency

Rx
gain

co
nt

ro
l

computational model of OCAPI-xl relies on processes. OCAPI-xl
supports the following types of processes:

• High Level Software processes (procHLSW). Typically
these are the processes that constitute the initial system
model in OCAPI-xl.

• High Level Hardware processes (procHLHW). In these
processes, time progresses by fixed amounts equal to the
clock cycle period.

• Managed Software processes (procManagedSW). This
type of OCAPI-xl processes allows processes to be
sequentialized. In order to create a process of type
procManagedSW, the designer must create a scheduling
object. This scheduler will perform the actual
sequentialization of all the processes.

Other types of processes are also provided to allow the
refinement of the model, not only from a functional point of
view, but also with respect to the behavior in the time domain.
More specifically, OCAPI-xl supports:

• procANSIC processes, which are refinements of
procHLSW and procManagedSW types of processes;
they allow C code generation.

• procOCAPI1 processes, which are refinements of
procHLHW processes and allow VHDL/Verilog code
generation.

4.2 Architecture exploration of the
HIPERLAN/2 system

Using the ANSI-C model as input, OCAPI-xl models of the
HIPERLAN/2 MAC sub-layer and the baseband part of the
physical layer have been developed. For the high level
exploration, the high-level OCAPI-xl processes (procHLHW,
procManagedSW and procHLSW) have been used to model the
timing behavior of the HIPERLAN/2 tasks under different
abstract implementation scenarios (on generic hardware and
software processors). For the software computation models a
simple processor model (resembling the targeted ARM
architecture) has been developed. The system partitioning and
mapping to processors approach is simple. The different tasks of
the targeted system are assigned to different (hardware or
software) abstract processors. The abstract implementations are
evaluated using system performance estimates (in terms of
execution cycles) obtained by OCAPI-xl and through area cost
estimates. Using this approach, different mappings of
HIPERLAN/2 tasks on hardware and software have been
evaluated and the most promising solution has been identified.

The process followed for partitioning and mapping on
hardware and software is detailed in the sequel through two
simplified examples, based on the system models of the
HIPERLAN/2 Access Point system.

Physical layer
Eight critical processes of the transmitter are considered:

mapper, interleaver, Inverse FFT, puncturing, scrambler,
convolutional encoder, code terminator, feedback controller.
One of the operational scenarios considered during architecture
exploration concerns the transmission of four PDU trains (one
SCH and three LCH) from the access point to the mobile

terminal. The timing constraint for this operation according to
the standard is 254 µs.

At the beginning of the partitioning/mapping process all the
processes are modeled as procHLSW corresponding to an
implementation with eight parallel software processors (ARMs),
one for each process. The simulation of the OCAPI-xl model
gives an estimate of 1242881 cycles for the completion of this
operation. Assuming a conservative clock frequency of 50 MHz
(cycle 20 ns) for the ARM processors, we get a time estimate of
24857.62 µs which is far greater than the 254 µs constraint. It
must be noted that if all processes are modeled as
procManagedSW, corresponding to an implementation on a
single software processor shared among the processes under the
control of an operating system, the execution time estimates
would be far worse. Except from the timing issue, an
implementation with 8 software processors is also cost
inefficient. In the next steps of the exploration the processes are
moved one after the other to hardware accelerators (modeled as
procHLHW) leading to execution time speed up and also cost
reduction (since it is reasonable to assume that the cost of an
accelerator is smaller than the cost of the generic software
processor corresponding to ARM). When all processes are moved
to hardware the estimated number of execution cycles is 12348
leading to an estimated execution time of 246.96 µs (assuming
clock frequency of 50 MHz) which is within the timing
constraint. Thus we can conclude that the given processes need
to be accelerated and assigned on hardware. The detailed results
of this process are presented in Table 3.

Table 3. Part of architecture exploration for the baseband
processing part of HIPERLAN/2 using the OCAPI-xl

approach

MAC sublayer
In the case of the MAC sublayer of the HIPERLAN/2 system,

the critical processes are: access point receiver and access point
command handler. One of the scenarios evaluated during the
architecture exploration is the reception of a Broadcast Channel
PDU. According to this, a BCH PDU (which appears at the
beginning of each HIPERLAN/2 frame) is being received and
passed to the upper RLC sublayer. According to the
HIPERLAN/2 standard, the time constraint for the specific action
is 36 μs. The exploration of the various alternatives commences

by allocating both processes to software (i.e. they are
characterized in OCAPI-xl as procHLSW). The simulation of the
OCAPI-xl model resulted in an estimation of 25.287 cycles for
executing the specific scenario. Assuming a conservative clock
frequency of 50 MHz for the ARM processors, we get a time
estimate of 505.74 µs which is far greater than the limit of 36 µs.
As already explained in the case of the physical layer, the
possibility of modeling all the processes as procManagedSW
would result to even worse execution times. The simulation
results illustrated in Table 4 exhibit all the alternative allocation
schemes explored. A brief look reveals that alternatives (1) and
(3) violate the constraint of 36 µs. Alternatives (2) and (4) result
in 25.36 µs and 17.52 μs respectively for the specific scenario,
which is bellow the constraint of 36 µs. Among the two, case (2)
is cost efficient since it is not implemented purely in hardware,
and as a result, it is the one finally selected.

Table 4. Part of architecture exploration for the MAC

sublayer of HIPERLAN/2 using the OCAPI-xl approach

In the next step the high level OCAPI-xl model of the

selected architecture has been refined. The refinement included
the change of processes’ types from high level to low level
(procOCAPI1 and procANSIC). This allowed a cycle accurate
simulation of the complete system functionality and confirmation
that timing constraints are met.

Based on (a) the architecture exploration results,
(b) the analysis of the HIPERLAN/2 computational complexity
and (c) performance constraints, two core modules and two logic
modules have been allocated for the realization of the
HIPERLAN/2 system. Each core module includes an
ARM7TDMI processor and each logic module includes a Xilinx
Virtex E 2000 FPGA [11].

CORE MODULE #1

Protocol processor

CORE MODULE #2

Lower MAC & modem
control processor

AMBA AHB

SRAM

SRAM
Controller

AHB bus
interface

SRAM
Controller

AHB bus
interface

SRAM

SYSTEM CONTROL FPGA
TOP LOGIC

MODULE
Tx path & Rx time
domain, MAC/PHY

Interface

BOTTOM LOGIC
MODULE

Rx data &
frequency domain

RF Analog
IF

AMBA arbiter
Ethernet controller

PCI controller
External bus interface

ARM related blocks

ARM Integrator

Figure 7. Architecture of selected ARM Integrator platform
instance (in core module 2 change modem to physical layer)

The architecture of the ARM Integrator instance that has
been selected for the realization of the HIPERLAN/2 system is
shown in Figure 7. One ARM processor (indicated as protocol
processor in the figure) implements convergence layer and higher
DLC i.e. the functionality that was not considered during

architecture exploration. The second ARM processor implements
MAC sublayer functionality and physical layer control
functionality. The two FPGAs implement critical parts of MAC
sublayer and the digital part of the physical layer. The
functionality of HIPERLAN/2 has been assigned to the allocated
processing resources based on the selected assignment derived
during the architecture exploration procedure presented above.
Even though OCAPI-xl appears to be a promising approach for
architecture exploration, there some issues that must be taken
care of in order to allow OCAPI-xl’s effective use in the context
of real world case studies. For example, in the HIPERLAN/2
system it was difficult for the designers to create detailed models
for the AMBA bus. Lack of such features could result in loss of
accuracy during system model design and refinement, which in
turn may lead to misleading results during the architecture
exploration phase. In the case of HIPERLAN/2 system, the
designers had to use external detailed models of AMBA bus
which connected to the OCAPI-xl models through FLI interface
(FLI stands for Foreign Language Interface and is a feature of
OCAPI-xl that allows incorporation of external code into an
OCAPI-xl model [9]).

5. IMPLEMENTATION RESULTS
As soon as the architecture decisions have been made, the

next stage is related to the system implementation. For the tasks
assigned to software processors, C++ code has been developed
and mapped on the ARM7TDMI processors of the core modules.
The tools used for the software development process include the
Code Warrior IDE, the ARM, THUMB C and Embedded C++
compilers, the ARM.

The execution times for the basic tasks of HIPERLAN/2
DLC/MAC are presented in Table 5. The results have been
obtained with an operation frequency of 50 MHz (cycle 20 ns).
The code and the data for the tasks are stored in SDRAM
memory. The size of the code running on the protocol processor
is 1.4 Mbytes while the size of the code running on the second
processor is 50 Kbytes.

Table 5. Execution times for basic tasks of HIPERLAN/2
DLC/MAC layer (where AP: Access Point, MT: Mobile

Terminal, CL: Convergence Layer, Tx: Transmitter, Rx:
Receiver)

For the tasks assigned to hardware, VHDL code has been
developed. A typical FPGA flow has been adopted for realization
of the tasks assigned on the platform’s logic modules. The tools
used include Modelsim (simulation), Leonardo Spectrum
(synthesis), and Xilinx ISE tools (back end design). The detailed

architecture of the functionality realized by the logic modules of
the prototyping platform is shown in Figure 8.

In the first FPGA (BOTTOM Logic Module) the frequency
and data domain blocks of the receiver are mapped. The total
utilization of the first FPGA is 85%. The second FPGA (TOP
Logic Module) includes the transmitter, the time domain blocks
of the receiver, the interface to MAC and a slave interface to an
AMBA bus. The total utilization of the second FPGA is 89%.
The utilization per resource type for the first and second FPGAs
is presented in Table 6. Two clocks of 40 and 80 MHz are driven
in each FPGA. The size of the configuration files for the two
FPGAs is 1,2 Mbytes.

XCV2000E

ICS525
(PLL)

ICS525
(PLL)

24MHz

DAC

ADC

CLK_60/80

LOGIC MODULE TOP
MOTHERBOARD

ANALOG IFNCS RF

ICS525
(PLL)

ICS525
(PLL)

24MHz

BUFFER

ICS525
(PLL)

SYSCLK[3:0]

EXPB

3~50MHz

 SYSCLK0 <
< SYSCLK

PCI CLK cPCI CLK

UART CLK

LOGIC MODULE BOTTOM

 SYSCLK0 <
< SYSCLK

ICS525
(PLL)

ICS525
(PLL)

24MHz

SYSCLK[3:0]

EXPB

ARM Integrator
Logic Modules

Partitioning

ICS670
(Low PN

PLL)

A
M

BA
SL

A
VE

I,Q
m

od
em

Tx

I /F

Rx
mem

Tx
mem

XCV2000E

Rx

DMA

30MHz

A
M

BA
M

A
ST

ER
 &

 S
LA

V
E

RF reference
Clock Domain

System Bus
Clock Domain

Clocks
Domain

A

Clocks
Domain

A

30MHz
Clocks
Domain

B

80/60MHz

R
x_

ou
t

Rx
_c

m
d

R
x_

in

CLK_A30

CLK_A30

CLKB
60/80PM_CLK

Figure 8. Architecture of the SoC on the ARM Integrator

Table 6. Utilization per resource type for the two logic

modules FPGAs

The performance results presented above from the realization

of the HIPERLAN/2 system on the ARM Integrator platform are
expected to improve in a SoC implementation. This is due to the
overheads introduced by the ARM Integrator platform
architecture (FIFOs of the bus interface, SDRAM controller etc.),
and also due to the lack of a local bus for the communication
between the baseband processing block and the lower MAC
processor (which also controls the baseband processing block).
The use of the proposed system level architecture exploration
approach allowed the definition of an efficient architecture that
satisfied the targeted performance constraints. No time
consuming iterations and feedback loops from the low level

implementation stages for architecture modifications were
required. This led to reduction of the design time by 30%
compared to the development times of systems of similar
complexities where no systematic architecture exploration was
used. Additionally, the initial performance constraints set for the
target system implementation have been met.

6. CONCLUSIONS
In the previous paragraphs, we have presented the process of

producing an FPGA based prototype of the HIPERLAN/2 system.
The prototyping process has been based on a method for efficient
architecture exploration early in the design cycle, and targeted
the ARM Integrator platform. The approach resulted in efficient
functional debugging/verification, performance testing and
validation of architecture decisions towards a SoC
implementation of the system. The architecture exploration lead
to correct architecture decisions early in the design cycle, and
eliminatesd the need for time consuming iterations and feedback
loops from the low level design stages.

7. REFERENCES
[1] IEEE Std 802.11b, Part11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) specifications:
Higher-Speed Physical Layer Extension in the 2.4 GHz
Band, 1999.

[2] IEEE Std 802.11a, Part11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications:
High Speed Physical Layer in the 5 GHz Band, 1999.

[3] ARM Integrator (2005) Available:
http://www.arm.com/devtools/integrator

[4] ETSI TS 101 457: Broadband Radio Access Networks
(BRAN); HIPERLAN Type 2; Physical (PHY) layer.

[5] ETSI TS 101 761-1: Broadband radio access networks
(BRAN); HIPERLAN Type 2; Data link control (DLC)
layer; Part 1: Basic data transport functions, 2000.

[6] ETSI TS 101 761-2: Broadband Radio Access Networks
(BRAN); HIPERLAN Type 2; Data Link Control (DLC)
Layer; Part 2: Radio Link Control (RLC) sublayer, V1.3.1,
2002.

[7] R. van Nee, R. Prasad, OFDM for Mobile Multimedia
Communications, Boston: Artech House, Dec. 1999.

[8] CoWare Inc (2005) Available: http://www.coware.com
[9] OCAPI-xl (2005) Available: http://www.imec.be

/ocapi/welcome.html
[10] SystemC (2005) Available: http://www.systemc.org
[11] Xilinx: Virtex™ Data Sheet (2005) Available:

http://www.origin.xilinx.com/xlnx/xweb/xil_publications_in
dex.js.

http://www.arm.com/devtools/integrator
http://www.coware.com
http://www.imec.be
http://www.systemc.org
http://www.origin.xilinx.com/xlnx/xweb/xil_publications_in

