
Applying formal methods for the design of wireless
telecommunication systems

Konstantinos Antonis

Dept. of Informatics and Computer
Technology

TEI of Lamia
3rd km Old National Road Lamia –

Athens, 35100, Lamia, Greece
 k_antonis@teilam.gr

Nikolaos S. Voros

Dept. of Communication Systems
and Networks

 TEl of Mesolonghi
Ethniki Odos Antiriou Nafpaktou,

Varia
Nafpaktos 30300, Greece

voros@teimes.gr

ABSTRACT
The increasing complexity of modern telecommunication systems
is one of the main issues encountered in most telecom products.
Despite the plethora of methods and tools for efficient system
design, verification and validation phases are still consuming
significant part of the overall design time. The proposed
approach outlines the use of the B method/language for
producing correct-by-construction implementations of
telecommunication systems. The method described is supported
by appropriate tools that automate the process of proving that
system properties are maintained during the various design
stages. The feasibility of the latter is evaluated in practice
through the design of a real world telecom application, borrowed
from the domain of wireless telecommunication networks.

Keywords
Wireless systems, formal methods, B language,
hardware/software codesign.

1. INTRODUCTION
During the last years, the advances in modern

telecommunications have resulted in the appearance of complex
telecom systems that offer high quality services to the end users.
The design and development of such systems is based on
embedded hardware and software components, combined
together, in order to achieve the overall system functionality.
Each component is a system itself, usually complex, so the
design of such systems is not a trivial task. As a result,
telecommunication companies and system houses require
effective system design methodologies and tools supporting their
product line in order to stay at the leading edge.

The current situation regarding telecom system design in

general is, that the methods are insufficient, informally practiced,
and weakly supported by formal techniques and tools. Regarding
system reuse, the methods and tools for exchanging system
design data and know-how within companies are ad hoc and
insufficient. In that context, system designers come across new
challenges including:

• The development of high quality products that target to a
highly competitive market.

• Decrease of time-to-market despite increased
functionality, diversity and complexity.

• Demand for decreasing cost to face continuous market
price erosion.

The approach presented in this paper delineates the concept of
formal model refinement in system design. The main concept
conveyed is that in order to deal with the aforementioned design
challenges we need to (re)consider the design practices currently
used, under a different perspective. Design experience has taught
that the main bottleneck in system design processes is the stage
of verification/validation. The proposed approach relies on the B
method/language, which is a method for specifying, designing
and coding complex systems. The method deals with the main
aspects encountered during system design cycle, focusing on
formal proof of system properties. In this way, the time spent for
validation/verification is significantly reduced.

The rest of the paper is organized as follows: Section 2
provides an introduction to formal languages, while section 3
describes the rationale of the work presented in the paper.
Section 4 outlines the use of the B method/language for system
level design. In section 6, the design details of a telecom protocol
for wireless systems is presented; section 7 presents an
evaluation the B method/language, based on the selected case
study, while section 8 concludes by presenting an overview of the
main paper concepts and the future work..

2. EXISTING FORMAL METHODS AND
LANGUAGES

A specification can be regarded as a description that is
intended to be as precise, unambiguous, concise and complete as
possible in the context of its specific application [6]. A formal
specification is a specification written in a formal language
where a formal language is either based on a rigorous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobimedia'07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece

mailto:k_antonis@teilam.gr
mailto:voros@teimes.gr
fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1617

mathematical model or simply on a standardised programming or
specification language [8]. Due to its individual application, a
formal specification can be (partly) executable. In most cases,
formal specifications are for a mental execution by code review
and for passing the specification around to members in a design
team. Generally, only subsets of formal specification languages,
e.g. of Z and VDM, are machine executable. A formal method
implies the application of at least one formal specification
language. Formal methods are often employed during system
design when the degree of confidence in the prescribed system
behaviour, extrapolated from a finite number of tests, is low.
Moreover, they are frequently applied in the design of ultra-
reliable as well as complex concurrent or reactive systems.
Formal specifications can be classified with respect to their
specification style. Here, we can identify mainly two different
classifications. One is mainly due to the field of programming
languages; the other one comes from general systems
specification. In the rest of the section, we provide an overview
of the most representative languages for formal specification.

Z was developed by the Programming Research Group at
Oxford University and accepted as a BSI standard in 1989 [3]. It
is a specification language based on set theory with no official
method. Object-Oriented and real-time extensions to Z are
available as Object-Z and Timed Communicating Object-Z,
respectively. The Vienna Development Method (VDM) is a
formal specification method with the model-based specification
language VDM-SL (VDM Specification Language) [9]. VDM
was initially developed for the formal description of PL/I at the
IBM laboratory in Vienna. The VDM method considers the
verification of step-wise refinement in the systems development
process, i.e. data refinement and operation decomposition. CTL
(Computational Tree Logic) was defined as a branching-time
temporal logic for model checking. Several variations of CTLs
are known for practical applications: CTL, ACTL and CTL*. All
CTLs are future-oriented. Only some approaches extend CTL
with past modalities. CTL formulae express information about
states or state transitions [11]. TLA (Temporal Logic of Actions)
is temporal logic-based theory providing a logic for specifying
and reasoning about concurrent and reactive systems [12]. TLA+
is the language for writing TLA specifications. The
corresponding tool for mechanically checking TLA proofs is TLP
(TL Prover), which is based on the Larch theorem Prover (LP)
and a BDD-based model checker. TLA supports the specification
of refinements and checks properties like fairness. CCS
(Calculus of Communicating Systems) [14] specifies a system as
a set of asynchronously running processes performing, possibly
non-deterministic, actions. CCS allows processes to be guarded
by actions (action-prefixing). CSP (Communicating Sequential
Processes) is conceptually similar to CCS [7]. CSP specifies a
system as a set of asynchronously running processes acting on
events. Processes communicate values (resp. events) via
channels. Circal (CIRcuit CALculus) is a process algebra for the
formal verification of digital hardware including asynchronous
hardware [13]. Circal defines a set of core operators and a set of
derived laws. The laws are based on the semantics of the core
operators using a labelled transition system and equivalence
relations. Finally, the B method, which stands for a language, a
method and associated tools, is based on the hierarchical
stepwise refinement and decomposition of a problem. After

initial informal specification of requirements, an abstraction is
made to capture, in a first formal specification, the most essential
properties of a system. This top-level abstract specification is
made more concrete and more detailed in steps, which may be
one of two types. The specification can be refined either by
changing the data structures used to represent the state
information and/or by changing the bodies of the operations that
act upon these data structures. Alternatively, the specification
can be decomposed into subsections by writing an
implementation step that binds the previous refinement to one or
more abstract machines representing the interfaces of the
subsections. In a typical B project, many levels of refinement and
decomposition are used to fully specify the requirements. Once a
stage is reached when all the requirements have been expressed
formally, further refinement and decomposition steps add
implementation decisions until a level of detail is reached at
level B0, where code can be automatically generated for Ada and
C/C++. B processing tools, like Atelier-B from Clearsy [1], are
advanced theorem provers with code generation, which
automatically provide theorems, i.e. proof obligations.

3. RATIONALE
In order to deal with the increasing verification complexity,

there are attempts to apply formal methods for verifying system
properties during every design phase. The lack of mature tools
and a complete method for developing complex systems are the
main reasons that prohibit the use of formal methods in
industrial environments. On the other hand, the ever increasing
complexity of modern systems has led to increased design times,
despite the fact that the time-to-market window is stringent in
domains with increased competition, like telecommunications.
One possible solution for decreasing time-to-market would be the
reduction of time spent during the validation and verification
stages. In that direction, we have adopted the use of the B
method for designing a real world application borrowed from the
telecommunication domain. Among the formal languages
presented, the B method/language appears to be the most
appropriate for the design of a commercial product. The rationale
is that it is accompanied by a method that sufficiently covers all
the design phases of a product, while there are mature tools that
support the B based design throughout all the design stages.

Among the languages described in the previous section, the B
language appears to be mature enough for the design of complex
systems, while there are commercial tools that can support
effectively the design process. The B method/language has
already been applied for the design of complex systems [4, 16],
where the main focus is on system analysis aspects. Regarding
the design of telecommunication products, the B
method/language has been rarely used. In that context, the rest of
this paper presents the experience gained from the design of a
telecommunication system which constitutes a real world
application, in an attempt to use effectively formal methods as
part of an existing design flow. The design of the system relies
on the B method/language. The initial system specifications were
available in textual form, and based on them the design team
involved in the specific case study has developed from scratch B
abstract machines that have been used for the development of a
fully functional system. The next sections provide insight in the

details regarding the design experience gained during the
development of telecom systems with the B method/language.

4. SYSTEM LEVEL DESIGN USING THE B
METHOD/LANGUAGE

4.1 System level design overview
The purpose of this section is to describe a method relying on

the B language, for the design and development of complex
systems. The key aspects of the approach presented are:

• the use of the B language for system specification and
design,

• description of system properties in a formal way,
• formal proof between successive refinements,
• correct-by-construction implementation of the final

system.

Figure 1. System level design using the B method

As described in Figure 1, the first step of designing a system
using the B method/language is to specify the system using B
abstract machines. Having the B abstract machines at his/her
disposal, the designer can start verifying the system. In the case
where a verification error occurs, the designer must resolve it
(either at the current or at the above specification level) and
repeat the verification process making use of the modified system
models.

When the verification process is completed successfully, the
next step is system validation. If validation problems appear, the
designer has to rework the system models in order to eliminate
the problem. In the case of a successful validation, the designer
can either refine the B abstract machines so as to produce more
detailed system models, or decompose the system in the case the
system model is too big to be implemented.

4.2 Formal model refinement
System models can be refined until they contain sufficient

implementation details. As already explained, system
specification starts with the definition of an abstract machine per
subsystem, that describes the main properties of each subsystem
in a formal way. The properties related to each system part are

described using invariants and preconditions. In order to
describe the properties of a system with sufficient preconditions
and invariants, it is necessary for the designer (a) to be aware of
the properties of the system under design, and (b) to have in
depth knowledge of the B method/language so as to express them
efficiently. An example of definition of an invariant defined in an
abstract machine is the following statement:

ie_mac_id: (0..TrafficTableSize-1) +->0..255

which states that ie_mac_id variable is partial function from the
0..TrafficTableSize-1 set to the 0..255 subset of natural numbers.
Every model emerging from the refinement of the specific
abstract machine must be proven that does not violate the
aforementioned invariant.

Figure 2. Model refinement steps.

Formal model refinement guarantees that, during successive
refinements of the abstract machines, every invariant and
precondition defined will be fulfilled. The operations, the
invariants and the preconditions produce a set of proof
obligations that must be formally proven every time a system
model is enriched with additional design details. The generated
proof obligations between two successive refinements have to be
discharged before entering the next refinement level.

Figure 2 outlines the process of formal model refinement. The
designer is able to refine both data and algorithms during the
refinement process. Usually, a set of refinement guidelines is
available throughout the refinement process, while the
assessment of a specific refinement is strongly related to criteria
derived from the nature of system under design.

The last refinement of a machine is called implementation and
can use the specification of one or more abstract machines that
can also be refined (with the use of the IMPORTS clause). As
soon as all the proof obligations for all subsystems have been
discharged and the specification models the requirements
correctly, the designer has at his/her disposal an error free model.
The next step is automatic translation from B0 [2] (a subset of B
appropriate for code generation) to C/C++/Ada.

4.3 System decomposition
Depending on the complexity of the model refined, the number

of proof obligations to be proven can significantly increase. In
this case, it is usually preferable to decompose the specific
refinement into smaller subsystems (see Figure 1). Each
subsystem is a system itself, with an initial set of requirements
related to its functionality. As soon as the system has been
decomposed into subsystems each subsystem is gradually refined
leading to a subsystem implementation; the final system emerges
from the recomposition of subsystems' implementations. In this
divide and conquer design strategy, the initial system model is
replaced by a set of subsystems' models and the proof obligations
of the system are divided among its subsystems. The final system
implementation emerges from the recomposition of error free (all
initial proof obligations are fulfilled) subsystems'
implementations.

5. CASE STUDY: DESIGN OF A
WIRELESS SYSTEM BASED ON
HIPERLAN/2 PROTOCOL

The main goal of this section is to present the application of
the B method/language in a real world case study. The selected
application is borrowed from the domain of wireless
telecommunication systems and is based on HIPERLAN/2, a
standard protocol for broadband wireless networks.

5.1 An overview of the HIPERLAN/2 protocol
HIPERLAN/2 protocol provides data rates of up to 54

Mbits/sec for short range (up to 150m) communications in indoor
and outdoor environments. Typical application environments are
offices, homes, exhibition halls, airports, train stations and so on.

In order to specify a radio access network that can be used with
a variety of core networks, the HIPERLAN/2 standard [10]
provides a flexible architecture that defines core independent
physical (PHY) and Data Link Control (DLC) layers and a set of
convergence layers that facilitate access to various core networks
including Ethernet, ATM, and IEEE 1394 (Firewire).

Access Point (AP)

Mobile Terminal (MT)

Mobile Terminal (MT)

Access Point (AP)

FIXED NETWORK

Figure 3. An overview of HIPERLAN/2 architecture

The air interface is based on time division duplex (TDD) and
dynamic time division multiple access (TDMA). It relies on
cellular networking topology combined with ad-hoc networking
capability. It supports two basic modes of operation: centralized
mode (CM), and direct mode (DM). In the CM operation every

radio cell is controlled by an access point covering a certain
geographical area and mobile terminals communicate with one
another or with the core network through the access point. In the
DM operation, mobile terminals in a single cell network can
exchange data directly with one another. The access point
controls the assignment of radio resources to the mobile
terminals. Figure 3 outlines the basic architecture of a
HIPERLAN/2 system.

5.2 System analysis and specification
When the system powers up, the subsystem implementing the

system scheduler is initialized. From that point on, the scheduler
is triggered by the hardware every time a MAC frame has to be
emitted. The scheduler constructs the new MAC frame according
to the resource requests by mobile terminals and the limitations
of the system specifications. First of all, a table summarizing the
traffic flow in the system is updated properly, taking into account
the requests by mobile terminals and then the appropriate logical
- transport channels are filled. Finally, a channel describing the
whole structure of the frame (frame channel) is constructed. As
soon as a new frame is designed, the frame builder is triggered to
construct and transmit it properly.

AP_SCHEDULER

TRAFFIC_TABLE FCCH_RG FRAME_INFO BCCH IE

RR CONTEXT

Figure 4. The decomposition model of the initial B modules.

The first step was to select the initial modules. Some of these
modules need to communicate, which means that a module
“needs” another module. So we had to define a hierarchical
organization for these modules constituting the AP frame
scheduler. The AP Scheduler serves user requests set on mobile
terminals, so we need a module containing the resource requests
by mobile terminals and another module summarizing the traffic
flow in the system. All the other modules needed are used to
describe the contents of the logical and transport channels. The
resulted decomposition is illustrated in Figure 4. The boxes in
Figure 4 represent discrete B modules and the arrows introduce
relationships between them (an arrow sets a "needs" relationship
between two B modules).

The functionality of the modules of the organization in Figure 4
is as following:

• AP_SCHEDULER: responsible for the design of a MAC
frame. Specifically, it calculates the final number of
LCH and SCH channels that will be granted and creates
the contents of the FCH channel. Any other activity
required it is performed by appropriate calls of the
scheduler.

• TRAFFIC_TABLE: describes the next frame's logical
channel entries required (traffic flow), according to the
resource requests.

• IE: describes the contents of the information elements
(IEs) for the downlink and uplink phases, the idle parts
(idle IEs) and the padding IEs of the frame. These IEs will
be used in the creation of the FCH channel.

• BCCH: contains the contents of the BCCH logical
channel.

• FRAME_INFO: decides the number of IEs, the number of
blocks (a block contains three IEs [5], the number of idle
IEs, and the number of padding IEs.

• FCCH_RG: contains the resource grants for the FCCH
channel.

• RR: not a part of the scheduler, but it contains the
resource requests imposed by the mobile terminals.

• CONTEXT: a header file for the application and contains
only commonly used definitions (it is visible by all
modules).

The next step was to create an abstract model for each module.
Following the rules of the B method/langauge, a set of B abstract
machines was created to specify the abstract modules required.
Within each abstract machine, the main subsystem properties
were formally described. Every machine was fully proven to be
correct with the use of Atelier B's automatic and interactive
provers [1].

5.3 System design using the B
method/language

In system design phase, the abstract machines of each
subsystem were formally refined to B refinements or
implementations (the last level of refinement). Appropriate
predicates were defined to express the properties of the linking
(gluing) invariant between each B refinement/implementation
and its corresponding abstract model. The proof obligations
generated were in most cases proven using the automatic prover
of Atelier B. Nevertheless, there were also cases where the
designers had to prove several proof obligations interactively.

Due to the complexity of the proof obligations generated by B
implementations, in several cases the designers experienced
excessive numbers of proof obligations (sometimes more than
100), which were impossible to be proved using the interactive
prover. In those cases, there were two different approaches to
follow:

• Introduction of an intermediate refinement level (see
Figure 1) between the abstract model and the
corresponding refinement/implementation, to express
some properties at an intermediate level of detail.

• Introduction of a new module (or more if necessary) to
simplify the proving procedure. The new module can
simplify the complex operations (the ones that create
excessive numbers of proof obligations). The machine of
the new module is imported to the implementation with
the use of the IMPORTS clause (e.g. the modules
IE_SINGLE and BIT_MANIPULATION were used to
reduce the number of proof obligations generated for the
IE implementation component).

AP_SCHEDULER

DECISION

FRAME INFO TRAFFIC TABLE

FCH CALCULATE
SYMBOLS

BCCH IE FCCH RG

CHANNEL ENTRIES IE SINGLE

RR BIT
MANIPULATION

SEES

IMPORTS

Figure 5. The final decomposition model.

In the case study presented, both alternatives were adopted in
different cases, depending on the number of proof obligations
generated in each case.

The final decomposition of the initial model is presented in
Figure 5. The dashed arrows represent a SEES clause, while
each solid arrow refers to an IMPORTS clause. When a
component SEES an abstract machine M, the data of M may be
accessed as read-only, and the modification operations of M can
not be called. The IMPORTS clause may only appear in
implementations, and imports one or more abstract machines in
order to implement data and operations within lower level
machines..

• BIT_MANIPULATION: stores a value in an octet of a buffer
• IE_SINGLE: stores the proper values to the fields of the IE buffer

structure separately [5].
• CHANNEL_ENTRIES: stores the contents of the proper channel

entries of the frame separately according to the resource requests.
• DECISION: calculates the rates of LCH, SCH, control and data

channels that will be finally used according to the resource
requests.

• CALCULATE_SYMBOLS: calculates the number of symbols for
a single transmission according to the physical mode that will be
used.

• FCH: creates the FCH channel, which describes the contents of the
frame.

6. EVALUATION OF THE B METHOD
In order to evaluate the proposed method, the B

design/implementation of the HIPERLAN/2 protocol has been
compared to an existing implementation of the same protocol
parts. For both implementations, the specifications provided by
ETSI for HIPERLAN/2 were used [5].

The HIPERLAN/2 Access Point scheduler has been already
developed in UML 1.4 [15] and is available in executable form.
UML was used in every design phase, and the validation of the
final system was accomplished through simulation of C++ code.
The same team employed in the original development of the
scheduler, has also been working for the development of the

scheduler using the B method/language. The actual goal of the
latter was to implement the same part of the protocol in C++, and
compare the two design alternatives.

Table 1. Person month allocation per design phase.

As described in Table 1, the person months spent in system
specification phase are slightly increased in the case where the B
method/language was used. This is due to the fact that the
definition of the abstract machines of each subsystem at the
specification stage included definitions of the appropriate
invariants. Additionally, the time spent for model refinement is
also increased compared to the ad hoc model refinement, taking
place in UML based design. The time increase in the case of the
B method/language is because the implementation of each
abstract machine in B must be proven compliant with the
abstract machine's invariants. The latter must hold at every step
of the final implementation described in B. As far as validation is
concerned, no time was spent in the B based approach since the
compliance of the final implementation with the initial
specification has already been proven formally during
refinement. On the contrary, in the UML based design 1.4 person
months have been spent for validation (in this case validation
was achieved through code generation and simulation of the code
produced). Finally, in both case studies similar amount of time
spent for integrating the code of the AP scheduler in the
HIPERLAN/2 prototype.

Regarding the overall time spent in the case of the B
method/language, it is slightly decreased compared to the time
spent in the case of the UML based design. The main reason for
this was the fact that the designers involved in the development
of the B models were not familiar with the use of formal
methods, and especially with the efficient definition of invariants
and preconditions. In several cases, it was necessary to redefine
them in order to reduce the number of proof obligations
generated.

7. CONCLUSIONS
The previous sections presented the use of the B

method/language for the design of complex telecom applications.
As opposed to existing design practices of telecom applications,
the one presented in this paper exhibited the use of the B
method/language for building abstract system models, and
describing their properties in a formal way. The final
implementation emerged as a result of successive refinements,
which were formally proven to maintain the properties of the
initial system specification. This is in contrast to ad hoc
refinement supported by most design methods.

The proposed approach has been applied in practice through
the design of a case study where part of a real world telecom
system, based on HIPERLAN/2 protocol, has been designed and
implemented. An overall evaluation has also been presented in
order to identify the benefits of using the B method/language,
while in parallel to keep track of the potential inefficiencies
related to it. The B method/language appears to be a promising

approach for the design of complex telecommunication systems
since it allows correct-by-construction implementations. Formal
proof of system properties during model refinement guarantees
less time spent in verification and validation phases, thus leading
to shorter development cycles.

The approach presented in the previous sections has been
adopted for the design of critical protocol parts that are common
in a variety of telecom products. For that purpose, a library of
formally proven telecom components has been developed. Each
component has been specified in the B language, and has been
appropriately refined so as produce error free component
instantiations in C++. The component descriptions, which form a
valuable starting point for system level design of telecom
products, they are solely described in B. In order to ease the
designers, there is a trend to combine UML (which constitutes
the core formalism for the specification many telecommunication
products) with B method/language. The combination of the B
method/language with UML is expected to combine the
advantages of both approaches, while in parallel it will allow
telecom product designers to make use of a existing libraries of
system models described in UML.

8. REFERENCES
[1] ATELIER B. 2005. http://www.Atelier B.societe.com/.
[2] ABRIAL J-R. 1996. The B Book: Assigning programs to meanings.

Cambridge University Press.
[3] BOWEN, J. 1996. Specification and Documentation using Z: A Case

Study Approach. International Thomson Computer Press.
[4] DRAPER, J. ET AL. 1996. Evaluating the B-method on an avionics

example. In Proceedings of Data Systems in Aerospace (DASIA)
Conference, Rome, Italy. European Space Agency Publication Division
WPP-116, 89-97.

[5] ETSI. 2000. Broadband Radio Access Networks BRAN; HIPERLAN
Type 2; Data Link Control (DLC) Layer Part1: Basic Data Transport
Functions. ETSI TS 101 761-1 v1.1.1.

[6] GLASSER, U. 1995. Systems Level Specification and Modeling of
Reactive Systems: Concepts, Methods and Tools. Proceedings of
EUROCAST 95. Springer Verlag.

[7] HOARE, C.A.R. 1985. Communicating Sequential Processes. Prentice
Hall.

[8] IEEE, 1987. Software Engineering Standards, The Institute of
Electrical and Electronics Engineers.

[9] JONES, CB. 1990. Systematic Software Development using VDM.
Prentice Hall International.

[10] KHUN-JUSH J. ET AL. 2002. HIPERLAN Type 2 for Broadband
Wireless Communication. Ericsson Review No.2.

[11] KROPH, T. 1998. Introduction to Formal Hardware Verification.
Springer Verlag.

[12] LAMPORT, L. 1994. The Temporal Logic of Actions. ACM
Transactions on Programming Languages and Systems, 16(3).

[13] MILNE, GJ. 1985. Circal and the Representation of Communication,
Concurrency and Time. ACM Transactions on Programming
Languages and Systems, 7(2).

[14] MILNER, R. 1989. Communication and Concurrency. Prentice Hall.
[15] OMG. 2005. http://www.omg.org/.
[16] SNOOK, C., TSIOPOULOS, L., AND WALDEN, M. 2003. A Case

Study in Requirement Analysis of Control Systems using UML and B.
In Proceedings of International Workshop on Refinement of Critical
Systems:Methods, Tools and Developments, Turku, Finland.

http://www.Atelier
http://www.omg.org/

