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ABSTRACT 
The increasing complexity of modern telecommunication systems 
is one of the main issues encountered in most telecom products. 
Despite the plethora of methods and tools for efficient system 
design, verification and validation phases are still consuming 
significant part of the overall design time. The proposed 
approach outlines the use of the B method/language for 
producing correct-by-construction implementations of 
telecommunication systems. The method described is supported 
by appropriate tools that automate the process of proving that 
system properties are maintained during the various design 
stages. The feasibility of the latter is evaluated in practice 
through the design of a real world telecom application, borrowed 
from the domain of wireless telecommunication networks.  

Keywords 
Wireless systems, formal methods, B language, 
hardware/software codesign. 

1. INTRODUCTION 
During the last years, the advances in modern 

telecommunications have resulted in the appearance of complex 
telecom systems that offer high quality services to the end users. 
The design and development of such systems is based on 
embedded hardware and software components, combined 
together, in order to achieve the overall system functionality. 
Each component is a system itself, usually complex, so the 
design of such systems is not a trivial task. As a result, 
telecommunication companies and system houses require 
effective system design methodologies and tools supporting their 
product line in order to stay at the leading edge. 

The current situation regarding telecom system design in 

general is, that the methods are insufficient, informally practiced, 
and weakly supported by formal techniques and tools. Regarding 
system reuse, the methods and tools for exchanging system 
design data and know-how within companies are ad hoc and 
insufficient. In that context, system designers come across new 
challenges including: 

• The development of high quality products that target to a 
highly competitive market. 

• Decrease of time-to-market despite increased 
functionality, diversity and complexity. 

• Demand for decreasing cost to face continuous market 
price erosion. 

The approach presented in this paper delineates the concept of 
formal model refinement in system design. The main concept 
conveyed is that in order to deal with the aforementioned design 
challenges we need to (re)consider the design practices currently 
used, under a different perspective. Design experience has taught 
that the main bottleneck in system design processes is the stage 
of verification/validation. The proposed approach relies on the B 
method/language, which is a method for specifying, designing 
and coding complex systems. The method deals with the main 
aspects encountered during system design cycle, focusing on 
formal proof of system properties. In this way, the time spent for 
validation/verification is significantly reduced. 

The rest of the paper is organized as follows: Section 2 
provides an introduction to formal languages, while section 3 
describes the rationale of the work presented in the paper. 
Section 4 outlines the use of the B method/language for system 
level design. In section 6, the design details of a telecom protocol 
for wireless systems is presented; section 7 presents an 
evaluation the B method/language, based on the selected case 
study, while section 8 concludes by presenting an overview of the 
main paper concepts and the future work.. 

2. EXISTING FORMAL METHODS AND 
LANGUAGES 

A specification can be regarded as a description that is 
intended to be as precise, unambiguous, concise and complete as 
possible in the context of its specific application [6]. A formal 
specification is a specification written in a formal language 
where a formal language is either based on a rigorous 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
Mobimedia'07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece  

mailto:k_antonis@teilam.gr
mailto:voros@teimes.gr
fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1617



mathematical model or simply on a standardised programming or 
specification language [8]. Due to its individual application, a 
formal specification can be (partly) executable. In most cases, 
formal specifications are for a mental execution by code review 
and for passing the specification around to members in a design 
team. Generally, only subsets of formal specification languages, 
e.g. of Z and VDM, are machine executable. A formal method 
implies the application of at least one formal specification 
language. Formal methods are often employed during system 
design when the degree of confidence in the prescribed system 
behaviour, extrapolated from a finite number of tests, is low. 
Moreover, they are frequently applied in the design of ultra-
reliable as well as complex concurrent or reactive systems. 
Formal specifications can be classified with respect to their 
specification style. Here, we can identify mainly two different 
classifications. One is mainly due to the field of programming 
languages; the other one comes from general systems 
specification. In the rest of the section, we provide an overview 
of the most representative languages for formal specification.  

Z was developed by the Programming Research Group at 
Oxford University and accepted as a BSI standard in 1989 [3]. It 
is a specification language based on set theory with no official 
method. Object-Oriented and real-time extensions to Z are 
available as Object-Z and Timed Communicating Object-Z, 
respectively. The Vienna Development Method (VDM) is a 
formal specification method with the model-based specification 
language VDM-SL (VDM Specification Language) [9]. VDM 
was initially developed for the formal description of PL/I at the 
IBM laboratory in Vienna. The VDM method considers the 
verification of step-wise refinement in the systems development 
process, i.e. data refinement and operation decomposition. CTL 
(Computational Tree Logic) was defined as a branching-time 
temporal logic for model checking. Several variations of CTLs 
are known for practical applications: CTL, ACTL and CTL*. All 
CTLs are future-oriented. Only some approaches extend CTL 
with past modalities. CTL formulae express information about 
states or state transitions [11]. TLA (Temporal Logic of Actions) 
is temporal logic-based theory providing a logic for specifying 
and reasoning about concurrent and reactive systems [12]. TLA+ 
is the language for writing TLA specifications. The 
corresponding tool for mechanically checking TLA proofs is TLP 
(TL Prover), which is based on the Larch theorem Prover (LP) 
and a BDD-based model checker. TLA supports the specification 
of refinements and checks properties like fairness. CCS 
(Calculus of Communicating Systems) [14] specifies a system as 
a set of asynchronously running processes performing, possibly 
non-deterministic, actions. CCS allows processes to be guarded 
by actions (action-prefixing). CSP (Communicating Sequential 
Processes) is conceptually similar to CCS [7]. CSP specifies a 
system as a set of asynchronously running processes acting on 
events. Processes communicate values (resp. events) via 
channels. Circal (CIRcuit CALculus) is a process algebra for the 
formal verification of digital hardware including asynchronous  
hardware [13]. Circal defines a set of core operators and a set of 
derived laws. The laws are based on the semantics of the core 
operators using a labelled transition system and equivalence 
relations. Finally, the B method, which stands for a language, a 
method and associated tools, is based on the hierarchical 
stepwise refinement and decomposition of a problem. After 

initial informal specification of requirements, an abstraction is 
made to capture, in a first formal specification, the most essential 
properties of a system. This top-level abstract specification is 
made more concrete and more detailed in steps, which may be 
one of two types. The specification can be refined either by 
changing the data structures used to represent the state 
information and/or by changing the bodies of the operations that 
act upon these data structures. Alternatively, the specification 
can be decomposed into subsections by writing an 
implementation step that binds the previous refinement to one or 
more abstract machines representing the interfaces of the 
subsections. In a typical B project, many levels of refinement and 
decomposition are used to fully specify the requirements. Once a 
stage is reached when all the requirements have been expressed 
formally, further refinement and decomposition steps add 
implementation decisions until a level of detail is reached at 
level B0, where code can be automatically generated for Ada and 
C/C++. B processing tools, like Atelier-B from Clearsy [1], are 
advanced theorem provers with code generation, which 
automatically provide theorems, i.e. proof obligations. 

3. RATIONALE 
In order to deal with the increasing verification complexity, 

there are attempts to apply formal methods for verifying system 
properties during every design phase. The lack of mature tools 
and a complete method for developing complex systems are the 
main reasons that prohibit the use of formal methods in 
industrial environments. On the other hand, the ever increasing 
complexity of modern systems has led to increased design times, 
despite the fact that the time-to-market window is stringent in 
domains with increased competition, like telecommunications. 
One possible solution for decreasing time-to-market would be the 
reduction of time spent during the validation and verification 
stages. In that direction, we have adopted the use of the B 
method for designing a real world application borrowed from the 
telecommunication domain. Among the formal languages 
presented, the B method/language appears to be the most 
appropriate for the design of a commercial product. The rationale 
is that it is accompanied by a method that sufficiently covers all 
the design phases of a product, while there are mature tools that 
support the B based design throughout all the design stages.  

Among the languages described in the previous section, the B 
language appears to be mature enough for the design of complex 
systems, while there are commercial tools that can support 
effectively the design process. The B method/language has 
already been applied for the design of complex systems [4, 16], 
where the main focus is on system analysis aspects. Regarding 
the design of telecommunication products, the B 
method/language has been rarely used. In that context, the rest of 
this paper presents the experience gained from the design of a 
telecommunication system which constitutes a real world 
application, in an attempt to use effectively formal methods as 
part of an existing design flow. The design of the system relies 
on the B method/language. The initial system specifications were 
available in textual form, and based on them the design team 
involved in the specific case study has developed from scratch B 
abstract machines that have been used for the development of a 
fully functional system. The next sections provide insight in the 



details regarding the design experience gained during the 
development of telecom systems with the B method/language.  

4. SYSTEM LEVEL DESIGN USING THE B 
METHOD/LANGUAGE 

4.1 System level design overview  
The purpose of this section is to describe a method relying on 

the B language, for the design and development of complex 
systems. The key aspects of the approach presented are: 

• the use of the B language for system specification and 
design, 

• description  of system properties in a formal way, 
• formal proof between successive refinements, 
• correct-by-construction implementation of the final 

system. 

Figure 1. System level design using the B method 

As described in Figure 1, the first step of designing a system 
using the B method/language is to specify the system using B 
abstract machines. Having the B abstract machines at his/her 
disposal, the designer can start verifying the system. In the case 
where a verification error occurs, the designer must resolve it 
(either at the current or at the above specification level) and 
repeat the verification process making use of the modified system 
models. 

When the verification process is completed successfully, the 
next step is system validation. If validation problems appear, the 
designer has to rework the system models in order to eliminate 
the problem. In the case of a successful validation, the designer 
can either refine the B abstract machines so as to produce more 
detailed system models, or decompose the system in the case the 
system model is too big to be implemented.  

4.2 Formal model refinement 
System models can be refined until they contain sufficient 

implementation details. As already explained, system 
specification starts with the definition of an abstract machine per 
subsystem, that describes the main properties of each subsystem 
in a formal way. The properties related to each system part are 

described using invariants and preconditions. In order to 
describe the properties of a system with sufficient preconditions 
and invariants, it is necessary for the designer (a) to be aware of 
the properties of the system under design, and (b) to have in 
depth knowledge of the B method/language so as to express them 
efficiently. An example of definition of an invariant defined in an 
abstract machine is the following statement:  

ie_mac_id: (0..TrafficTableSize-1) +->0..255 

which states that ie_mac_id variable is partial function from the 
0..TrafficTableSize-1 set to the 0..255 subset of natural numbers. 
Every model emerging from the refinement of the specific 
abstract machine must be proven that does not violate the 
aforementioned invariant. 

 

Figure 2. Model refinement steps. 

Formal model refinement guarantees that, during successive 
refinements of the abstract machines, every invariant and 
precondition defined will be fulfilled. The operations, the 
invariants and the preconditions produce a set of proof 
obligations that must be formally proven every time a system 
model is enriched with additional design details. The generated 
proof obligations between two successive refinements have to be 
discharged before entering the next refinement level.  

Figure 2 outlines the process of formal model refinement. The 
designer is able to refine both data and algorithms during the 
refinement process. Usually, a set of refinement guidelines is 
available throughout the refinement process, while the 
assessment of a specific refinement is strongly related to criteria 
derived from the nature of system under design. 

The last refinement of a machine is called implementation and 
can use the specification of one or more abstract machines that 
can also be refined (with the use of the IMPORTS clause). As 
soon as all the proof obligations for all subsystems have been 
discharged and the specification models the requirements 
correctly, the designer has at his/her disposal an error free model. 
The next step is automatic translation from B0 [2] (a subset of B 
appropriate for code generation) to C/C++/Ada.  



4.3 System decomposition 
Depending on the complexity of the model refined, the number 

of proof obligations to be proven can significantly increase. In 
this case, it is usually preferable to decompose the specific 
refinement into smaller subsystems (see Figure 1). Each 
subsystem is a system itself, with an initial set of requirements 
related to its functionality. As soon as the system has been 
decomposed into subsystems each subsystem is gradually refined 
leading to a subsystem implementation; the final system emerges 
from the recomposition of subsystems' implementations. In this 
divide and conquer design strategy, the initial system model is 
replaced by a set of subsystems' models and the proof obligations 
of the system are divided among its subsystems. The final system 
implementation emerges from the recomposition of error free (all 
initial proof obligations are fulfilled) subsystems' 
implementations. 

5. CASE STUDY: DESIGN OF A 
WIRELESS SYSTEM BASED ON 
HIPERLAN/2 PROTOCOL 

The main goal of this section is to present the application of 
the B method/language in a real world case study. The selected 
application is borrowed from the domain of wireless 
telecommunication systems and is based on HIPERLAN/2, a 
standard protocol for broadband wireless networks. 

5.1 An overview of the HIPERLAN/2 protocol 
HIPERLAN/2 protocol provides data rates of up to 54 

Mbits/sec for short range (up to 150m) communications in indoor 
and outdoor environments. Typical application environments are 
offices, homes, exhibition halls, airports, train stations and so on.  

In order to specify a radio access network that can be used with 
a variety of core networks, the HIPERLAN/2 standard [10] 
provides a flexible architecture that defines core independent 
physical (PHY) and Data Link Control (DLC) layers and a set of 
convergence layers that facilitate access to various core networks 
including Ethernet, ATM, and IEEE 1394 (Firewire). 

Access Point (AP)

Mobile Terminal (MT)

Mobile Terminal (MT)

Access Point (AP)

FIXED NETWORK

 

Figure 3. An overview of HIPERLAN/2 architecture 

The air interface is based on time division duplex (TDD) and 
dynamic time division multiple access (TDMA). It relies on 
cellular networking topology combined with ad-hoc networking 
capability. It supports two basic modes of operation: centralized 
mode (CM), and direct mode (DM). In the CM operation every 

radio cell is controlled by an access point covering a certain 
geographical area and mobile terminals communicate with one 
another or with the core network through the access point. In the 
DM operation, mobile terminals in a single cell network can 
exchange data directly with one another. The access point 
controls the assignment of radio resources to the mobile 
terminals. Figure 3 outlines the basic architecture of a 
HIPERLAN/2 system. 

5.2 System analysis and specification 
When the system powers up, the subsystem implementing the 

system scheduler is initialized. From that point on, the scheduler 
is triggered by the hardware every time a MAC frame has to be 
emitted. The scheduler constructs the new MAC frame according 
to the resource requests by mobile terminals and the limitations 
of the system specifications. First of all, a table summarizing the 
traffic flow in the system is updated properly, taking into account 
the requests by mobile terminals and then the appropriate logical 
- transport channels are filled. Finally, a channel describing the 
whole structure of the frame (frame channel) is constructed. As 
soon as a new frame is designed, the frame builder is triggered to 
construct and transmit it properly.  

AP_SCHEDULER 

TRAFFIC_TABLE FCCH_RG FRAME_INFO BCCH IE 

RR CONTEXT 

 

Figure 4. The decomposition model of the initial B modules. 

The first step was to select the initial modules. Some of these 
modules need to communicate, which means that a module 
“needs” another module. So we had to define a hierarchical 
organization for these modules constituting the AP frame 
scheduler. The AP Scheduler serves user requests set on mobile 
terminals, so we need a module containing the resource requests 
by mobile terminals and another module summarizing the traffic 
flow in the system. All the other modules needed are used to 
describe the contents of the logical and transport channels. The 
resulted decomposition is illustrated in Figure 4. The boxes in 
Figure 4 represent discrete B modules and the arrows introduce 
relationships between them (an arrow sets a "needs" relationship 
between two B modules).  

The functionality of the modules of the organization in Figure 4 
is as following: 

• AP_SCHEDULER: responsible for the design of a MAC 
frame.   Specifically, it calculates the final number of 
LCH and SCH channels that will be granted and creates 
the contents of the FCH channel. Any other   activity 
required it is performed by appropriate calls of the 
scheduler. 

• TRAFFIC_TABLE: describes the next frame's logical 
channel entries required (traffic flow), according to the 
resource requests. 



• IE: describes the contents of the information elements 
(IEs) for the downlink and uplink phases, the idle parts 
(idle IEs) and the padding IEs of the frame. These IEs will 
be used in the creation of the FCH channel. 

• BCCH: contains the contents of the BCCH logical 
channel. 

• FRAME_INFO: decides the number of IEs, the number of 
blocks (a block contains three IEs [5], the number of idle 
IEs, and the number of padding IEs. 

• FCCH_RG: contains the resource grants for the FCCH 
channel. 

• RR: not a part of the scheduler, but it contains the 
resource requests imposed by the mobile terminals. 

• CONTEXT: a header file for the application and contains 
only commonly used definitions (it is visible by all 
modules). 

The next step was to create an abstract model for each module. 
Following the rules of the B method/langauge, a set of B abstract 
machines was created to specify the abstract modules required. 
Within each abstract machine, the main subsystem properties 
were formally described. Every machine was fully proven to be 
correct with the use of Atelier B's automatic and interactive 
provers [1]. 

 

5.3 System design using the B 
method/language 

In system design phase, the abstract machines of each 
subsystem were formally refined to B refinements or 
implementations (the last level of refinement). Appropriate 
predicates were defined to express the properties of the linking 
(gluing) invariant between each B refinement/implementation 
and its corresponding abstract model. The proof obligations 
generated were in most cases proven using the automatic prover 
of Atelier B. Nevertheless, there were also cases where the 
designers had to prove several proof obligations interactively. 

Due to the complexity of the proof obligations generated by B 
implementations, in several cases the designers experienced 
excessive numbers of proof obligations (sometimes more than 
100), which were impossible to be proved using the interactive 
prover. In those cases, there were two different approaches to 
follow:  

• Introduction of an intermediate refinement level (see 
Figure 1) between the abstract model and the 
corresponding refinement/implementation, to express 
some properties at an intermediate level of detail.  

• Introduction of a new module (or more if necessary) to 
simplify the proving procedure. The new module can 
simplify the complex operations (the ones that create 
excessive numbers of proof obligations). The machine of 
the new module is imported to the implementation with 
the use of the IMPORTS clause (e.g. the modules 
IE_SINGLE and BIT_MANIPULATION were used to 
reduce the number of proof obligations generated for the 
IE implementation component). 

AP_SCHEDULER 

DECISION 

FRAME INFO TRAFFIC TABLE 

FCH CALCULATE 
SYMBOLS 

BCCH IE FCCH RG 

CHANNEL ENTRIES IE SINGLE 

RR BIT 
MANIPULATION 

SEES 

IMPORTS  

Figure 5. The final decomposition model. 

In the case study presented, both alternatives were adopted in 
different cases, depending on the number of proof obligations 
generated in each case. 

The final decomposition of the initial model is presented in  
Figure 5. The dashed arrows represent a SEES clause, while 
each solid arrow refers to an IMPORTS clause. When a 
component SEES an abstract machine M, the data of M may be 
accessed as read-only, and the modification operations of M can 
not be called. The IMPORTS clause may only appear in 
implementations, and imports one or more abstract machines in 
order to implement data and operations within lower level 
machines.. 

• BIT_MANIPULATION: stores a value in an octet of a buffer 
• IE_SINGLE: stores the proper values to the fields of the IE buffer 

structure separately [5].  
• CHANNEL_ENTRIES: stores the contents of the proper channel 

entries of the frame separately according to the resource requests. 
• DECISION: calculates the rates of LCH, SCH, control and data 

channels that will be finally used according to the resource 
requests. 

• CALCULATE_SYMBOLS: calculates the number of symbols for 
a single transmission according to the physical mode that will be 
used. 

• FCH: creates the FCH channel, which describes the contents of the 
frame. 

6. EVALUATION OF THE B METHOD 
In order to evaluate the proposed method, the B 

design/implementation of the HIPERLAN/2 protocol has been 
compared to an existing implementation of the same protocol 
parts. For both implementations, the specifications provided by 
ETSI for HIPERLAN/2 were used [5].  

The HIPERLAN/2 Access Point scheduler has been already 
developed in UML 1.4 [15] and is available in executable form. 
UML was used in every design phase, and the validation of the 
final system was accomplished through simulation of C++ code. 
The same team employed in the original development of the 
scheduler, has also been working for the development of the 



scheduler using the B method/language. The actual goal of the 
latter was to implement the same part of the protocol in C++, and 
compare the two design alternatives.  

Table 1. Person month allocation per design phase. 

 

As described in Table 1, the person months spent in system 
specification phase are slightly increased in the case where the B 
method/language  was used. This is due to the fact that the 
definition of the abstract machines of each subsystem at the 
specification stage included definitions of the appropriate 
invariants. Additionally, the time spent for model refinement is 
also increased compared to the ad hoc model refinement, taking 
place in UML based design. The time increase in the case of the 
B method/language is because the implementation of each 
abstract machine in B must be proven compliant with the 
abstract machine's invariants. The latter must hold at every step 
of the final implementation described in B. As far as validation is 
concerned, no time was spent in the B based approach since the 
compliance of the final implementation with the initial 
specification has already been proven formally during 
refinement. On the contrary, in the UML based design 1.4 person 
months have been spent for validation (in this case validation 
was achieved through code generation and simulation of the code 
produced). Finally, in both case studies similar amount of time 
spent for integrating the code of the AP scheduler in the 
HIPERLAN/2 prototype.  

Regarding the overall time spent in the case of the B 
method/language, it is slightly decreased compared to the time 
spent in the case of the UML based design. The main reason for 
this was the fact that the designers involved in the development 
of the B models were not familiar with the use of formal 
methods, and especially with the efficient definition of invariants 
and preconditions. In several cases, it was necessary to redefine 
them in order to reduce the number of proof obligations 
generated.  

7. CONCLUSIONS 
The previous sections presented the use of the B 

method/language for the design of complex telecom applications. 
As opposed to existing design practices of telecom applications, 
the one presented in this paper exhibited the use of the B 
method/language for building abstract system models, and 
describing their properties in a formal way. The final 
implementation emerged as a result of successive refinements, 
which were formally proven to maintain the properties of the 
initial system specification. This is in contrast to ad hoc 
refinement supported by most design methods.  

The proposed approach has been applied in practice through 
the design of a case study where part of a real world telecom 
system, based on HIPERLAN/2 protocol, has been designed and 
implemented. An overall evaluation has also been presented in 
order to identify the benefits of using the B method/language, 
while in parallel to keep track of the potential inefficiencies 
related to it. The B method/language appears to be a promising 

approach for the design of complex telecommunication systems 
since it allows correct-by-construction implementations. Formal 
proof of system properties during model refinement guarantees 
less time spent in verification and validation phases, thus leading 
to shorter development cycles.  

The approach presented in the previous sections has been 
adopted for the design of critical protocol parts that are common 
in a variety of telecom products. For that purpose, a library of 
formally proven telecom components has been developed. Each 
component has been specified in the B language, and has been 
appropriately refined so as produce error free component 
instantiations in C++. The component descriptions, which form a 
valuable starting point for system level design of telecom 
products, they are solely described in B. In order to ease the 
designers, there is a trend to combine UML (which constitutes 
the core formalism for the specification many telecommunication 
products) with B method/language. The combination of the B 
method/language with UML is expected to combine the 
advantages of both approaches, while in parallel it will allow 
telecom product designers to make use of a existing libraries of 
system models described in UML. 
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