IMPROVING THE DELIVERY OF MULTIMEDIA EMBEDDED IN
HTML OVER HTTP ON WIRELESS NETWORKS

Adam Serbinski
Department of Computer Science
Ryerson University
350 Victoria Street
Toronto, Ontario
Canada M5B 2K3

aserbins@ryerson.ca

ABSTRACT

The purpose of this work is to reduce the delivery time for
the initial portion of multimedia objects over wireless
networks using HTTP protocol. The multimedia files we
consider are those embedded in web pages. By prefetching
embedded media from server to client, we are able to
overcome the effects of network latency.

We implement prefetching in a custom built HTTP server
capable of anticipating future requests from the client, and
delivering data without it explicitly being requested.

To allow the client to receive files not requested, we use a
custom built proxy, to run on the client system.

Our custom server and proxy implement modifications to
the HTTP protocol to allow multiple files to be delivered in
a single transmission.

KEYWORDS
Multimedia networking, wireless networks, web server,
prefetching, network latency.

1. INTRODUCTION

Wireless networking commonly uses the same protocols
that are used in wired networks. Though the techniques we
use are not strictly wireless techniques, they can be applied
to both wired and wireless networks. Specifically our
techniques improve the efficiency of the HTTP protocol,
which is shared between wired and wireless networking.

Permissiorto makedigital or hardcopiesof all or partof this work for
personabr classroonuseis grantedwithout fee providedthatcopies
arenot madeor distributedfor profit or commerciadvantagendtha
copiesbearthis noticeandthefull citationonthefirst page.To copy
otherwiseto republish to poston serversor to redistributeto lists,
requiresprior specificpermissiorand/orafee.

MOBIMEDIA 2007,August27-29,NafpaktosGreece

Copyright© 2007ICST 978-963-06-2670-5

DOI 10.4108/ICST.MOBIMEDIA2007.1602

Abdolreza Abhari

Department of Computer Science
Ryerson University
350 Victoria Street
Toronto, Ontario
Canada M5B 2K3

aabhari@scs.ryerson.ca

In the HTTP/1.0 protocol, every file being retrieved from
the server requires its own connection to be established
between the client and the server[1]. This places additional
resource strain on the server and on the client than what
would be experienced using a single connection. Since
embedded objects are referenced within HTML, these files
cannot be requested until after the HTML file has already
been retrieved. In the worst case scenario, where an
embedded object is referenced at the end of an HTML
document, this may mean that the final, or only embedded
object of a web page cannot even be requested until a long
enough time has elapsed to retrieve the entire HTML
document.

In HTTP/1.1, this situation has been marginally improved.
This version of HTTP supports persistent connections and
request pipelining[2]. What this means is that even though
the client may still be forced to wait until the entire HTML
file has been received, as it scans through the HTML file, it
can submit requests along the same connection, rather than
having to establish new connections. This can result in a
significant reduction in server and client workload, and
reduced file transfer times. HTTP/1.1 still cannot eliminate
the initial wait for the HTML file to be received, and the
request for the embedded objects to be made and responded
to. HTTP/1.1 can in most cases improve on page load times
when compared to HTTP/1.0, however, the worst case
performance of HTTP/1.1 for HTML files that do contain at
least one embedded object, is no better than HTTP/1.0

We have developed an additional enhancement to the HTTP
protocol to solve the problem of requiring the client to wait
for the HTML file to be delivered before being able to
request the embedded objects. In our solution, the server
delivers the embedded objects to the client without being
explicitly requested. Other work has considered anticipation
of client requests for web

improving server

performance[12,13], however, rather than considering the

create-net
Typewritten Text

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1602

overall probable next file to be requested, we focus on the
contents of HTML files that have already been requested.

Our previous work in [3] involved modifying Apache
HTTP Server to prefetch embedded objects from disk into
memory. This modification allowed the server to generate a
response to a client request in a shorter amount of time by
reducing the effects of disk latency. This work is an
extension of our previous work to reduce the effects of
network latency, which has a far greater impact on web
page delivery time than disk latency.

In addition to solving the problem of network latency, our
modification is also able to overcome TCP slow start, which
is a technique applied to maximize the rate of data
without full about the
transmission path[4]. In TCP slow start, the server uses a

transmissions knowledge
congestion window, which it initially sets to 1 segment. It
will send a small amount of data equal to the window size
before waiting for an acknowledgment from the client. At
each acknowledgment, it will double the window size until
it reaches a threshold, which is near to the path's maximum
capacity, before switching into additive increase. When data
fails to arrive at the client, the server recognizes this by not
receiving an acknowledgment and reduces the window size
by half to ensure reliable delivery. Because TCP
communications use slow start for congestion avoidance,
the transfer of small files may not provide adequate
opportunity for full bandwidth utilization. When grouping
all the files of a website in a single connection, TCP is able
to build up to a greater transmission rate before the
connection is terminated.

This work focuses on a special case of use for HTTP and
TCP protocols; delivery of multimedia objects embedded in
web pages.

Media files, including multimedia, can be divided into two
groups; those that play over a period of time, and those that
do not. Non-playable media primarily includes images,
which to be properly displayed, require the entire file.
Playable media include, among other things, sounds,
animations, and video. Of the forms that play, there are
again two types; streaming and non-streaming. Streaming
media is distinguished from non-streaming media as being
delivered while at the same time being played[5], whereas
non-streaming media plays after delivery.

In some cases, media that is not specifically streaming
media can be streamed, such as stored sounds and videos.
Some media players are capable of beginning playback on
such data before the entire file has been received.

The HTTP protocol was once the most popular protocol
used to deliver data on the Internet[6]. Being the only
protocol handled by most web browsers, HTTP is still a
highly popular protocol for delivering data on the Internet,
however, it is not capable of delivering true streaming
media[1]. The HTTP protocol requires files to be completed
before being delivered in order to properly generate a
response header, which indicates to the client what it should
expect to receive. HTTP does, however, deliver files in
order from the start of the file to the end, which is the same
order that most playable media files are read when being
played.

Given that HTTP delivers requested files in order, and that
some media players are capable of beginning playback of
received files before being completely received, it is
possible to stream stored media files over HTTP.

The purpose of this work is to improve the delivery of
multimedia files embedded in web pages such that the time
between issuing a request for a web page and starting
playback is minimized.

2. PROPOSED STRATEGY

HTML is a document format with a particular structure that
web clients are able to parse and interpret in order to
display web pages in the same manner as the author of the
page intended[11]. Embedded within the HTML may be
references to other files that may be required to properly
display the web page, including, but not limited to, images,
sounds, animations, and videos.

Our strategy for improving the load time for files embedded
in HTML documents served by using HTTP protocol is to
prefetch the embedded objects directly to the client along
with the HTML file. The prefetching of the objects is done
without the client explicitly requesting the file, therefore it
reduces the time to receive the embedded files by the time
that it takes for a request to be relayed to the server and
back.

In using normal HTTP protocol, every file must be
explicitly requested by the client in order for the server to
send it[1]. Before the client can request any embedded
object, it must receive and parse the HTML file. It then
creates new requests to the server for those objects, which
add to the network traffic, the server's queue, and force the
server to spawn multiple new processes to handle those
requests. This adds a significant load to the network and to
the server.

With our modified HTTP protocol, implemented in our

custom HTTP Server, the client issues a request only for the
HTML file, and the server appends the embedded objects in
the same response as with the HTML file. In prefetching
HTTP, it is not necessary for the server to spawn multiple
processes or threads to service one web page. There are also
fewer requests in the queue, the network traffic is
decreased, and due to the greater size of the transmission,
the network bandwidth may be more fully utilized.

In a standard retrieval of a web page using a single
connection from the client to the server, the time, ¢, to begin
receiving a document from a web server, can be expressed
as the following for HTTP/1.0;

t=h+r+p+s, where;
h is the time to negotiate a connection,
r is the time to send a request from client to server,
p is the time for the server to process the request,

s is the time for the first byte of the response to be sent
from the server to the client.

Further, the time R;, to receive the i document, can be
expressed as;

R; =t + size; + rate, where rate is the transfer rate of the
connection.

The time to receive all of the documents related to a web
page is, therefore;

T = X2 R, fori from I to n files in the web page.

This can also be expressed as;

T =R, +t x (n-1) + (X size;)<rate, for i from 2 to n.

In prefetching, T is reduced by ¢ for each embedded object;
tx (n-1)

So, for prefetching, the time to retrieve the entire web page
is;

T =R, + (2 size;)<rate, for i from 2 ton

For HTTP/1.1, T is reduced only by an additional & for

every additional file requested along an established
connection. k is a small component of ¢.

A typical web page retrieval using HTTP follows these
steps;

1. The client requests an HTML file from the server.
2. The server delivers the HTML file to the client.

3. The client requests embedded objects from the server.

4. The server delivers embedded objects to the client.

The proposed solution to improve the delivery time of a
web page follows these steps;

ﬁ%

1. The client requests an HTML file from the server.

- The HTTP Server parses the HTML file and creates a
list of all embedded objects that can be forwarded to the
client.

2. The server delivers the HTML file along with all
embedded objects to the client.

A normal HTTP client, particularly a web browser, does not
have the ability to receive multiple files in a single
transmission unless they have been requested. In order to
accomplish this, the client must be modified. There are two
possible approaches to client modification;

- Implementation of the modification within the web
browser.

- Addition of a special light-weight proxy on the client
machine to translate between the modified HTTP protocol
used by the server and the standard HTTP protocol used by
the browser.

Modification to the browser is impractical, since it would
require modification of all browsers in order for this system
to become effective. We focused on designing a special
proxy translator since it will be compatible with all web
browsers.

The proxy translator receives a proxy request from the
client browser. It then modifies the request to an HTTP
request and appends a header indicating its compatibility
with the modified HTTP protocol.

Prefetching: true

When the server receives this request and reads the added
header, it formulates a response containing all embedded
objects and sends that to the proxy. If the server receives a
request that does not have the added header, it will generate
a normal HTTP response. If the added header is received by
a server that does not understand it, the header will be
ignored and a normal response will be sent.

In the modified HTTP response, the path of each embedded
object is added to the response header. This is to indicate to
the proxy immediately, which files will be sent. This is

necessary because the HTML file is sent first in the
response, and is forwarded immediately from the proxy to
the client browser without waiting for the full transmission,
which makes it possible still for the client to generate a
request for an embedded object before it has arrived. It is
important for the client browser to be able to generate
requests before receiving the full transmission in order for it
to retrieve objects stored on other servers. Prefetching can
only forward embedded objects located on the same server
that is performing the prefetching. Unlike HTTP/1.0 and
most applications of HTTP/1.1 protocol, this modified
protocol is strictly dependent on the Content-Length header,
this is because the client uses the content length to judge
where in the transmission the headers for the next file
begins.

Files in the transmission are organized as follows;

Header for HTML file including list of embedded object
paths in order of transmission

{blank line}

HTML file

{blank line}

Header for first embedded object

{blank line}

First embedded object

{blank line}

Header for second embedded object

efc.

Since the web client itself, such as a web browser, is not
modified, communications between the client browser and
the client proxy are also unmodified. Since the proxy is a
program running on the client system, request latency is
negligible.

The modified web page retrieval follows these steps;

Client

_>E‘1‘
Browser 5

&

1. Client web browser requests HTML file from the proxy.

;5—)

2. Proxy forwards request for HTML file to the server.

- The HTTP server parses the HTML file and creates a
list of all embedded objects that can be forwarded to the
client.

3. The server delivers modified response, including all
embedded objects, to client proxy.

4. The proxy delivers only HTML file to the browser.

5. The client web browser requests embedded object from

the proxy.
6. The proxy delivers prefetched embedded objects to the
browser.

3. EXPERIMENTAL DESIGN
We have performed two experiments, described in sections
3.1 and 3.2.

For both experiments, we use the same server and client.
Our server is located on a residential cable Internet
connection with maximum upload bandwidth of 800 Kb/s
and maximum download bandwidth of 6.0 Mb/s. Our client
system is located on a separate network with similar
maximum capacities and utilizes an 802.11G Wi-Fi access
point and network adapter.

3.1. NORMAL WEBSITES

Our first experiment involves testing websites with no
multimedia objects. For this experiment, we mirror several
popular websites and measure the performance difference in
retrieving these web pages with prefetching and without.

The web pages used are obtained from lists generated by
IRCache[8] and SeekingAlpha[9], and include the home
pages for amazon.com, aol.com, mapquest.com,
wikipedia.org, and google.ca. These websites were selected
due to their popularity and their varied number of
embedded objects.

To perform this experiment, we load the test websites from
server to client 100 times each for both prefetching enabled
and prefetching disabled. We use GNU Wget[10] as the
client software, and record the difference between end time

and start time for each retrieval.

3.2. MULTIMEDIA WEBSITES

Our second experiment is similar to the first. We have
created several HTML documents with a number of
embedded objects. One of our embedded objects is a
multimedia object of length I byfe. We use an embedded
multimedia object of only I byte because it is at the first
byte that the media handler will be able to start processing
the data. Since for continuous media playback, the data
must be delivered at least as fast as the media player will
require it, reception of the first byte signifies the start of
uninterrupted playback.

The generated web pages also contain a number of images
of the average size, given by [7] to be 11.9 KB. We use web
pages containing 0, 5, 10, and 25 images. We serve these
web pages from server to client 50 times each with
prefetching disabled and 50 times with prefetching enabled,

recording the total elapsed time each time the page is
served, and calculate the averages for prefetching and for
standard HTTP. The web browser invokes the media
handling plugin the moment that it detects that there is an
embedded video within the web page, but until the first byte
of the media file is received, there is nothing for the media
handler. The media handler will begin working on the
media file being received the moment the first byte is
received, so the difference in the elapsed time for standard
HTTP and for prefetching is the improvement in the time it
takes for an embedded media object to begin playback on
the client.

It should be noted that even though we have selected
embedded objects of average size, that their size does not
impact the results of prefetching. Prefetching acts on the
time to deliver a request, which is independent of the file
being requested. We use average file sizes to provide
perspective for the overall reduction in delivery time.

4. RESULTS AND DISCUSSION
The results of our two experiments are described in sections
4.1 and 4.2.

4.1. NORMAL WEBSITES
For retrieval of normal web pages, we have obtained
significant reduction in page load times.

Table 1: Normal Web Page Delivery Time (s)

Website Standard | Prefetching Improvement
Amazon 15.85 4.25 11.60
Aol 8.78 2.73 6.05
Mapquest 6.55 2.56 3.99
Wikipedia 3.72 1.44 2.28
Google 0.23 0.24 0.01

The websites tested contain differing numbers of embedded
objects as shown in Table 2.

Table 2: Number of embedded objects

Website Number of Objects
Amazon 60
Aol 34
Mapquest 28
Wikipedia 15
Google 1

Initial Page Load Time

16.00000 T

14.00000

12.00000 4+

10.00000

8.00000 1

Time (s)

@ HTTPA.O
Wl Modified HTTP/1.0

6.00000 1

4.00000

2.00000 +

0.00000 +

AOL.COM
GOOGLE.CA

WIKIPEDIA.ORG P—r‘

AMAZON.COM
MAPQUEST.COM

Website

Figure 1: Improvement in web page delivery time

4.2. MULTIMEDIA WEBSITES

With our modified HTTP protocol, we are able to obtain a
significant reduction in wait times for beginning retrieval of
embedded objects of web pages.

With no embedded objects in addition to the multimedia file
being tested, we are able to reduce wait time by 13 ms, or
21.64%. With 25 embedded objects, we are able to reduce
wait time by 859 ms, or 20.76%.

With an increasing number of embedded objects, the
improvement in wait time tends to increase. This is because
prefetching eliminates the request time from every file
requested.

When increasing the number of embedded objects, the
proportional improvement in wait time tends to be close to
constant. This is because the same request time is removed
for each additional file transmitted.

HTTP Multimedia Prefetching

4.500000
4.000000

3.500000

3.000000
2.500000

[Regular
[l Prefetching

2.000000

1.500000

Time Before Start of Playback

1.000000
0.500000

0.000000 DFE-T:E

0 1 5 10 25

Number of Objects Preceding Multimedia Object

Figure 2: Improvement in Web Page Delivery Time

Table 3: Multimedia Web Page Delivery Time (s)

#of Normal Prefetching Improvement
Objects HTTP HTTP
0| 0.060630 0.047508 0.013122
1 0.305684 0.219592 0.086092
5 1.067207 0.715699 0.315508
10| 2.129906 1.337465 0.792441
25| 4.132104 3.273403 0.858701

5. CONCLUSION

In this work we have improved the delivery time of objects
embedded in HTML documents over HTTP connections.

In our test of websites without multimedia objects, we have
determined that the improvement due to prefetching
correlates with the number of objects as follows; the greater
the number

of embedded objects, the greater the

improvement due to prefetching.

Our testing of generated web pages containing multimedia
objects shows that prefetching allows multimedia objects to
begin playback earlier than what would otherwise be
experienced.

We have reduced the effects of network latency by reducing
the number of requests made by the client to the server from
one request for every object to one request for all objects.

6. FUTURE WORK

Our solution to improving the delivery of multimedia
from HTTP
implementation of a custom light-weight proxy to be run on

objects server to client required the
the client system. This proxy must cache data sent by the

server until the data is ultimately requested by the client.

Many multimedia objects, such as videos, can be extremely
large, making them impractical to cache. The delivery of
very large files may be improved by retrieving the first part
of the file by prefetching and requesting the balance of the
file upon access. When a client requests a very large
multimedia object from a proxy server, the proxy will begin
delivering the start of the file while simultaneously
requesting the rest of the file from the server. Before the
client has consumed the entire cached portion of the file, the
balance of the file has begun to arrive at the proxy server.

7. REFERENCES

[1] RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0.
http://www .fags.org/rfcs/rfc2616.html

[2] RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1.
http://www.faqs.org/rfcs/rfc2616.html

[3] Abdolreza Abhari, Adam Serbinski, Miso Gusic,
"Improving the Performance of Apache Web Server", 10th
Communications and Networking Simulation Symposium
(CNS'07), 2007

[4] Behrouz A. Forouzan, "Data Communications and
Networking, Third Edition", 2004.

[5] "Streaming Media", Wikipedia,
http://en.wikipedia.org/wiki/Streaming_Media

[6] Kevin Thompson, Gregory J. Miller, Rick Wilder.
"Wide-Area Internet Traffic Patterns and Characteristics",
MCI Telecommunications Corp., 1997.

[7] Andy King, "The Average Web Page",
www.optimizationweek.com/reviews/average-web-page/

[8] IRCache Top 50 Origins,
http://www.ircache.net/Statistica/Top-Fifty-Servers

[9] Seeking Alpha, "The 20 Most Popular Websites",
available at: http://internet.seekingalpha.com/article/25309

[10] GNU Wget, http://www.gnu.org/software/wget, GNU
Project, The Free Software Foundation.

[11] Abdolreza Abhari, Sivarama P. Dandamudi, and
Shikharesh Majumdar. Structural characterization of
popular web documents. International Journal of
Computers and Their Applications, 9(1):15-24, March
2002.

[12] Azer Bestavros. Using speculation to reduce server
load and service time on the WWW. In Proceedings of the
4th ACM International Conference on Information and
Knowledge Management, Baltimore, MD, 1995.

[13] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using
predictive prefetching to improve World-Wide Web
latency. In Proceedings of the ACM SIGCOMM 96
Conference, Stanford University, CA, 1996.

