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ABSTRACT
We present an image classification system based on a Con-
ditional Random Field (CRF) model trained on simple fea-
tures obtained from a small number of semantically repre-
sentative image patches. The CRFs are very powerful to
handle complex parts dependencies due to their approach
based on the effective modelling of the source probability
conditioned on the evidence data, and they have been ap-
plied successfully to image classification and segmentation
tasks in presence of a large number of low level features. In
this paper an agile system based on the application of CRFs
to images coarsely segmented is introduced. The main ad-
vantage of the system is a reduction in the required train-
ing time, slightly sacrificing the classification accuracy. The
model implementation is described, experimental results are
presented and conclusions are drawn.

1. INTRODUCTION
In the last years the request for ubiquitous access to mul-

timedia content has been constantly increasing. This fact
has raised issues related to how such data can be browsed
and retrieved according to their semantics, that is, their ac-
tual content. The Content-Based Image Retrieval (CBIR)
is the application of the computer vision theory to the im-
age retrieval problem. The goal of the CBIR systems is to
analyse, classify and retrieve images based on their content.
However, there is no direct correspondence between image
features and the semantics of the image itself. Additionally,
the chosen features have to be descriptive, easy to retrieve
and representative. This is particularly true if the extraction
and the analysis of the features is executed in performance-
critical scenarios, such as on mobile devices or on servers
demanded to handle requests from a number of clients.

Local features related to specific image parts (or patches)
can be used for the classification. On one side this approach
endows a strong discriminative power due to the locality of
the employed information. On the other side, however, the
number of low-level local features makes a fast analysis of
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the data nearly impossible. In this circumstance a solution
can be given by coarser-grain semantically richer features.

The part-based models have been shown to be highly per-
forming: one of the outstanding works in this field, pre-
sented by Sivic and al. [14], is based on the bag-of-features
system, which is the equivalent for the multimedia content
of the bag-of-words used for text classification. Considerable
results have been reached even without exploiting any infor-
mation related to the relative position of the parts in the
images, which is a strong source of knowledge particularly
when considering semantically meaningful features.

In this paper an alternative approach is presented. It is
based on a promising model that, despite being introduced
quite recently, has exposed optimistic results in the image
classification area: the Conditional Random Field (CRF).

CRFs have been introduced by Lafferty at al. in 2001
[5], in relation to sequences classification problems. The use
of CRFs in image analysis scenarios allows the representa-
tion of the features related to single patches and to pairs of
patches, so that information like the mutual distance and
location among the features can be exploited. CRFs can
handle quite complex system dependencies as a result of the
particular probabilistic model employed. This leads to a
very flexible framework that is however limited to some ex-
tent by the huge computing power required for the learning
phase, especially when complex features are involved, due
to the combinatorial explosion of training parameters.

The system proposed in this paper applies the CRF frame-
work to simple colour-based features extracted from image
patches obtained via a coarse-grain segmentation. The first
result is an agile classification system whose training time
is small compared to the current approaches. Another pur-
pose of this paper is to investigate the effectiveness of CRFs
in describing the relationships between a small number of
structurally complex image components.

2. CRF IN IMAGE CLASSIFICATION
In the following Section 2.1 the data labelling problem is

briefly introduced, and the CRF approach to the solution is
presented. The currently available applications to the image
classification field are discussed in Section 2.2.

2.1 CRF Fundamentals
Consider the problem of having a collection of objects

composed of n different parts, each of them belonging to a
category. The goal is to assign the correct label to each part
according to an observation, that is, a measurement on the
object. So, for each object to be labelled, let y = {yi}, i ∈
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[1, n], be a n-dimensional vector associated to a configura-
tion of the n unknown labels yi ∈ Y, and let x be a vector of
observations. Traditional generative models such the Hid-
den Markov Models (HMM) would model this problem by
the estimation of the joint probability p(x,y) = p(x|y)p(y),
therefore requiring the modelling of the source probability
p(y) and the relationship between the observed data and
the unknown labels configuration, p(x|y). This approach
requires the generation of all the |Y|n possible state config-
urations y (being |Y| the cardinality of Y), which in the real
situations are often an intractable number. To avoid this,
strict independence restrictions on the features related to
different patches have to be introduced in order to perform
the inference in an optimised iterative way.

On the other hand, a CRF directly models the conditional
probability p(y|x) [15, 5]. This hypothesis significantly re-
duces the problem complexity: the source statistical distri-
bution has not to be modelled anymore, and possibly incor-
rect assumptions made in this task are avoided. Addition-
ally, a problem structured in this way does not require the
independence constraints introduced in the generative mod-
els to prevent the explicit generation of all the possible state
configurations. This means that the CRF is actually a more
powerful probabilistic model, in terms of dependencies that
can be handled, than the equivalent generative one.

Formally, a CRF is an undirected graphical model that
associates to each node a random variable yi conditioned on
the evidence x. Therefore we define a CRF as an undirected
graph G = (V, E), in which every vertex Vi ∈ V is asso-
ciated to a discrete random variable yi which satisfies the
Markov property in respect to G. This implies that every
link between two graph nodes represents a direct dependence
between the correspondent random variables. The more the
graph is connected, the more direct dependencies between
the variables are representable and the higher is the com-
plexity of the model, which depends on the dimension of the
graph cliques. Furthermore, the presence of cycles in the
graph complicates the probabilities estimation phase.

2.2 Applications
Recently there have been successful attempts to apply the

CRF theory to the image classification field [4, 12, 13]. One
of the first works is by Kumar [4] and is primarily focused
on the CRF problem definition for image classification ap-
plications. The problem of the features choice is not tackled
in depth. The input image is simply segmented in a regular
grid of rectangular patches to be labelled, without giving to
the patches a definite semantic meaning.

The system presented in [12] addresses the problem of
masking the patches labelling process. The hidden variables
CRF is introduced, in which the random variables associ-
ated to the graph nodes are not the output of the process,
but they constitute a hidden layer between the evidence x
represented by the features extracted from the images and
the category c of the images. This approach is loose in the
definition of the labels because the patch categories are not
explicitly assigned, but just the number of labels is fixed.
The matching of the label classes with particular traits of
the patches is performed during the learning phase, that be-
comes more difficult and unstable because less constrained
(the labels not being specified in the training set) but for
the same reason potentially more powerful. The paper does
not explore the problem of the features selection; instead,

the local, fine-grained SIFT descriptors [7] are used.
Finally, in [13] a model for the concurrent segmentation

and labelling of the images via a pixel-based CRF is pre-
sented. The work addresses the problem of the features
choice, that are designed to explicitally fit the CRF model.
However, the approach described is related to the image
segmentation as the system tries to perform the labelling of
every pixel in the image. The resulting CRF is very com-
plex, since it associates a random variable and a node in the
graph to every pixel in the image and the training of such a
system is a computationally intensive task.

3. FEATURES EXTRACTION
The system presented in this work exploits the representa-

tive power of the CRF to perform a fast image classification.
The complexity of the approach is reduced by using a small
number of patches and simple feature descriptors. This leads
to a relatively small graph to train, where the parts labelling
probabilities can be calculated in a short time. In this sec-
tion the features choice is addressed as well as the extraction
of a low number of semantically representative image parts.

As comparative data, figures from SIFT descriptors used
in [12] can be considered. In a typical image from the“faces”
category of the Caltech 101 dataset [3], the SIFT extractor
produces around 2500 - 3000 different keypoints, each of
which representing a random variable in the probabilistic
model. The features associated to each keypoint for a SIFT
descriptor form a vector f ∈ R132. The features are com-
posed of geometrical- and visual-related data. The latter
is essentially associated to the image gradient values in an
area close to the centre of the keypoint, represented in a ro-
tation invariant and luminance invariant (normalised) form.
In particular, colour information is not involved.

Colour information, if correctly extracted and properly ex-
ploited, can offer enough information to obtain a reasonably
good and fast classification in a number of situations.

3.1 Image Segmentation
The images segmentation, in order to obtain the patches

to be labelled, has been performed using a colour-based
anisotropic diffusion, a technique aimed at segmenting an
image while preserving its semantic information.

The anisotropic (or nonlinear) diffusion technique has
been introduced by Perona and Malik [10] as a proposal to
address the issue of the “semantically meaningful segmen-
tation of images” through luminance analysis. This task, in
order to make sense, has to rely on an unequivocal definition
for “semantic meaning” of the segmentation process. Actu-
ally, a semantically meaningful segmentation can be defined
as a process that isolates different objects represented into
images. The objects are not always discriminable via a low-
level feature such the image luminance, because different
values of this feature are not necessarily linked to different
objects. Nevertheless in many practical scenarios the lu-
minance (or, for multidimensional valued images as in our
case, the colour) can be quite representative of the semantic
objects.

The anisotropic diffusion process is a scale-space algo-
rithm: it is applied iteratively and a more coarsely seg-
mented image is produced at each iteration. The desir-
able properties for this algorithm are the causality, which
means that no new regions are introduced while going to-
wards coarser scales; the immediate localisation, related to
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Figure 1: Effect of the application of a nonlinear
diffusion filter to a monodimensional signal: on the
left image the original signal shape is sketched, and
on the right image the result of the filtering process
when the convergence is reached.

the sharpness of the region boundaries; and the piecewise-
smoothing, which implies that the intraregion smoothing
should be preferred to the interregion smoothing, for every
individual iteration.

In order to satisfy the previously stated constraints the
algorithm implements a nonlinear smoothing by the means
of an anisotropic diffusion process. The anisotropic diffusion
equation is given by

∂I(x, t)

∂t
= ∇(c(x, t)∇I(x, t)) , (1)

where I(x, t) represents the image at different scales (I(x, 0)
being the original image), x is a point on the image, t is the
image scale, and c is the non-constant diffusion coefficient.
The differential equation is discretised and iteratively solved
on t (as explained in Section 4.1 and with more detail in [10])
until convergence to an image segmented in homogeneous in-
tensity areas. Eq. (1) differs from the heat equation, which
is equivalent to the application of a Gaussian blurring filter
[1], because the diffusion coefficient (corresponding to the
spreading of the gaussian blurring filter) is not constant in
the image. The image should be strongly smoothed (big c
magnitude) where the luminance does not change consid-
erably, while it should not be smoothed (small values of
c) where the luminance presents strong changes. This is
achieved by choosing

c(x, t) , g(‖∇I(x, t)‖) , (2)

where g in Eq. (2) is a monotonically decreasing function
that has to be chosen depending on the image’s structure.
In this paper, it is

g(‖∇I(x, t)‖) ,
1

1 +
“
‖∇I(x,t)‖

k

”2 . (3)

The choice of k in Eq. (3) is a major issue because this
parameter has a large influence on the quality of the result
and it is dependent on the single processed image. However,
some estimations can be done to adapt the parameter de-
pending on the specific image, as stated later in this section.
The effect of the anisotropic diffusion filter is exemplified in
Figure 1.

The Perona-Malik algorithm was originally developed for
monochrome images, and the extension to colour images is
not straightforward. The colour components are not inde-
pendent, and the application of the equation to each sepa-

rate component produces poor results because the semantic
information lies in all the colour channels considered as a
whole.

Lucchese and Mitra in 2001 proposed an algorithm to ap-
ply the anisotropic diffusion to colour images [8]. In their
work a separate application of the nonlinear diffusion algo-
rithm to the achromatic and chromatic components is pro-
posed, as suggested by biological vision systems. The sepa-
rate processing of the achromatic and chromatic components
of the image has his rationale in the fact that they usually
carry two different types of information.

The colour space used for the colour anisotropic filtering is
the 1976 CIE Lu∗v∗ [11], because it is perceptively uniform
to the human vision system, and it defines a way to sepa-
rate the luminance information (L) from the chromaticity
information (u∗, v∗).

The luminance diffusion is performed by a standard one-
dimensional nonlinear diffusion algorithm, while the chro-
matic components are considered as real and imaginary part
of numbers in the complex space. In this way Eq. (1) can be
solved in the complex domain. Since the diffusion constant
c is real, Eq. (1) can be splitted in ∂<{Ic(x,t)}

∂t
= ∇(c(x, t)∇<{Ic(x, t)})

∂={Ic(x,t)}
∂t

= ∇(c(x, t)∇={Ic(x, t)})
, (4)

where Ic is the chromatic image. Even if it is not explicit
in the previous formulae, the Eq. (4) are not independent,
because they are correlated through the diffusion coefficient
c.

3.2 Patches Description
The segmentation via the colour-based anisotropic diffu-

sion algorithm produces a set of image patches with almost
homogeneous colour. A simple and reasonably good fea-
ture set that has been extracted from these patches for the
purposes of this work is composed of the patch’s colour (rep-
resented as a triplet of numbers in the RGB space) and the
number of patch’s pixels. The number of the pixels of a
patch is introduced to let the model weight differently the
patches in relation to their size. This can narrow the effect
of the noise in the segmentation process, which can be par-
tially associated to small patches. Therefore the proposed
selection produces four-dimensional feature vectors.

4. SYSTEM IMPLEMENTATION
The system is divided into an image processing and seg-

mentation module aimed at the extraction of the feature
vectors and a learning module that implements the CRF
model, in a two-blocks cascade system.

4.1 Feature Vectors Extraction
The näıve implementation of the nonlinear diffusion, de-

scribed in [10], is used. This implementation is computation-
ally expensive although there are different optimised ver-
sions of the algorithm available to reduce this hurdle, as
for example in [16]. The algorithm works iterating over the
“time” variable t and performing a first-order discretisation
of the gradient function in Eq. (1) (see [10] for details).

The major conceptual difference with the original imple-
mentation of the filter is the choice of a dynamic k for Eq.
(3), as suggested in [8]. This modification is a simple way
to cope with the problem of the choice of the parameter k



Figure 2: On the left, an image from the “faces”
category of the Caltech 101 database; on the right,
the same image after the processing described in
Section 4.1.

pointed out in the Section 3.1. However this modification
goes further, because the parameter k is adapted in each step
of the algorithm, both for the luminance and the chromi-
nance equations, using an optimised value for each step. At
each iteration a k is chosen that is equal to a given per-
centage p of the maximum value of the image gradient mag-
nitude, k = p · maxi,j (‖∇I(x, t)‖), where I represents the
achromatic or chromatic image for the two different equa-
tions solved. This choice is motivated by the fact that k in
Eq. (3) plays the role of scale factor for the gradient mag-
nitude, and comparing with the maximum magnitude is a
solution to tune the filter response to the variation scale of
the particular image. In our work the empirically obtained
value p = 0.01 yields satisfactory results.

Another relevant parameter in the segmentation process is
the number of iterations to be carried out. Tests have shown
that a stable result can be achieved in about 3000 itera-
tions. When the complete convergence is not acquired, the
regions are not homogeneous in colour, but some smoothing
is present inside them. This smoothing can be removed by
the application of a colour quantisation filter.

If the complete convergence has not yet been achieved
by the nonlinear quantisation process, however, the colour
quantisation can introduce errors originating additional seg-
ments in the images. This effect has been reduced by the
application of a discretisation filter that segments the regions
removing the smoothing by considering two (four-connected)
pixels as belonging to the same region if their Euclidean dis-
tance is below a certain small threshold. This approach is
motivated by the fact that the nonlinear quantisation, even
if not fully converged, produces sharp edges between differ-
ent regions, that avoid the propagation of a region between
its boundaries. The algorithm is idempotent, and the fully
converged image is a fixed point for it. That is, being J the
algorithm,

J (J (I(x, t))) = J (I(x, t))
J (I(x,+∞)) = I(x,+∞)

. (5)

In Figure 2 an example of the segmentation process output
is given.

4.2 CRF Implementation
The Conditional Random Field used in this work is based

on [12], so that a layer of automatically labelled hidden vari-
ables is used. There is no need for the manual annotation
of every pixel in the training and test set. The graph used
for the description is a tree, because in this way the solu-

tion of the CRF is easier since it becomes possible to use
an exact belief propagation algorithm [2] to calculate the
marginal probabilities for the nodes of the graph. The tree
is obtained by running a minimum spanning tree algorithm
among the patches, having assigned to each connection be-
tween two nodes a weight equal to the spatial distance be-
tween the centres of the regions. This solution is motivated
by the consideration that two close patches are in average
more strongly correlated than two distant ones. The con-
struction of the CRF starting from the segmented image is
shown in Figure 3.

The graph structure and the number of nodes is different
for each image, but this is not an issue for the learning stage,
because the parameters that determine the CRF behaviour
are not dependent on the graph structure.

4.2.1 Problem Definition
Formally, the problem can be stated in this way: for each

image Ii, i ∈ [1, N ], in the training set there are mi nodes
Vi,j , j ∈ [1 . . .mi], each of which has an l-dimensional fea-
ture vector xi,j associated, and a class hi,j chosen from a
set H of n parts. The set of feature vectors and part la-
bels in a graph are indicated as Xi = {xi,1 . . .xi,mi} and
hi = {hi,1 . . . hi,mi} respectively. Additionally, a known im-
age class yi ∈ Y is associated to each training image. The
conditional probability to have an image class y and a part
labelling configuration h in the CRF framework is modeled
as

p(y,h|X, θ) =
eΨ(X,y,h,θ)

Z(X, θ)
, (6)

where θ is the parameters vector of the CRF to be optimised
during the training and

Z(X, θ) =
X
h,y

eΨ(X,y,h,θ) (7)

is the normalisation factor. The function Ψ, also called local
function or compatibility function [15] is the core of the CRF
descriptive power, being the function that embeds all the
dependencies among the part labels and between the labels
and the features. The general form of Ψ is

Ψ(X, y,h, θ) =
X

c∈C(G)

ψ(c,X, y,h|c, θ) , (8)

where C(G) is the set of cliques on G, ψ is a real-valued func-
tion, and the syntax h|c means the portion of h associated
to c, or the projection of h on c.

When the graph is a tree, the cliques are represented by
the nodes themselves and the pairs of nodes connected by
an edge. The functions associated to a single node are com-
monly referred to as state functions in the literature, while
the ones referring to linked pairs of nodes are named edge
functions. Moreover, usually the dependence on the CRF
parameters θ is linear in order to simplify the form of the
likelihood gradient during the optimisation; the edge func-
tions do not depend on the a-priori knowledge X; and the
state functions are affected only by the value of the feature
vector related to the node to which they refer. The form

Ψ(X, y,h; θ) =
Pm

i=1

P
k∈K1

i
θkf

1
k (xi, hi)+

+
Pm

i=1

P
k∈K1

i
θkf

2
k (y, hi)+ (9)

+
P

(i,j)∈E

P
k∈K2

i,j
θkf

3
k (y, hi, hj)



Figure 3: Overall CRF construction flow as explained in Section 4.2.

is used in our implementation, where K1
i and K2

i,j are the
subsets of indices referring to the functions that depend on
the i-th part label and on the i-th, j-th pair, respectively.
It is explicitly remarked that every dependence on the par-
ticular position on the graph has been removed. The single
functions have been chosen to be of three types (denoted by
superscripts 1, 2, 3 in Eq. (9)):

Type 1 functions encompass dependencies between fea-
tures vector and the part label h. In our implementa-
tion there are l·|H| functions f1

k (x, h) = (ei·x) δ(h, hj),
where i ∈ [1, l], hj ∈ H, ei is the l-dimensional i-th
unit vector and δ is the discrete Dirac delta.

Type 2 functions take into account dependencies between
the part label h and the image category y: f2

k (y, h) =
δ(y, yi) δ(h, hj) for each yi ∈ Y and hj ∈ H. The num-
ber of these function is |Y| · |H|.

Type 3 functions evaluate how much the presence of two
neighbour part labels h1 and h2 relate to the image
category y: f3

k (y, h1, h2) = δ(y, yi) δ(h
1, hj) δ(h

2, hk)
and there are |Y| · |H|2 of these functions.

The classification of an image can be done calculating

y = arg max
y′∈Y

˘
p(y′|x, θ)

¯
= arg max

y′∈Y

(X
h

p(y′,h|x, θ)

)
.

(10)
The summations in Eq. (7), (10) would require an iteration
over all the possible applications of each part label in H to
each node. However they can be simplified due to the par-
ticular structure of the functions that have to be summed,
that is, a product of functions that involve only a particular
subset of the total number of variables. This function struc-
ture can be associated to a factor graph that can be solved
via belief propagation [2, 9].

4.2.2 Parameters Learning
The choice of the parameters θ = {θ1 . . . θK}, where K is

the number of feature functions (that should not be confused
with the image features vectors x) is accomplished through
log-likelihood maximisation. The log-likelihood is:

L(θ) =

NX
i=1

log (p(yi|xi, θ))−
‖θ‖2

2σ2
, (11)

where p(yi|xi, θ) is obtained as in Eq. (10) and the second
term is due to a Gaussian prior on L introduced in order
to obtain a smoothed solution (to prevent the overfitting of
the training set). In a model in which each parameter has a
linear contribution on the feature functions, the gradient of
the log-likelihood can be written in a form involving only the
marginal probabilities p(h1|y,X, θ) and p(h1, h2|y,X, θ) as

shown in [12]. Such probabilities can be efficiently obtained
from the factor graph introduced in Section 4.2.1.

The algorithm employed for the log-likelihood maximisa-
tion with the gradient information is the L-BFGS limited-
memory quasi-Newton method for unconstrained optimisa-
tion [6]. This algorithm has been chosen due to the fast-
convergence property of the quasi-Newton methods.

5. TESTS AND RESULTS
The system has been tested on a single-category classi-

fication task. The dataset used for the experiments is the
Caltech 101 dataset [3], and the “faces” category was chosen
to be discriminated against images randomly taken from all
the other categories. The category set was thereby fixed to
Y = {face, background}.

The data sets were composed choosing 300 images from
the faces category and other 300 images randomly from the
other categories, then subdividing the set in three subsets
equally dimensioned to obtain a training set, a test set and
a validation set. Each subset was therefore composed of
100 “face” and 100 “background” images. The validation
set was used to test the σ smoothing parameter in the log-
likelihood evaluation, introduced in Eq. (11): the learning
was performed with different values of σ and the model that
performed the best based on the validation set was consid-
ered for the performance evaluation on the test set.

The images were preprocessed in order to extract the
patches, as explained in Section 4.1. The number of ob-
tained features for each image was 80 - 100, which is more
than an order of magnitude less than in the reference model.

The model from Quattoni et al. [12] was chosen for re-
sults comparison. Two versions of the proposed model were
tested, with the discretisation filter, introduced in Section
4.1, enabled and disabled respectively. The results obtained
from the tests are shown in Table 1.

The first information arisen from the tests is related to
the convergence problems of the algorithm. The L-BFGS
algorithm failed finding the optimal solution for the given
training set, and the best partial result on the log-likelihood
maximisation had to be chosen in order to perform the accu-
racy evaluation. The model trained with features obtained
without the use of the discretisation filter performed better.
This behaviour can be explained with two arguments: the
first is that the number of nodes increases as the regions’
colours are not previously flattened. The second reason,
that explains more generally the convergence problem, is
that the local function’s structure is too simple to embed
the correct colour information, and the skin colour can not
be adequately isolated.

On the other side, the improvement in terms of training
speed of the framework is significant as expected.



Table 1: Comparison of performances between our model with the discretisation filter enabled (“ourdf”), with
the discretisation filter disabled (“our”), and the reference one (“MIT”). The number of iterations during the
training, the relative training time, the sigma prior value and the classification accuracy are shown. †: the
minor number of iterations is not due to settings but to the impossibility for the algorithm to find a better
solution after that step.

Model iterations relative elapsed time prior variance accuracy

ourdf 68† 0.04 104 77%
our 79† 0.14 1 83%
MIT 160 1 0.1 90%

6. CONCLUSIONS AND FUTURE WORK
The system has shown to work with overally acceptable

results considering the basic information used for the classi-
fication task. The conclusions that can be drawn are:

• the CRF model is suitable to handle dependencies be-
tween coarse parts described via simple features;

• the reduction of the number of patches and of the di-
mensionality of the feature vectors leads to a notable
increment in the system performances, making it use-
ful in time-critical systems;

• the training of the CRF can be problematic when there
is a lack of information possibly due to insufficient
discriminative information, reduced dataset size, and
oversimplification of the local function.

The CRF model can therefore be retained for further studies
and improvements. The work can proceed with the aim to
use the CRF to exploit dependencies from a small number
of semantically meaningful image parts.

Research efforts should however be focused in finding rep-
resentative features and feature functions to ease and sta-
bilise the graph parameters learning while keeping the num-
ber of nodes small. Different maximisation algorithms for
the log-likelihood can be tested as well. It is also possible
to take advantage of the augmented speed that is due to
the reduced number of nodes by introducing more complex
features or graph structures.
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