
Modular, Service-Oriented API for Peer-to-Peer Middleware

Gábor Paller Nokia Siemens Networks
Köztelek str. 6, Budapest 1092, Hungary

gabor.paller@nsn.com

Heikki Kokkinen Nokia Research Center
Itämerenkatu 11-13, Helsinki, Finland

heikki.kokkinen@nokia.com

ABSTRACT
This paper presents a general-purpose API to P2P network
middleware. The design proposes modular, service oriented
solution to this problem. The paper demonstrates that while
the proposed P2P API is fairly complex because it tries
to support every known P2P technology, the footprint of
the middleware can be quite small because of the modu-
lar, incremental nature of the API middleware. The paper
also demonstrates that although service-oriented API differs
significantly from the traditional, monolithic APIs, it can
be implemented in small footprint on top of a non service-
oriented, commercial platform, the Series60.

Categories and Subject Descriptors
D.2.11 [Software architectures]: Patterns—middleware,
peer-to-peer

1. INTRODUCTION
P2P applications have become the key area of mobile appli-
cation and middleware inventions because traditional, client-
server middleware has matured to the point where it is very
hard to come out with new solutions. P2P applications suf-
fer from non-standard APIs and protocols. Availability of
a widely accepted, sufficiently powerful API would largely
help the adoption of P2P applications.

Two general trends can be recognized in the area of P2P pro-
tocols and associated middleware. One approach is applica-
tion specific, where the protocol and the associated middle-
ware supports solely one application type. Because the pro-
tocol itself is designed to support the needs of only the par-
ticular application type, it is very hard to run a different type
of application on top of the P2P protocol and the associated
middleware. P2P file sharing systems like FastTrack/Kazaa
[1], Gnutella [2], eDonkey2000 [3] or BitTorrent [4] all fall
into this category. APIs designed for these protocols [5] also
have this restriction. The other approach is the general-
purpose API that supports wide range of applications with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobilware’08, February 12-15, 2008, Innsbruck, Austria.
Copyright c©2008 ACM 978-1-59593-984-5/08/02 . . . $5.00.

features like messaging, pipes, service invocations, groups,
real-time features, support for structured networks, etc. Of-
fering a general-purpose API is desirable but as the widely
deployed protocols are application-specific (and mostly sup-
port file sharing), general-purpose APIs need a sufficiently
general P2P protocol as well. This custom protocol limits
the number of the machines connected into the network -
hence the value of the P2P network itself - and makes the
acceptance of the general-purpose API difficult.

Thus there seems to be this paradox: application-specific
P2P networks are widely accepted but can support only lim-
ited range of applications while general-purpose APIs with
their support protocols do not yet form large networks there-
fore the value of these networks is low.

This paper describes a P2P API approach that tries to over-
come this paradox. The paper proposes a modular, service-
oriented API that exposes only the API features that in-
stalled P2P middleware is able to support.

The paper is organized as follows.

• Section 2 describes shortly the already existing P2P
APIs.

• Section 3 presents the architecture of the API middle-
ware and its relationship with the P2P network tech-
nology middleware.

• Section 4 presents the requirements and functionalities
of our P2P API by module.

• Section 5 describes shortly one implementation of the
API design on top of Symbian Series 60 platform.

2. EXISTING P2P APIS
This section presents four existing P2P APIs with different
characteristics. Microsoft P2P API [6] is a general-purpose
API that uses its own protocol. cP2Pc [5] is an API support-
ing file sharing networks. The API described in [7] provides
access to structured P2P networks.

Microsoft API provides access to a very specific, Microsoft-
proprietary peer-to-peer solution that is compatible only
with itself. Seemingly there was no effort to incorporate
other peer-to-peer protocols although the resulting API is
pretty general. Main functionalities of the API are the
following. Graphing covers the functionality of connecting

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2923

peers and maintaining the connections among peers. One
P2P connection network is called peer graph. The Microsoft
P2P solution allows nodes to participate in multiple graphs.
Replicated graph storage is also associated to graphs. The
purpose of the Grouping API is to allow nodes to form secure
groups. The group itself and the group members are identi-
fied by secure certificates. The group creator invites group
members who can then join the group and send messages to
each other. The group may also have secure record store -
records are signed by group members so the receiver knows
that the group record item came from authorized source.

JXTA 1 is a P2P technology driven by Sun Microsystems.
The technology is designed to be language- and transport
protocol-neutral but in fact it does define a new protocol
on top of the transport [8] to coordinate the peer-to-peer
operations among the nodes. JXTA defines mappings for
programming languages (e.g. Java, C). The main function-
alities of the API allow the peers to discover each other, self-
organize into peer groups, advertise and discover network
services, communicate with each other and monitor each
other. Unlike the Microsoft solution, JXTA is modularized
into Platform Layer and Services Layer. The Platform Layer
contains the following services: Discovery Service, Member-
ship Service, Access Service, Pipe Service, Resolver Service
and Monitoring Service. On top of the core services, JXTA
offers optional services. There is one such standard service
currently defined, the Shared Resource Distributed Index
(SRDI).

The cP2Pc API concentrates solely on file sharing. The API
supports, however, a number of P2P networks. The core
API itself is quite simple: publication and revocation of sin-
gle files or file collections, manipulating collections, down-
loading files, search for files, support functions like joining,
leaving the network

Structured peer-to-peer networks create a particular struc-
ture in the overlay network while unstructured networks
have an ad-hoc structure. For example a structured overlay
may be organized into a virtual overlay circle [11]. Each
node has a node id and the network is able to route mes-
sages toward a node ID so that the message gets closer to
the target node ID with each step. Structured networks
therefore are able to provide different kinds of programming
abstractions than unstructured networks. The following pro-
gramming abstractions are described in [7]: in Distributed
Hashtable (DHT), Distributed Object Location and Routing
(DOLR), group multicast/anycast (CAST).

3. ARCHITECTURE OF THE MODULAR
API MIDDLEWARE LAYER

Our API middleware design work was based on extensive
requirement collection phase. This resulted in an impressive
list of requirements in the following areas: Network manage-
ment, Monitoring, Routing, Discovery, Service invocation,
Real-time data communication, Security, Identity, Power
management, Resource management, Grouping, Structured
networks, File sharing and Synchronization.

P2P applications range from simple file-sharing clients to

1http://www.jxta.org

Figure 1: Service-based modular architecture

complex collaboration applications accomplishing real-time
communication in closed group. The protocol interoperabil-
ity requirements may also vary significantly. A file sharing
client is required to work with widely deployed P2P net-
works while a mobile application operating only on mobile
clients on proximity networks is free to use a proprietary
protocol. Also, widely deployed P2P networks tend to be
application-oriented (like file sharing). This has the follow-
ing implications.

• Depending on the network technology support installed,
only part of the API may be available.

• Network technology plugins may need additional mid-
dleware components to support full API functionality
(e.g. group support over Gnutella network).

• Footprint of the middleware should be minimized.

A service-based, modular architecture is proposed to sat-
isfy these requirements. We introduce the notion of network
technology plugin which is a pluggable middleware compo-
nent implementing one aspect of the expected middleware
functionality. For example a middleware component imple-
menting file sharing functionality over eDonkey2000 network
can be one such network technology plugin. Network tech-
nology plugins and supporting middleware components are
deployed independently and are connected by their service
ports registered in a service registry. Note that at this point
this is an abstract concept that can be implemented in dif-
ferent ways in case of different OS or runtime technologies.
For example in case of Symbian, the component ports may
be represented as server ports, in OSGi 2 as services, etc.
This mapping is done later when the architecture is ported
to the implementation platform.

The concept is depicted in Figure 1. In this example Comp1
exposes part of the API as Service1. Comp2 exposes Ser-
vice2 and Comp3 builds on Service2 to provide Service3.
As we are not trying to create a full-blown service model,
APIs private to the P2P API are not shown. For exam-
ple a Gnutella network plugin may have its own proprietary
API and additional middleware is needed to adapt it to the
common file sharing API. This is shown as one component
exposing only the common file sharing API (Figure 2). This
single component includes the Gnutella plugin and the adap-
tation layer needed to provide the common file-sharing API.

Network technology plugins are deployed as needed. As
demonstrated later with the Symbian-based prototype, the

2http://www.osgi.org

Figure 2: Private and public APIs in the network
technology plugins

overhead caused by the common middleware layer is very
small compared to the footprint of the original, proprietary
P2P client software.

It may happen that multiple components expose the same
service. For example multiple file sharing plugins may be
installed. In order to be able to select the right provider (if
such selection is needed) interfaces may be tagged with aux-
iliary meta-information. For example in the figure above the
file sharing API service was tagged with the NW: Gnutella
key-value pair. Service ports may be also assigned a prior-
ity. In case of multiple service port providers and no meta-
info selection, the service port with the highest priority is
selected. Component-level granularity may not be able to
capture all the network functionality-API service combina-
tions or would result in too many small API services that
would be problematic to work with. For example Bittorrent
plugin’s only functionality is download that does not jus-
tify a download API with few functions. Therefore any API
call may return a not implemented/not available error code
which means that the particular component does not have
the capability to execute that particular API function call.

Some API services may be provided by relatively few com-
ponents, others, like monitoring may be exposed by many,
almost all the components. In order to facilitate the pro-
grammer’s job when dealing with such frequent services, the
service port may be equipped with an aggregator. Aggre-
gator is a component that provides only one instance of the
specific service port and distributes the call to the underly-
ing service ports. In order to keep our abstract service model
simple, we assume the following aggregator behaviour (Fig-
ure 3).

• If the service is provided by just one component, the
aggregator is not instantiated and the one service port
instance is provided by the one component installed.

• If there are at least two components with the same
service port installed, the aggregator is instantiated
and original component service ports become internal
interfaces between the aggregator and the components.

Some concerns can be encapsulated cleanly into components,
other concerns crosscut other components. The API pre-
sented in this paper uses the hook concept to capture cross-
cutting concerns. Hook is an interface designed to connect a

Figure 3: Service port before and after the aggrega-
tor is applied

Figure 4: Component2 attached to the hook of Com-
ponent1

component implementing cross-cutting concern. The hook
is not supposed to be used by applications. In its initial
state the hook is connected back to the component provid-
ing the hook forming ”short-circuit”. When a component
implementing cross-cutting concern is installed, that compo-
nent may intercept the hook and implement e.g. encryption
features in the message flow. Figure 4 demonstrates this ef-
fect. In this figure Component1 can be seen with no hook
originally then Component2 implementing a cross-cutting
concern and connecting to the hook of Component1.

The hook mechanism differs from the Strategy pattern 3 in
two important ways. First, hook components are not plug-
gable algorithms but part of the processing chain. Very of-
ten, the hook is expected to call the outgoing hook interface
else the processing in the component will not continue (e.g.
an outgoing packet is not generated). The other difference is
that hooks are chained, if a hook does not call its outgoing
interface then other hook components in the chain will not
be executed.

4. API MODULES
This section describes the modules of our P2P API. 4 It is
important to understand the relationship of these interfaces
with middleware components that the P2P middleware is
composed of. The P2P API middleware is component-based
due to the large number of possible combination of middle-
ware options installed (or not installed). Each middleware
component may expose a number of interfaces of which we
concentrate on public P2P API interfaces. One component
may provide (and in fact, is expected to provide) several
public P2P API interface modules. For example an imag-

3http://en.wikipedia.org/wiki/Strategy pattern
4The full specification is available at
http://pallergabor.uw.hu/common/p2papi abstractspec pub.pdf

Figure 5: API modules and components

inary Gnutella plugin may provide discovery, file sharing,
network management and monitoring interfaces and does
not rely on any other component. Other components may
rely on interfaces exposed by other components. For exam-
ple an imaginary Group API component built for Gnutella
networks exposes the Group API and uses the Discovery
and File Sharing API exposed by the Gnutella component
to publish and search for group descriptors (Figure 5).

Key property of P2P networks is that it is very hard to fore-
cast execution times therefore most of the operations need to
be asynchronous. Calling the API function just initiates the
procedure; the caller is notified by an event about the out-
come. The event delivery procedure may be very different
depending on the actual API implementation technology,
e.g. each asynchronous function may receive the callback
function as parameter, listeners could be registered or there
can even be an asynchronous event delivery middleware in
place.

The remaining part of this section will describe the API
modules shortly. Two hook interfaces may be supported by
almost all the components.

Authorization hook Components call this hook when they
derive an entity requesting an operation on a resource
and want the authorization component to decide whether
the entity has right for that operation. The hook al-
ways has the same signature; the components specify
only the parameter usage.

Power management hook Power management hook is used
by components to provide the central power manager
with estimates how much CPU load they will cause in
the foreseeable future. When the components start or
stop some activity, they call this hook to update the
power manager with their CPU utilization estimates.
The power manager then uses these estimates to reg-
ulate CPU speed.

The main API modules and their functionalities are the fol-
lowing.

Network management This service is exposed by every
component accomplishing network traffic. Typically
these are network technology providers like Gnutella
plugin but some middleware components (e.g. group

middleware) may also expose this service API. The
functions are: initializing, attaching to, detaching from
the P2P network, setting and querying supernode sta-
tus if this network technology plugin supports this kind
of functionality. There is an authorization hook to
handle authorization of nodes attaching to the net-
work. These nodes open connections to some ren-
dezvous node and the rendezvous nodes decide whether
the component is allowed to attach to the P2P net-
work.

Monitoring Monitoring service is exposed by every moni-
torable component, preferably every component. The
service allows querying a monitoring variable identified
by a key.

Discovery Discovery service is exposed by every network
technology plugin that supports discovery of any re-
source. The resources that can be discovered are called
discoverable items. Discoverable items include peers,
pipe endpoints, services, files, groups, component im-
plementations, databases and NAT 5 traversal servers.
The functions are: initiating search for discoverable
items, specifying conditions for discovery operation,
e.g. only items in the proximity should be discov-
ered, dispatching discovery events to discovery initia-
tors, registering subscriptions for certain type of dis-
coverable items, retrieving information about items
discovered. There are two additional hooks supported
by this interface. Authorization hook allows control-
ling incoming search requests. Dynamic content hook
allows the component to generate item IDs from search
filters received in incoming search requests on the fly.

Messaging Messaging service is exposed by every network
technology plugin that is able to send a message (po-
tentially composed of multiple network packets) from
one address to another address. Address can be any
node ID used by one installed network plugin in the
system. Destination address is expected to be con-
structed according to the network technology plugin’s
requirements, e.g. source routing may require node ID
path as destination address. This is the basic data
communication mechanism providing connectionless,
unreliable message sending and reception. Functions
are: sending message, receiving notification about in-
coming message, sending network technology-supported
multicast or multicast to a group. Encryption and
group hooks may be supported by the network tech-
nology plugin exposing messaging service.

Pipes Pipes are built on top of the message layer. Pipes are
reliable or unreliable data streams, similar to sockets
in ordinary network programming. Unreliable pipes
can be used to transfer real-time data as well. Real-
time data streams have specific properties that may be
set and respected by the network layer (e.g. that these
are real-time data packets that may be discarded if
there is congestion). Also network plug-ins may calcu-
late several properties for real-time data streams im-
portant for real-time applications (e.g. jitter, delay,
etc.). Pipes are identified by pipe ID and can be dis-
covered as any other discoverable item. Functions are:

5Network Address Translation

binding a pipe endpoint and advertising the endpoint
so that it can be discovered, opening reliable or un-
reliable pipe to a previously discovered pipe endpoint,
doing bidirectional communication with the pipe end-
point, controlling and retrieving real-time properties of
unreliable pipes. Authorization hook may be provided
for incoming pipe connection requests.

Services Service API provides reliable or unreliable ser-
vice invocation schemes. It is layered on top of the
messaging or pipe API and serializes/deserializes uni-
directional or bidirectional service invocations to and
from remote services. As the actual service invocation
scheme depens on the service middleware used, the
P2P API takes care only of service publication, secu-
rity/authentication processing and discovery. Sending
and receiving service invocations is accomplished by
a plugin-specific proprietary API. Authorization hook
may be provided for incoming service requests.

Identity The identity provider behind the Identity API al-
lows identification and authentication of a principal.
Principal in our application domain is user or host, in
some special cases it can be an application. When the
identity provider is called, the aggregator behind the
API calls the installed identity plugins one by one us-
ing the security parameters that were specified by the
caller. During this process, one such the identity plu-
gin checks the parameters, decides whether it is able
to do such authentication (e.g. only the Liberty plugin
would be able to handle Liberty authentication param-
eters) then performs the identification/authentication
task. The result is a set of parameters stating that the
principal was authenticated. These parameters can be
used to invoke other APIs requiring client authenti-
cation. Identity of the current user may also be sup-
ported by the API.

Group Group service is exposed by group components or
P2P middleware offering group features. The func-
tions are the following: creating and destroying groups,
joining and leaving groups, iterating over group mem-
bers and installing group membership voting plugins.
Group membership voting plugin is invoked when new
member wants to join the group. The plugin votes
on the success of join operation according to the pol-
icy (e.g. all group members have to agree, just group
managers, just this node, etc.) using the credentials
specified when the new member invoked the join oper-
ation. Active groups can be discovered by the Discov-
ery API.

DHT,DOLR DHT and DOLR abstractions are supported
as two separate API modules. CAST abstraction has
been integrated into the group sending feature of the
Messaging API. See [7] for details about these abstrac-
tions.

File sharing File sharing service is exposed by file shar-
ing middleware. This API module is related closely
to cP2Pc [5]. The functions are: publishing and un-
publishing files or file collections, manipulating meta-
information associated to files, search for files iden-
tified by their meta-information (this functionality is
also available on the discovery service), download a file

specified by its ID, suspend and resume a file down-
load. Progress indicators related to download and other
operations are available on the monitoring service API
that file sharing components are encouraged to pub-
lish. Authorization hook may be provided to authorize
incoming file search and download requests.

Synchronization P2P synchronization middleware is con-
trolled by means of the Synchronization API. The API
allows synchronizable data stores to be bound with
each other and controlling their synchronization pro-
cess. If two data stores are bound to each other, the
synchronization middleware keeps them in sync if there
is a connection between the nodes hosting the repli-
cas. This means that when the nodes are connected,
synchronization of the differences is performed and
the changes are constantly communicated between the
nodes while the nodes are connected. Synchronization
may be controlled by the application or may be initi-
ated by the middleware if specified event is received.
Currently there is one such event defined, the CON-
NECTED event. This event is generated when connec-
tion is available between the two nodes hosting replicas
of the database. Synchronizable databases can be dis-
covered using the Discovery API.

5. P2P API PROTOTYPE ON THE SERIES60
PLATFORM

The API presented in section 4 is frighteningly large and
it is indeed rather complex software with large footprint if
all its features are implemented. The modular nature of
the API middleware allows, however, to deploy the middle-
ware module by module. The “core” of the API middleware
has actually minimal footprint. This claim will be demon-
strated on a Series60-based prototype implementation of the
API middleware. Series60 is Nokia’s Symbian-based smart-
phone platform. Series60 - as Symbian is general - is built
on C++ APIs. In order to implement our P2P API design
on Series60, the architecture had to be mapped to Series60
architectural element and the abstract P2P API had to be
translated to Symbian C++.

The abstract architecture requires plugins that can be de-
ployed separately. This maps well to the Series60 deploy-
ment mechanism called SIS deployer. Components have dis-
coverable service ports tagged with meta-information. The
service port abstraction is mapped to the ECom Plug-in ar-
chitecture available from Series60 2.0 [9]. Multiple DLLs can
expose the same interface (this is called polymorphic DLL in
Symbian) and ECom allows registration, instantiation and
destruction of instances behind this interface.

Multiple DLLs can expose the same interface through ECom.
Selection of the DLL behind the interface is accomplished by
providing a cue to the ECom framework. The cue is a text
string that is matched against the properties of the DLLs.
The matching is either done by the ECom framework (built-
in provider) or custom provider can be implemented. ECom
is suitable for our purposes because there can be multiple
implementations behind one interface and interfaces can be
tagged by meta-information. This maps well the service port
concept. The other reason is that implementations in DLLs
can be deployed separately by means of the SIS mechanism.

Figure 6: ECom and client-server interworking for
implementing component and service abstraction

It is possible to deploy plug-ins incrementally.

There is one problem with the ECom framework: ECom ob-
jects are transient - they are created and destroyed accord-
ing to client requests. P2P services are expected to execute
in the background, e.g. it may be necessary to constantly
respond to discovery requests or network management pro-
tocol messages, etc. For this reasons, ECom is used in con-
junction with Symbian client-server framework. Symbian
server is an active object - one that has its own execution
state because it is executed in its own thread - that is able to
accept multiple sessions from clients. The usual implemen-
tation is such that the client and server execute in separate
address spaces and IPC between them is provided by the ker-
nel by means of shared memory-based messaging. Sessions
to the server are objects that have client and server-side
parts. The client session object exists in the client address
space while the server maintains a server-side session ob-
ject in the server’s address space. Figure 6 demonstrate the
concept.

ECom provides simple string-based cue matching but more
sophisticated cue matching can be provided by a custom
resolver. The custom resolver must be able to accomplish
the following tasks: assign meta-information represented by
key-value pairs to components, handle interface priorities
and aggregators.

The concept was implemented in a prototype. It turns out
that the only overhead the P2P API middleware has is the
custom resolver with some kilobytes of footprint. Other
parts of the framework are integrated into the adaptation
layer (figure 2) which is part of the network technology
plugins. Network technology plugins may have significant
footprint (as they incorporate the entire functionality of a
particular P2P network access) but the adaptation layer is
just a fraction of that footprint. It is still intriguing that
a service-oriented, modular API could be implemented on
top of a non service-oriented, commercial platform using the
platform’s already available mechanisms with such a small
overhead.

Using a service-oriented API is slightly more complex for
applications than using a traditional, monolithic API. The

application must provide a search filter to obtain a reference
to a suitable API module and handle the case if no provider
satisifies the search filter. In our case, however, this step
must be done only once because our service environment is
not dynamic (we do not expect network technology plugins
to appear and disappear while the application is running as
in [10]).

6. CONCLUSIONS
A modular P2P API design was presented in this paper.
The design tried to overcome the limitations of earlier API
designs that created a false paradox between API generality
and connectivity to widely deployed P2P networks. Service-
oriented, modular API was proposed that has minimal foot-
print in small installations while is able to support complex
middleware in full deployment. The approach is component-
based with hook interfaces implementing cross-cutting con-
cerns. It was demonstrated that this abstract API and its
accompanying API can be implemented with minimal foot-
print on a non service-oriented, commercial operating sys-
tem increasing the application complexity only slightly.

7. REFERENCES
[1] N. Leibowitz, M. Ripeanu, and A. Wierzbicki,

Deconstructing the Kazaa Network, 3rd IEEE Workshop
on Internet Applications (WIAPP’03), San Jose, CA,
2003.

[2] Matei Ripeanu, Peer-to-Peer Architecture Case
Study: Gnutella Network, First International
Conference on Peer-to-Peer Computing (P2P’01),
Linköpings, Sweden, August 2001.

[3] Oliver Heckmann and Axel Bock, The eDonkey
2000 Protocol, KOM Technical Report 08/2002, Version
0.8, December 2002

[4] Bram Cohen, Incentives Build Robustness in
BitTorrent, Workshop on Economics of Peer-to-Peer
Systems, Berkeley, CA, USA, May 2003.

[5] Ihor Kuz and Maarten van Steen, cP2Pc:
Integrating P2P networks,
http://www.cs.vu.nl/pub/globe/cp2pc/

[6] Introduction to Windows Peer-to-Peer Networking,
http://www.microsoft.com/ technet/ prodtechnol/
winxppro/ deploy/ p2pintro.mspx

[7] Frank Dabek, Ben Zhao, Peter Druschel, John
Kubiatowicz and Ion Stoica, Towards a Common
API for Structured Peer-to-Peer Overlays, Peer-to-Peer
Systems II: Second International Workshop, IPTPS
2003 Berkeley, CA, USA, February 21-22, 2003

[8] JXTA v2.0 Protocols Specification, http://spec.jxta.org/
nonav/ v1.0/ docbook/ JXTAProtocols.html

[9] Series 60 Developer Platform 2.0: ECom Plug-In
Architecture Version 1.0, January 23, 2004

[10] Listeners Considered Harmful: The “Whiteboard”
Pattern, Technical Whitepaper, OSGi Alliance, http://
www.osgi.org/ documents/ osgi technology/
whiteboard.pdf

[11] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek and Hari Balakrishnan, Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications, Pro-
ceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tions, San Diego, USA, 2001

