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ABSTRACT
Noisy distance measurements are a pervasive problem in
localization in wireless sensor networks. Neural networks
are not commonly used in localization, however, our ex-
periments in this paper indicate neural networks are a vi-
able option for solving localization problems. In this paper
we qualitatively compare the performance of three different
families of neural networks: Multi-Layer Perceptron (MLP),
Radial Basis Function (RBF), and Recurrent Neural Net-
works (RNN). The performance of these networks will also
be compared with two variants of the Kalman Filter which
are traditionally used for localization. The resource require-
ments in term of computational and memory resources will
also be compared. In this paper, we show that the RBF
neural network has the best accuracy in localizing, however
it also has the worst computational and memory resource
requirements. The MLP neural network, on the other hand,
has the best computational and memory resource require-
ments.

1. MOTIVATIONS
Localization is used in location-aware applications such as

navigation, autonomous robotic movement, and asset track-
ing [1, 2] to position a moving object on a coordinate system.
Given three distances from know points, analytical localiza-
tion methods such as triangulation and trilateration can be
used when exact distance measurements can be obtained.

In the event that distance measurements are noisy and
fluctuate, the task of localizing becomes difficult. This can
be seen in Figure 1. With fluctuating distances, regions
within the circles become possible locations for the tracked
object. As a result, rather than the object being located at
a single point, the object can be located anywhere in the
dark shaded region in Figure 1.

This uncertainty due to the measurement noise renders
analytical methods almost useless. Localization methods
capable of accounting for and filtering out the measurement
noises are desired. Which is why neural networks are very
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Figure 1: Trilateration with Noise

promising in this area. The method by which the distance
measurements are carried out determines the sources of noise
in these measurements. Typically devices known as “bea-
cons” are placed at known locations and emit either radio or
acoustic signals or both. “Mobile nodes” can determine the
distance to a beacon by using the signal strength of the RF
signal, Received Signal Strength (RSS) [3]. Other systems
utilize both RF and acoustic signals by emitting both at the
same time and computing the time difference between their
arrival at the mobile node [4, 5, 2, 6].

The Cricket system computes the distance by using the
time it takes for the first instance of the acoustic pulse to
reach the sensor after the RF signal and the speed at which
the acoustic wave typically travels [2, 6]. However, wave
reflection is common to both RF and acoustic signals and
it is possible that the mobile node erroneously identifies a
pulse due to the reflected wave of the original pulse as a new
pulse resulting in skewed distance measurements [4].

As a result, the complexity of the methods that can fac-
tor these effects increases. However, it must be borne in
mind that these methods will be implemented on embedded
systems with limited computation and memory resources.
Different methods with different levels of accuracy require
varying amounts of resources. A trade-off must be made
that balances the timely computation of the position and
the desired accuracy necessary for the application.

With this trade-off in mind, we compare the accuracy, ro-
bustness, computational, and memory usage of localization
utilizing neural networks with the Position-Velocity (PV)
and Position-Velocity-Acceleration models of the Kalman fil-
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ters [7]. We will introduce the use of a Radial Basis Function
(RBF) neural network for localization, which to our knowl-
edge has not been done before.

The rest of the paper is organized as follows. Section 2 de-
scribes relevant localization methods. Section 3 introduces
principals of neural networks. The experiments by which
these methods will be compared are given in Section 4. The
results will be discussed in Section 5, and concluding com-
ments will be made in Section 6.

2. RELATED WORK
The Active Badge Location System [8] is often credited

as one of the earliest implementations of an indoor sensor
network used to localize a mobile node [2]. Although this
system, utilizing infrared, was only capable of localizing the
room that the mobile node was located in, many other sys-
tems based on this concept have been proposed.

The Bat system [4][5], much like the Active-Badge System,
also utilizes a network of sensors. This system features a
central controller that emits an RF query which the mobile
node responds to with an ultrasonic pulse. This pulse is
picked up by a network of receivers at varying times due to
their locations. These times can be used to compute the
distances and hence the location of the mobile node.

Researchers at MIT have utilized similar concepts from
the Bat System in their Cricket sensors, albeit using a more
decentralized structure. This system requires less of a sup-
port infrastructure than the Bat system. The Cricket Lo-
cation System [6] uses a hybrid approach consisting of an
Extended Kalman filter, Least Square Minimization to reset
the Kalman filter, and Outlier Rejection to eliminate bad
distance readings. Other researchers at MIT have proposed
localization by exploiting properties of robust quadrilaterals
to localize an ad-hoc collection of sensors without the use of
beacons [9].

It is also possible to localize optically as shown in the
HiBall head tracking system [10]. Arrays of LEDs flash syn-
chronously, and cameras capture the position of these LEDs.
The system utilizes information about the geometry of the
system and computes the position.

Localization using signal strength of RF signals has been
studied extensively, [11, 12, 13, 14] are all examples of meth-
ods that were devised using this approach. As popular as the
Kalman Filter and method involving electromagnetic signals
are for localization, neural networks have not been used ex-
tensively in this area. There has been some research con-
ducted by Chenna et al in [15]. However, Chenna et al,
restricted themselves to comparing Recurrent Neural Net-
works (RNN) to the Kalman Filter.

In [16], we showed that an MLP neural network can be
used for localization, and that it’s performance exceeds that
of the PV and PVA variants of the Kalman Filter.

3. INTRODUCTION
In [16], we provide extensive details on the use of Kalman

filter for localization.
Neural networks are modeled after biological nervous sys-

tems and are represented as a network of interconnections
between nodes called “neurons” with activation functions.
Different classes of neural networks can be obtained by vary-
ing the activation functions of the neurons and the structure
of the weighted interconnections between them. Examples

of these classes of neural networks are the Multi-Layer Per-
ceptrons (MLP), Radial Basis Function (RBF), and the Re-
current Neural Networks (RNN).

The MLP network is “trained” to approximate a function
by repeatedly passing the input through the network. The
weights of the interconnections are modified based on the
difference between the desired output and the output of the
neural network. The final weights of the MLP network are
entirely dependent upon the initial weights. Finding the set
of weights that result in the best performance is a challenge
and ultimately becomes a guess and check exercise.

The weights of the RBF network are obtained by solv-
ing them through the application of Green’s functions [17].
Generally, variations of the Gaussian function are used as
activation functions for the nodes. Unlike the MLP net-
work, the weights of the RBF network can be solved for. A
major draw back of the RBF neural networks is that it spans
the input/output data space of the application, and possibly
requires many nodes. Memory and computational require-
ments of this network can be staggering. However, it is pos-
sible to use fewer nodes at key locations to approximate the
performance of the much larger network, and thereby signif-
icantly reducing memory and computational requirements.
These networks are referred to as Reduced RBF (RRBF)
networks.

RNN networks are very similar to the MLP network struc-
ture except in one respect. MLP interconnections only flow
from the inputs to the outputs in one direction. There are
no connections between the output layers and the previous
layers. RNN networks, on the other hand, can posses such a
feedback structure. The outputs of a node can be fed back
as inputs to previous layers. This unique trait may lend it-
self well when localization using noisy measurements as will
be discussed later.

A major benefit of a neural network is that prior knowl-
edge of the noise distribution is not required. Noisy distance
measurements can be used directly to train the network with
the actual coordinate locations. The neural network is ca-
pable of characterizing the noise and compensating for it
to obtain the accurate position. Unlike the Kalman filter,
which depends upon the knowledge of noise distribution to
localize [7].

In any case, the power of neural networks lies in the fact
that they can be used to model very complicated relation-
ships easily. Detailed description can be found in [17].

4. EXPERIMENT DESIGN
We will explore the performance of the three neural net-

works described above using MIT Cricket sensors [18]. The
distance measurements returned by the sensors are rarely
constant and fluctuate often. During our experiment, the
measured distances varied by as much as 32.5 cm. The dis-
tances from each of the beacons to the mobile node will be
used as inputs and the neural networks will output positions
that correspond to the location of the mobile node. We will
simulate the two dimensional motion of an object by collect-
ing distance measurements of a mobile node while moving
it in a network of Cricket sensors.

Training data was collected to train the neural networks
by utilizing the regular grid of a tile floor where the sensors
can be accurately located as shown in Figure 2. Each square
tile measures 30 cm wide and lends itself well to the Cricket
sensors which can be programmed to measure distance in



centimeters.
Using a grid of 300 cm × 300 cm, beacons were placed at

positions (0, 300), (300, 300), and (300, 0) of the grid. A rep-
resentation of this grid can be seen if Figure 3. The training
data was collected by placing the mobile node at each in-
tersection of the tiles and collecting distance measurements
to each of the three beacons S1, S2, and S3. The distance
measurements to the beacons fluctuated constantly, and by
collecting more than one set of distances to each of the bea-
cons, we were able to capture the noise in the system. By
training the neural networks with these multiple sets of fluc-
tuating distances to beacons for each position, the accuracy
of the neural networks improved as it became capable of
“filtering” out the noise in the distance measurements. The
positions with known locations for which distance measure-
ments were collected are marked using ’+’ signs in Figure 3.
For each of the 121 position marked with a “+” sign, several
sets of distances measurement were collected resulting in a
total of 1521 sets of distance measurements for training the
networks.

Figure 2: Experiment Test Bed
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Figure 3: Locations of Training and Testing Data
Collected

Once the training data was collected, the testing data was
collected by moving the mobile node through the sensor net-
work following a winding path. Again the distances, for each
known positions were collected. This is indicated using the
“∗” sign in Figure 3. The distances will be input to the
network and they will output estimates of the X and Y co-
ordinates location for those distances.

The MLP neural network is a two-layer network composed
of nine nodes in the first layer and two nodes in the output
layer. The nodes in the first layer use the hyperbolic tan-
gent sigmoid activation function, and the second layer uses

a linear activation function. This network was trained in
MATLAB for 200 epochs with a training goal of 0.001 error.

The RNN neural network that will be used is almost the
same as the MLP network except that the outputs of the
first layer will also be fed back to each of the nodes in the
first layer as inputs.

Two forms of the RBF network will also be presented:
the exact RBF and RRBF. The first layer of the exact RBF
network contains 1521 nodes. Each training point has a
node associated with it. The RBF network was trained in
MATLAB using a variance of 473 until the difference in error
between training iterations stabilized.

The RRBF network, on the other hand, only has 121
nodes corresponding to the positions where data was col-
lected. All 1521 sets of distances will be used to train the
network with a variance of 33. Note that these variances
were selected by plotting the localization error of the net-
works for a variety of different variances and selecting the
one that results in the least error.

5. RESULTS AND DISCUSSIONS

5.1 Performance Comparison
Figures 4, 5, 6, 10, 11, and 12 show the localization accu-

racy of the RBF, MLP, RNN, PV, PVA, and RRBF methods
respectively.

Method Distance Error RMSE Net
per Estimate (X, Y ) RMSE

RBF 5.049 (5.651, 4.582) 7.275
MLP 5.726 (5.905, 4.693) 7.543
RNN 5.738 (5.936, 4.710) 7.576
PV 8.771 (7.276, 7.537) 10.476
PVA 9.613 (8.159, 7.937) 11.382

RRBF 9.998 (8.177, 11.335) 13.977

Table 1: Comparison of Localization Errors (cm)

The RBF neural network has the best localization perfor-
mance according to the average distance error per estimate
as given under Distance Error per Estimate in Table 1. This
is followed by the MLP, RNN, the PV and PVA model of the
Kalman Filter, and then the RRBF neural network. How-
ever, a better metric to use is the Root Mean Square Error
(RMSE) of the X and Y components of the estimates which
reveals the difference, if any, between the X and Y localiza-
tions [16].

Our results reveal that the neural networks with the ex-
ception of RRBF have a higher percentage of errors of less
than 10 cm. Whereas, the Extended Kalman filters have
a lower percentage of errors, but most of these errors are
greater than 10. Comparing the RBF with the MLP neural
network, the MLP network has a lower percentage of errors,
but errors of greater magnitude.

The RRBF network is also the only method that has error
greater than 40 cm, with a spike of about 90 cm. We can
also see from Figure 15 this peculiar instance of an extremely
large error in the RRBF’s localization at about (267, 260)
that significantly affected its RMSE. With significantly fewer
nodes spanning the data space, certain locations are not
properly accounted for resulting in this singularity.
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Figure 4: Tracking trajectory of
RBF
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Figure 5: Tracking trajectory of
MLP
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Figure 6: Tracking trajectory of
RNN
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Figure 7: Localization errors of
RBF
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Figure 8: Localization errors of
MLP

0
50

100
150

200
250

300

0
50

100
150

200
250

300
0

5

10

15

20

25

30

35

Location of Errors (cm) for RNN Network

Figure 9: Localization errors of
RNN

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Testing Points v.s. Localization by PV Model Kalman Filter

 

 

Training Points
Testing Points
PV Model Kalman Filter

Figure 10: Tracking trajectory of
PV
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Figure 11: Tracking trajectory of
PVA
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Figure 12: Tracking trajectory of
RRBF
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Figure 13: Localization errors of
PV
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Figure 14: Localization errors of
PVA

0
50

100
150

200
250

300

0
50

100
150

200
250

300
0

10

20

30

40

50

60

70

80

90

100

Location of Errors (cm) for RRBF Network

Figure 15: Localization errors of
RRBF



The RRBF network attempts to approximate the RBF
network with fewer nodes, and it comes as no surprise that
it’s performance is lower than the RBF’s.

A reason why the Kalman filter makes fewer mistakes but
larger in magnitude may be due to the process noise of the
simulated motion of the object not adhering to the assump-
tions of Gaussian characteristics [19]. Figures 7, 8, 9, 13,
14, and 15 reveal the location and magnitude of errors in
the testing area as shown in Figure 3.

It is also interesting to note that the Kalman filters display
relatively large errors than the neural networks at the edges
of the other boundaries as well. This may be due to the fact
that the Kalman filters iteratively close in on the localized
position. At the boundaries, where the object’s motion takes
a sudden turn, the Kalman filter’s estimates requires several
iterations before it can “catch up” with the object, resulting
in larger errors.

It is also interesting to see that the performance of the
MLP and RNN networks is so closely related. The feedback
interconnections in this instance does not seem to provide
an advantage for the RNN network. However, just like the
MLP, the weights associated with the RNN are randomly
initialized and trained thereafter, and it is quite possible
that for some set of weights, the RNN may indeed function
better than the MLP network.

Figure 16: Overlapping Error Ranges Associated
with Localization Estimates

The intuition in using RNN for localization with noisy
measurements is that there is an error range associated with
each estimate due to the noise. However, it may be possible
to reduce this error range by utilizing the past estimate. In
Figure 16, the error ranges for estimates P1 and P2 can be
seen. However, by utilizing the estimate P1 and its associate
error range, the error range for P2 can be narrowed to the
intersection of the error range of P1 and P2.

The RNN’s feedback mechanisms allow for this behavior.
However, in order for this feature to be exploited, the “step
size” of the moving object must be small enough that the
error ranges overlap. If the step size is too large, as seems to
be the case here, the RNN reduces to the MLP network. The
“step size”of the moving object here is approximately 30 cm.
However, due to the variance of the distance measurements
of 32.5 cm, this results in an error range with about radius
16 cm. The step size of this experiment just barely exceeds
the error range of each estimate for the features of the RNN
network to be useful.

In addition to the above analysis, the path of a moving ob-
ject based on kinematics was simulated. Distances between
beacons located at (300, 0), (300, 300), and (0, 300) and a
“moving”mobile node were computed. These distances were
fed to each of the different localization methods and their
performance was analyzed. Figure 17 depicts the estimated
path of each of these localization methods. Table 2 reveals
that the RBF has the best performance, followed closely by
MLP and RNN. There is an interesting paradox in the per-
formance of the RRBF. If the Distance Error Per Estimate
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Figure 17: Simulated Motion Using Kinematics
Equations

Method Dist Error RMSE Net
Per RMSE

Estimate
RBF 16.494 (13.152, 10.830) 17.037
MLP 16.568 (13.910, 11.594) 18.108
RNN 16.574 (13.900, 11.622) 18.118
PV 23.586 (16.893, 17.136) 24.063
PVA 24.845 (17.774, 18.010) 25.303

RRBF 22.258 (20.225, 14.330) 24.787

Table 2: RMSE and Sum of Distance Error for Sim-
ulated Path

is to be used as a metric, then RRBF performs better than
PV. However, if the Net RMSE is to be used as a metric,
then RRBF would fall between PV and PVA. Examining the
individual X and Y RMSE values, RRBF posses both the
worst X localization while possessing the best Y localization
among PV, PVA, and RRBF. One of the characteristics of
the RMSE is that it is biased towards large errors since large
errors squared result in larger values resulting in a greater
contribution of error. Due to the unpredictable nature of
the RRBF, especially as seen in Figure 15 with the spike in
error of about 90 cm, it is best to rank it below the PVA
method.

5.2 Computation Comparison
Thus far, only the accuracy of the localization methods

has been examined without any discussion of the compu-
tation requirements associated with them. As mentioned
before, these localization methods will be implemented on
an embedded system with limited capabilities. Based on
the application, an appropriate localization method must
be used that balances accuracy with the capabilities of the
system.

The following analysis utilizes the number of floating point
operations as a metric to compare the different methods. For
simplicity of presentation, this analysis assumes that the em-
bedded system can perform floating point operations. Fur-
ther, this analysis only accounts for steady-state computa-
tion, meaning the initialization and setup computations are
not considered. It is assumed that the neural networks are
trained before-hand and the appropriate weights and biases



are available.

Method Number of Floating
Point Operations

RBF 25857
MLP 153
RNN 315
PV 884
PVA 2220

RRBF 2057

Table 3: Comparison of Floating Point Operations
of Localization Methods Per Estimate

As Table 3 reveals, the MLP is the least computationally
intensive. It is followed by the RNN, the PV, the RRBF,
the PVA, and then finally the RBF. The RBF requires a
very large number of floating point operations because of
the large number of nodes. These results as described in
Table 3 provide an insight into the workings of these local-
ization methods, however, it is very difficult to generalize
these results because the size of the neural network may
change with different application. The computation of the
PV and PVA models of the Kalman filter equations, on the
other hand, remains consistent [7].

A two layer MLP, RBF, and RRBF can be implemented
using two sets of nested loops. The MLP has complexity
O(m2) where m is the greatest number of nodes in the two
layers. The RNN can also be implemented using two sets
of nested loops, however, the complexity changes depending
upon the number of nodes in the output layer. The compu-
tation at the first layer due to the n2 feedback connections
can become the bottle neck for the RNN.

Method Order of Comment
Magnitude

RBF O(m2) m is the greater
number of nodes
in the two layers.

MLP O(m2) m is the greater
number of nodes
in the two layers.

RNN If (p2 > mn + n2), O(p2) p Output Nodes
else, O(mn + n2) n Hidden Nodes.

m inputs.

PV O(k3) k is the number
of elements in the
state variable.

PVA O(k3) k is the number
of elements in the
state variable.

RRBF O(m2) m is the greater
number of nodes
in the two layers.

Table 4: Comparison of computational complexity
between localization methods

It is difficult to arrive at a generalized statement compar-
ing the computational complexity of these methods. It is
possible to compare the PV and PVA models, and it is pos-
sible to compare the MLP, RNN, RBF and RRBF networks.
However, there are difficulties in trying to compare Kalman

filters with the neural networks. This is because there are
no features that are shared between these two families of
localizing methods. The neural networks are a more amor-
phous method of modeling where, in the end, the arrival
of the best network for the application is obtained through
trial and error.

Another reason why it is difficult to arrive at a general-
ized statement comparing the Kalman filters and the neural
networks is because, the scalability of the neural networks
is not known. If the area of localization increased from the
300 × 300 cm grid as described above to a 400 × 400 cm
grid, the noise characteristics of the distance measurements
will also change. The ultrasound signals which are used to
measure distances will attenuate differently over this larger
distance. The noise characteristic of data for this new area of
localization will be different and may require a much larger
MLP than the one used above. The Kalman filter does not
suffer from the same problem as the neural networks. If
the size of the localization area changed, the computation
complexity of the Kalman filter will not change.

5.3 Memory Requirement Comparison
Comparison of the memory requirements of these local-

ization methods is as problematic as attempting to compare
computational complexity. It is not clear at this time how
the neural networks will scale compared to the Kalman filter
for different applications. In the specific experiment carried
out for this paper, the memory usage of the neural networks
as compared to the Kalman filters is described in Table 5.
It should be noted that the memory usage described here is
the steady state memory required. It is also assumed that
floats are four bytes long.

Method Total Memory Number
Usage of Bytes

RBF nm + np + 2n + 2p + m 42616
MLP nm + np + 2n + 2p + m 280

RNN n2 + nm + np + 2n + 2p + m 604

PV 6k2 + 4k + 4km + 5m + m2 736

PVA 6k2 + 4k + 4km + 5m + m2 1344
RRBF nm + np + 2n + 2p + m 3416

Table 5: Comparison of memory requirements be-
tween Localization Methods

In the expressions for the two-layer neural networks, n is
the number of nodes in the first layer, p is the number of
nodes in the output layer, and m is the number of distance
readings or the number of inputs.

In the expressions for the two Kalman filters, k is the
number of elements in the state variable and m is the num-
ber of distance readings. The expressions for the memory
requirements of the Kalman filters include an additional
k2 + 2km + m2 + k + m bytes of memory for temporary
variables.

Clearly MLP has the least memory usage requirements.
It is interesting to note that the underlying memory charac-
teristics for the MLP, RBF, and RRBF are equivalent. This
is also true for the Kalman filters. The memory required
by the MLP network is less than half of that required by
the PV Kalman filter. The large number of nodes spanning
the data set results in the increased memory usage for the
RBF. The RNN network also suffers due to the n2 feedback



interconnections.

6. CONCLUSION
The experimental results indicate that among the six lo-

calization algorithms, the RBF neural network has the best
performance in terms of accuracy. As was mentioned in Sec-
tion 3, the weights that determine the MLP and RNN neural
networks are found by trial and error unlike the weights for
the RBF network. The MLP and RNN networks given in
this paper were obtained after an extended search. How-
ever, it is possible that there may be weights for the MLP
and RNN networks that will result in better performance
that exceeds the RBF’s.

However, as far as the computational and memory re-
quirements are concerned, the MLP is the best. In fact,
the MLP’s accuracy is only marginally lower than RBF’s.
The MLP neural network offers the best trade-off between
accuracy and resource requirements.

The RNN neural network also has the potential of ex-
ceeding the MLP’s performance if the ”step size” between
localization requests are small.

It is also apparent that neural networks have a weaker
self-adaptivity than the Kalman filters for the following rea-
sons. First, neural networks perform well only for the area
in which they have been trained. If the tracked object passes
beyond the boundaries of the area where the neural network
has been trained, the neural network will not be able to
localize.

Second, when the beacons from which the distance mea-
surements have been used to train the network are moved,
the neural network needs to be re-trained and there is a
possibility that the architecture of the neural network may
need to change. On the other hand, the Kalman filters do
not suffer from this problem and they can be used freely over
any area once the appropriate noise parameters have been
measured.

Compared with Kalman filter methods, the neural net-
works do have some advantages. The Kalman filters itera-
tively localize, correcting their estimates over time based on
the noise parameters which must be follow a Gaussian dis-
tribution. The neural networks on the other hand localize in
a single pass of the network. The Kalman filter uses the laws
of kinematics to predict the location of the tracked object. If
the tracked object’s motion is random and spontaneous the
neural network’s ability to localize in a single pass results
in more accurate estimates every time. The Kalman filter,
however, requires several iterations before it begins to reach
the accuracy of the MLP.

In conclusion, where noise parameters are not expected
to change, the localization method using MLP may be the
best option. The high accuracy, minimal computational and
memory requirements are highly desirable in embedded sys-
tems. If a flexible and easily modifiable method is required,
then the Kalman filters may be a better option. However,
the decision between the PV and the PVA model of the
Kalman filter would depend on the application and the char-
acteristics of the motion of the object.
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