
AGORA: an integrated approach for collaboration in
MANETs

Marcel Arrufat, Gerard París, Pedro García López
Universitat Rovira i Virgili

 Av. dels Països Catalans, 26
 43007 Tarragona, Spain

{marcel.arrufat,gerard.paris,pedro.garcia}@urv.cat

ABSTRACT
Nowadays, a growing interest exists for collaborative working
environments. Proliferation of hand-held devices with networking
capabilities, together with the free-of-charge characteristic have
turned MANETs in a good alternative for group spontaneous
collaboration. In order to reduce application development
difficulty and adjust to MANET specific requirements,
middleware approaches seem a good alternative for developing
new collaboration applications. However, it is not easy to find a
system which allows rapid application deployment. Building
applications from scratch makes developing applications for ad
hoc scenarios a difficult task. To cope with these requirements,
we introduce AGORA, an integrated approach for collaborative
applications in the MANET environment. AGORA provides an
architecture with three well defined elements: a plug-in
framework which simplifies the development of MANET
collaborative applications; a collaboration middleware which
offers communication and group services to application plug-ins,
and finally, a routing layer in charge of providing efficient group
communication.

Categories and Subject Descriptors
C.2.4 [Computer-Communication networks]: Distributed
Systems—Distributed Applications; D.2.11 [Software
Engineering]: Software Architectures —Domain
specificArchitectures

General Terms
Algorithms, Performance, Design.

Keywords

MANET, middleware, integration, group collaboration

1. INTRODUCTION
Developing applications specially targeted for MANETs is not a
trivial task. Devices’ limited resources together with dynamic and
multihop network present a serious challenge which applications
must face. In these terms, it seems reasonable that middleware for
ad hoc networks will highly help in reducing the complexity of
MANET application development. This middleware approaches
provide high level services which can be used by applications in
order to construct more complex and flexible applications.
It is known that, due to MANET characteristics, there is not a
unique middleware solution that copes with all needed
requirements. Several and different challenges arise when facing
these requirements [6]. In first place, efficient use of resources,
such as memory, bandwidth and computational power, is needed.
System scalability becomes crucial when a great amount of
members join the network and try to intercommunicate. Other
issues like quality of service, devices’ heterogeneity and security
may also be considered when creating a middleware for ad hoc
networks. Therefore, it seems that requirements must be
considered depending on the selected scenario for ad hoc
networks.
During the last few years the reduction of the cost of portable
devices has implied a growing utilization of mobile phones,
handheld game consoles and pocket computers. In consequence, a
new range of opportunities arise for collaborative working
environments. However, bringing the features of collaborative
systems to the mobile ad-hoc (MANET) scenario is not trivial.
Although flexibility and low cost establishment make these
networks attractive for spontaneous collaboration, several
management and communication problems emerge when
traditional collaboration systems are moved towards the MANET
environment. Topology awareness, node dynamicity and scarce
resources must be considered in order to build good performing
communication primitives.
Communication functionalities stand as one of the most important
constraints since one-to-one and group communication are the
key which collaborative applications rely on. In this
environment, chat rooms, file sharing and e-mail messaging are
frequently used, so synchronous and asynchronous message
delivery is necessary. Since using TCP as transport protocol
seems to be ineffective in MANETs [8], lighter approaches using
UDP must be considered. Furthermore, these applications may
need a reliable communication channel in order to ensure full
packet delivery. Besides, although it is usually not mentioned, an
ordered channel is also necessary for delivering packets for most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware'08, February 12-15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBILWARE 2008, February 13-15, Innsbruck, Austria
Copyright © 2008 ICST 978-1-59593-984-5
DOI 10.4108/ICST.MOBILWARE2008.2883

applications. Although these assumptions may be too costly for
large groups, AGORA’s scope is restricted to small, medium-
sized groups, so providing these needs is feasible. On the other
hand, group membership and management are also necessary in
developing group-aware collaborative application. Notification of
online and joining/leaving members is useful for most
collaboration systems.
Regarding issues other than collaboration requirements,
middleware approaches should be easy to deploy, extend and use.
Usability and ease of application development turn middleware in
a powerful tool to develop end-user applications. Most current
approaches just offer a set of functionalities that can be used to
build these applications: publish a message under a certain topic,
share a file or retrieve information from a given pattern. These
functionalities are in fact useful but may not be sufficient in order
to develop more complex MANET applications in a fast and
straightforward manner.
 Taking all these considerations into account, we present
AGORA, an integrate solution for MANETs that brings together:

 A collaboration middleware: provided with a full set o
communication mechanisms and membership
information.

 A plug-in framework: benefits from middleware in
order to build final applications in a rapid and simple
manner.

 An application level multicast (ALM) protocol:
designed to enhance communication performance,
which avoids using a specific MANET multicast.

With these three components, AGORA offers a new ready-to-
deploy solution for developing collaborative applications for
MANETs in an easy and straightforward way. Since it is not
restricted to offering just a single service like file-sharing or
probabilistic multicast, developers can use a full set of
functionalities in plug-ins in order to adjust to the needs of each
application.

As we will see hereafter, the collaboration middleware provides
synchronous and reliable communication: communication
channels, naming and publish/subscribe services. Besides, the
topology-aware multicast protocol takes care of minimizing
global communication, whereas the plug-in framework is in
charge of reducing application development complexity.

2. RELATED WORK
 As pointed out by [6], it is difficult to establish an obvious
taxonomy of available middleware solutions due to the tightly
coupling of middleware with specific applications. However, a
classification is proposed based on the programming model. In
this section we will review several middleware approaches for
MANETs that share common features and tackle similar
challenges than our proposal. Following the mentioned
classification, the reviewed solutions could be classified as Peer
to Peer Based Middleware (JMobiPeer, Peer2Me) and Event
Based and Message Oriented Middleware (STEAM, EMMA,
AGAPE).

Event Based Middleware is used to support distributed
applications that must react to changes in the environment, so this

is very suitable for MANETs because of their lack of
infrastructure. Likewise, Message Oriented Middleware provides
asynchronous communication paradigms like publish/subscribe
which are particularly adequate for pervasive environments.
Among this classification we found STEAM [1], an event-based
middleware that eliminates dedicated event servers and uses the
implicit publish/subscribe model instead. Consumers subscribe to
certain event types and publishers are able to publish particular
events. Moreover, STEAM allows different filters to be applied to
the published events. Content filters are used to define complex
subscriptions at the subscriber’s side. Likewise, proximity filters
can be defined in the publisher’s side in order to restrict the
propagation of such events.

In EMMA [3], a well known standard from traditional distributed
systems is adapted to cope with MANET requirements. EMMA is
an implementation of the Java Message Service (JMS) that
incorporates an epidemic routing mechanism to facilitate message
delivery. This middleware provides point-to-point communication
as well as publish-subscribe mechanisms. However, it must be
taken into account that the epidemic routing protocol does not
guarantee the reliability in message delivery.

AGAPE [2] is presented as Another Message Oriented
Middleware specially designed for MANETs. This collaborative
middleware provides group membership and message-oriented
communication in pervasive environments. It also offers context
information of co-located group members, such as their attributes
and characteristics. AGAPE organizes members in locality based
clusters and considers two different roles depending on the device
features: the cluster head and the managed entities. Low-resource
devices like mobile phones or PDAs act as managed entities and
rely on a more powerful device like a laptop that would be the
cluster head. Whereas this static role differentiation could be
useful for team operations like emergency scenarios, we believe
that is not specially suited for scenarios where collaboration
between members is highly decentralized.

The next two reviewed solutions belong to the category of Peer to
Peer Based Middleware. This kind of middleware utilizes a P2P
communication model that involves resource and information
sharing in order to perform a common task. P2P architectures
share many similarities with MANET environments [7]:
decentralization, dynamicity, and self-adjusting behavior. Hence,
an association of both systems is believed to benefit the global
operation of a collaborative application. However, most P2P
systems were designed for wired and fixed infrastructures so
adaptations are needed to use a P2P architecture in a
infrastructure-less environment. Among the attempts to adapt P2P
systems to mobile ad hoc networks we describe hereafter two
middleware approaches that claim to offer an application
framework: JMobiPeer and Peer2ME. The first one, JMobiPeer
[4], is a JXTA compatible framework designed for J2ME CLDC
environments. JXTA is the most mature P2P framework and
provides interoperability and platform independence, allowing
connection between heterogeneous devices. Hence, JMobiPeer
benefits from these characteristics and introduces new features
like a routing layer, emulation of multicast functionality to adapt
JXTA to mobile environments, and the concept of code mobility.
Nevertheless, JXTA based applications may introduce high
communication overhead because the architecture does not take

into account locality of nodes and relies on the exchange of XML
messages.

Finally, Peer2Me [5] is an application framework for mobile peer-
to-peer applications which facilitates the development of this kind
of applications and offers node discovery and messaging services.
Several collaborative applications are provided together with the
framework. It must be noted that Peer2Me is designed to be
deployed on mobile phones under minimal J2ME configuration
using Bluetooth devices. These last two frameworks only consider
hand-held devices and therefore are not suitable for laptops or
notebooks, where more complex applications could be deployed.

After evaluating these approaches, we can conclude that, to our
knowledge, currently there is not an integrated solution which
provides such a rich set of functionalities, together with the
possibility of developing applications for the MANET
environment in a fast and simple manner. Moreover, the inclusion
of the application level multicast inside the middleware seems to
be a novel approach that will abstract developers from the
necessity of providing a conventional network-layer multicast
protocol.

3. AGORA architecture
AGORA architecture can be defined in three main components. In
first place, the plug-in framework allows fast development of
applications as plug-ins. These plug-ins can be packaged,
exchanged between peers and even be installed on the run. This is
achieved thanks to the plug-in manager, which also verifies
integrity and controls plug-in lifecycle.

Figure 1 AGORA Architecture

Secondly, the collaboration middleware provides different
communication mechanisms as well as group management
primitives. Membership information, named communication
channels and different communication paradigms are available for
plug-ins. Finally, the application level multicast protocol is in

charge of routing all multicast messages through the network.
Considering topology and benefiting from broadcast nature of the
medium, this protocol aims to reduce global traffic and minimize
end-to-end delay.

3.1 Plug-in Framework
The plug-in framework is the highest layer of the architecture.
End users can use the application framework by using existing
plug-ins and extend it by implementing new ones. As depicted in
Figure 1, we can distinguish three different components: the plug-
in desktop, the plug-in manager and the plug-ins.
Plug-ins are the final applications that benefit from middleware
layer. Thus, they have access to a set of functionalities provided
by the communication and group management services. Plug-ins
must comply with a given interface in order to be loadable by the
plug-in manager. In order to maintain plug-ins light weighted,
they consist in a compressed file which contains all plug-in
classes and a short XML description file. Other resources as
images can also be attached to the plug-in by adding them to the
compressed file.
The plug-in manager is in charge of loading, registering and
starting/stopping plug-ins. Plug-ins can be loaded from the local
device or, what is more important in a collaboration scenario, can
be retrieved from another peer. In order to execute this process,
the plug-in manager utilizes naming services information for
locating downloadable plug-ins. This is achieved by registering
plug-in information into the naming services when a plug-in is
correctly loaded into the framework.
The plug-in framework desktop offers a graphic user interface
which the user can interact with. A list of local plug-ins is
available as well as a list of remote plug-ins owned by other
peers. Several plug-ins can be started at the same time and can be
hot-deployed when downloaded from a remote peer.

3.2 Middleware
Middleware is responsible for offering a set of well defined
services for plug-in development. These services are divided into
group management and communication services. Both services
benefit from routing layer in order to perform group
communication in an efficient way.

3.2.1 Group management services
Group management services handle all interactions related to
group creation/deletion and group membership. This module
allows creating logical groups where members can collaborate. It
is necessary that all members willing to collaborate belong to the
same group. Initially, all members belong to a default group and
afterwards they can create or join new groups. Group information
is stored in the lightweight replicated naming service, so that it is
available for all members in the network. Regarding group
membership, this module also provides information about all
connected members in the group. When members leave or join a
group, events are triggered and forwarded to the plug-ins that
should previously register to these events.

3.2.2 Communication services
Communication services represent the set of services available for
sending messages to other peers. The main module is the
communication channel, which allows peers to send messages to
one or to all the peers in the group. Named communication

channels are available, so one plug-in does not have to deal with
filtering messages from other plug-ins. Messages targeted to all
group members are sent through application level multicast,
instead of using a multiple unicast approach. Furthermore, the
channel provides mechanisms for synchronous and asynchronous
receive. On top of this channel, we have built two abstractions
which may help in plug-in development: a publish/subscribe and a
naming service.
The publish/subscribe service is implemented as a subset of the
JMS (Java Message Service) interface. Since it follows JMS
specification, its behavior is practically identical to the defined in
the standard. The service offers a topic-based publish/subscribe
model with persistent and non-persistent subscriptions. It must be
considered that since there is no central JMS server, subscription
information is partially kept by each peer in the group. In this
way, when a node rejoins a group due to a temporary
disconnection, it asks one of the members of the group in order to
obtain previous messages published in the topic.
The naming service also follows a JAVA standard. In this case, it
implements a subset of the JNDI (Java Naming Directory
Interface) interface. This naming service is intended to be used to
store lightweight data like resource discovery, group and other
information. The mechanism to store this information is simple
but effective: when changes are performed in the naming service,
these changes are sent via multicast to all group members. Since
we know this might be a resource-expensive mechanism of
delivering data, naming services are supposed to be used to store
minimal but critical data. On the other hand, information is
rapidly and totally available for current group members.

3.3 Network layer
The network layer provides a message delivery mechanism to be
used by the communication channel. Since AGORA is designed
for collaboration scenarios, routing mechanisms must also
consider its specific requirements and mobility model.

Collaboration scenarios like a meeting or a scientific conference
are characterized by having a moderate number of nodes located
in a small area. Normally, they are located in a room or in a large
hall, where some of them may remain static for long periods of
time. Some nodes may change its location from time to time in
order to interact with other existing groups. However, most
communication is performed in well-defined areas, where nodes
are located at most two or three hops from the most distant hop.

Furthermore, it seems clear that multicast communication is the
best option when applying to group communication. Reuse of
paths to deliver data reduces bandwidth use and node overhead.
Therefore, we implemented OMCAST, an application level
multicast specially designed for collaboration scenarios. Its main
features are:

 Broadcasting of data packets to 1-hop neighbors to
reduce communication overhead.

 Decentralized membership information available for
higher level layers.

By using OMCAST we reduced global traffic thanks to the local
broadcast delivery technique. The main idea of this process is to
send just once as a broadcast message if there are enough
neighbors located at one physical hop willing to receive the

message. However, as almost all application multicast
approaches, OMCAST does not guarantee reliable message
delivery neither message ordering.

3.3.1 Ordering and reliability
The network layer also provides means to send unicast and
multicast messages through the network. Since the use of TCP
connections is discouraged, we have focused on ways of bringing
ordering and reliability to the UDP protocol. These two features
will be needed for collaboration at the middleware layer.

In order to provide reliability and ordering in a transparent and
easy way, we took the toolkit JGroups as the foundation of our
network layer implementation. JGroups, based on Java
technology, offers reliable group communication by providing a
flexible protocol stack, where each protocol provides a specific
functionality, like fragmentation handling, lost message
retransmission, ordering, membership and encryption.

Reliability of multicast communication remains as its key
characteristic, which is a deployment issue and does not have to
be implemented by the developer. Furthermore, new protocols
can be easily added to the protocol stack for extending system
capabilities. JGroups follows the chain of responsibility pattern,
where each protocol only handles its own messages, and forwards
them to the next protocol.

In AGORA we have used the reliability and ordering protocols
provided by JGroups. Since we are not using network layer
multicast, we had to replace it by OMCAST, our application layer
multicast, as it is depicted in Figure 2. UNICAST protocol is in
charge of FIFO ordering and reliability for unicast packets
whereas NACKACK behaves in a similar way for multicast
packets. UDP allows sending unicast and multicast messages in
the original JGroups structure. As previously mentioned, in
AGORA multicast packets are sent via OMCAST.

Figure 2 Protocol stack change

In this way, we ensure that all application messages will be
delivered to the receivers. Furthermore, configurations parameters
such as number of retransmission, retransmission timeout and
other can be easily configured and adapted to obtain a more
appropriate behavior.

4. Application implementation
For testing AGORA collaboration features, we have implemented
two collaboration plug-ins: a chat plug-in and a photo-sharing
plug-in. The chat plug-in uses group communication to send a
message to all group members. Private messages, that is, one-to-
one messaging, are also possible. The chat makes available
membership information, so online users can be identified in a
side panel. The photo-sharing plug-in uses the naming service to

store location of the shared photographs. Each member can
download and visualize a photo by looking up the needed
resource information in the naming service. On the one hand, the
Chat plug-in shows that AGORA membership is accurate,
reacting quickly to members joining or leaving, and unicast and
multicast communication is reliable. On the other hand, photo-
sharing plug-in allows sending big picture files to another
member of the group through the MANET. Although multimedia
transmission is not the main feature of AGORA, we believe that it
must support medium-size file sharing. For instance, sending a
900 KB file between two hosts separated by a two-hop link took
less than a second.

AGORA has been tested with both plug-ins under Linux (using
OLSR and DYMO routing protocols) and Windows systems.

4.1 Performance evaluation
In order to test AGORA performance, we have recreated a typical
collaboration scenario. As it is depicted in Figure 3, three rooms
initially have been set up with different mobile nodes in each
room. Nodes from room A and C can only communicate with
nodes in room B. The two nodes located in room B can
communicate directly with the rest of nodes. In this terms, when
node A1 needs to send a message to C1, the message is forwarded
by node B1 and finally delivered to C1. Thus, we create an initial
two hop scenario, which may become three-hop when nodes start
moving. Two nodes from Room A move to Room B and Room C
during the test.

Figure 3 Real test scenario

For this particular test, all the laptops run Windows XP service
pack 2 and Andreas Tønnesen’s OLSR implementation.
The test consists in a plug-in which measures end-to-end delay of
multicast packets. One of the nodes sends a REQ message to all
members of the group. The rest of nodes, when receiving this
REQ message, reply with an ACK unicast message to the source.
ACK messages contain the timestamp value of the received REQ
message. When the source collects all the ACK messages from
the other members of the group, the mean round trip time value
can be computed. 50 REQ messages are sent using multicast.

0

10

20

30

40

50

60

70

100 200 300 400 500 >500
Delay (ms)

P
ac

ke
t r

at
io

3Kbps

Figure 4 Multicast packet delay

In Figure 4 we can see the mean round trip time for all packets. In
this figure, a measure of 100 ms. means that delay is between 0
and 100 ms; a measure of 200 indicates values between 100 and
200, etc. We can see that nearly a 70 per cent of packets are
delivered in less than 100 ms. It must be considered that all we
are using reliability and ordering mechanisms to ensure full
packet delivery ratio, so packets are retransmitted and delivered in
order if they are not received in first place. Therefore, we can
conclude that AGORA performs more than acceptably in this real
scenario.

4.2 Lightweight frameworkMobile devices
portability
AGORA is capable also of being launched in framework for
PDAs, as it is shown in Figure 5. The shared photo-album plug-in
is displayed and the framework options are shown in the bottom.

Figure 5 PDA Plug-in framework desktop

In this lightweight version, plug-ins can be installed and retrieved
from other machines as well. Both chat and file-sharing plug-ins
are available for the lightweight framework and have been tested
in a one-hop environment. However, due to difficulties in finding
OLSR implementations for PDAs, we have not been able to test
performance in a multihop scenario.

5. Conclusion and ongoing work
In this paper we have presented AGORA, a complete approach
for developing collaboration application in MANETs. Three
layers in the architecture cope with the necessities: The plug-in
framework eases application development whereas middleware
offers a rich set of collaborative functionalities. The application
level multicast is in charge of reducing group communication
overhead. By deploying these three components together we offer
a complete solution for rapid application development in
MANETs.
Future work is focused on bringing PDAs to the multihop
environment and improving multicast protocol efficiency by
reducing control overhead and improving packet delivery ratio.
We also plan to perform medium-scale real tests with 20-30
portable devices using AGORA plug-in framework.

6. ACKNOWLEDGMENTS
This work is funded by the Information Society Technologies
programme of the European Commission, Collaborative Working
Environments, under the FP6-2006-IST-034241 POPEYE project.

7. REFERENCES
[1] R. Meier and V. Cahill, "Exploiting Proximity in Event-

Based Middleware for Collaborative Mobile Applications,"
First Workshop on Middleware for Network Eccentric and
Mobile Applications (MiNEMA), Dublin, Ireland, 2004.

[2] D.Bottazzi, A.Corradi, R.Montanari, "AGAPE: A Location-
Aware Group Membership Middleware for Pervasive
Computing Environments", in Proc. of the 8th International
Symposium on Computers and Communications
(ISCC2003), IEEE Press, Turkey, July 2003.

[3] M. Musolesi, C. Mascolo, S. Hailes, "EMMA: Epidemic
Messaging Middleware for Ad hoc networks". Journal of
Personal and Ubiquitous Computing, Springer, Vol 10, No 1,
February, 2006, p. 28-36.

[4] M. Bisignano, G. Di Modica, O. Tomarchio, "JMobiPeer: a
middleware for mobile peer-to-peer computing in
MANETs". First International Workshop on Mobility in
Peer-to-Peer Systems (MPPS) (ICDCSW'05) pp. 785-791.

[5] Alf Inge Wang, Tommy Bjornsgard and Kim Saxlund,
“Peer2Me - Rapid Application Framework for Mobile Peer-
to-Peer Applications”, International Symposium on
Collaborative Technologies and Systems (CTS 2007),
Orlando, Florida, USA, May 2007.

[6] S. Hadim, J. Al-Jaroodi, N. Mohamed, "Trends in
Middleware for Mobile Ad Hoc Networks," invited paper in
the Journal of Communications, Vol 1, No. 4, pp. 11-21, July
2006.

[7] Lu Yan, Kaisa Sere, Xinrong Zhou, Jun Pang, “Towards an
Integrated Architecture for Peer-to-Peer and Ad Hoc Overlay
Network Applications”, In Proc. 10th Workshop on Future
Trends in Distributed Computing Systems - FTDCS'04., pp.
312-318.

[8] X. Chen, H. Zhai, J. Wang, and Y. Fang, "TCP Performance
over Mobile Ad Hoc Networks," Canadian Journal of
Electrical and Computer Engineering (CJECE) (Special Issue
on Advances in Wireless Communications and Networking),
Vol. 29, No. 1/2, p129-134, January/April 2004.

