
Bridging Context Management Systems for Different
Types of Pervasive Computing Environments

Cristian Hesselman1, Hartmut Benz2, Pravin Pawar3, Fei Liu3,
Maarten Wegdam3,4, Martin Wibbels1, Tom Broens3, and Jacco Brok4

1Telematica Instituut, The Netherlands
{cristian.hesselman, martin.wibbels}@telin.nl

2Twente Institute for Wireless and Mobile Communications, The Netherlands
hartmut.benz@ti-wmc.nl

3University of Twente, The Netherlands
{p.pawar, f.liu, m.wegdam, t.h.f.broens}@ewi.utwente.nl

4Alcatel-Lucent, The Netherlands
{wegdam, brok}@alcatel-lucent.com

ABSTRACT
A context management system is a distributed system that enables
applications to obtain context information about (mobile) users
and forms a key component of any pervasive computing
environment. Context management systems are however very
environment-specific (e.g., specific for home environments) and
therefore do not interoperate very well. This limits the operation
of context-aware applications because they cannot get context
information on users that reside in an environment served by a
context management system that is of a different type than the
one used by the application. This is particularly important for
mobile users, whose context information is typically available
through different types of context management systems as they
move across different environments. In this paper, we address this
interoperability problem by placing bridges between different
types of context management systems, in particular systems for
home, mobile, and ad-hoc environments. The novelty of our
bridges is that they focus on resolving functional differences
between context management systems, whereas prior work in this
area concentrates on resolving differences in data models. We
discuss our bridging architecture and zoom in on a few selected
bridges, focusing on their context discovery and exchange
functions. We also outline how we implemented these bridges.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design – network communications; C.2.2
[Computer Communication Networks]: Distributed Systems –
distributed applications.

General Terms

Design

Keywords
Context management, bridging, interoperability

1. INTRODUCTION
The ultimate vision of pervasive computing is that of a ubiquitous
intelligent system that supports users wherever they go [1]. One
of the key ingredients to make this happen is a Context
Management System (CMS), which is a distributed system that
enables applications to obtain context information about users and
other “entities” such places and devices (e.g., [2, 3]).

An important characteristic of CMSs is that they are usually
very much environment-specific. For example, some CMSs are
specifically geared towards home environments [4], whereas
others are dedicated to large-scale mobile environment [4, 5], or
to small ad-hoc networks [6]. As a result, different types of CMSs
often do not interoperate very well, for instance because they use
different naming schemes for their users, different discovery
protocols, or different context ontologies [4, 7]. This means that
applications are generally limited to what their ‘native’ CMS can
provide, which in turn limits their operation.

As an example, consider a user Alice driving from home to
work and her co-worker Bob trying to find out where Alice is, for
instance because she is running late for a meeting. Bob gets
Alice’s location through a context-aware buddy application that
uses the CMS of the office environment. This CMS does however
not interoperate with other types of CMSs, such as the kind of
CMS in Alice’s home, the CMS of Alice’s mobile network
operator (serving Alice when she is driving to work), or an ad-hoc
type of CMS (e.g., deployed near a construction site on the
freeway). Without a system that interconnects these CMSs, Bob’s
application will be deprived from location information about
Alice as long as she is not yet in the office.

In this paper, we address this interoperability problem and
integrate three different types of CMSs: for home/small office
environments, for mobile telecom environments, and for wireless
ad-hoc environments. The added value of this integration is that it
enables applications to obtain context information from multiple
types of CMSs, which would for instance allow Bob to also get

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware '08, February 12-15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBILWARE 2008, February 13-15, Innsbruck, Austria
Copyright © 2008 ICST 978-1-59593-984-5
DOI 10.4108/ICST.MOBILWARE2008.2859

Alice’s location when she is still at home or when she is driving
to work. All three types of CMSs have been developed and tested
with several applications in the project AWARENESS [8].

Our approach is to place (semi-)transparent bridges between
different types of CMSs. These bridges enable applications to
obtain context information through one type of CMS (their
‘native’ CMS), including context information that originates from
other types of CMSs. As a result, applications do not have to
interact with these ‘foreign’ CMSs, which simplifies application
development. This is particularly important for mobile users,
whose context information is typically available through different
types of CMSs as they move across different environments.
Another advantage is that the bridges facilitate the incremental
role-out of new types of CMSs, which is essential for the
deployment of large-scale ubiquitous computing systems. A
limitation of the bridges is that they are specific for each pair of
CMSs and most likely need to be deployed and managed in large
numbers of instances.

There are two important alternatives to our bridging
approach: standardization and a unifying adapter. Standardization
requires a single CMS to serve all possible types of environments.
We believe that this is infeasible because in our experience, the
requirements of environments vary strongly and thus require
different types of CMSs to cater for and exploit the unique
characteristics of the different environments and work efficiently
(cf. small ad-hoc environments vs. the millions-of-users of a
telecom operator). Furthermore, there is no obvious candidate for
such a standard. A unifying adapter keeps the different CMS
types, but unifies access to them through by a “convergence
layer” that provides a single interface to applications. Such an
adapter eases application development, but its complexity and
size increases quickly with the number of supported types of
CMSs. In addition, existing applications must be modified to
benefit from the interoperability. [7] and [9] are examples of
works that follow this unification approach.

Our work is novel in that it uses bridges to integrate different
types of CMSs and because our bridges focus on resolving
functional differences between CMSs, in particular differences
regarding context discovery and exchange. Our bridging
architecture also contains other bridging functions, such as
identity management and privacy control. Prior work in this area
concentrated on integrating the data models of different types of
CMSs.

We begin our discussion with a brief description of the
CMSs we use (Section 2). Next, we discuss the architecture of our
bridges, focusing on a few selected types of bridges (Section 3).
We then outline how we implemented them (Section 4) and
compare our work to existing systems we found in the literature
(Section 5). We end with conclusions and future work (Section 6).

2. CONTEXT MANAGEMENT SYSTEMS
Our Context Management Systems (CMSs) share the same basic
architecture, which consists of context producers, context
consumers, and context brokers. Context producers are all
processes that publish context—from low-level physical sensors
in a sensor wrapper process to high-level context reasoners.
Context consumers are all processes that use context. Context
consumers find suitable producers by querying context brokers.
Consumers retrieve context from context producers either via
subscription or query. Context producers register with context

brokers, which may also manage the life-cycle of the producers
that have registers with them (start, stop).

Many context producers are also context consumers. For
example, context reasoners receive information from several
context producers (e.g., several location producers), reason over it
(e.g., select the most accurate location or synthesize accuracy by
combining measurements), and publish the result as context.
Similarly, a context storage engine subscribes to various
producers, stores the information it receives from them, and
publishes it as historical context.

In this section, we highlight the most important aspects of
the four CMSs we have developed and express them in terms of
the basic architecture outlined above. One system targets large-
scale mobile operator environments (Section 2.1), two of them are
meant to operate in homes and office environments (Section 2.2),
and the fourth targets (mobile) ad-hoc environments (Section 2.3).
Section 3 discusses the context bridges that we put between these
systems in detail.

2.1 Mobile Environment
The CUMULAR Context Server (CCS) [10] is a centrally
managed CMS for operators of mobile telecom networks. It fits in
the IP Multimedia Systems (IMS) architecture as defined by
3GPP [11], which is widely adopted as a convergence architecture
for telecom operators. The CCS can federate with other CCS
instances if a trust relationship exists between the operators
running the CCSs.

In terms of our basic context management architecture, the
CCS consists of a large context reasoner that is distributed across
nodes in the network of a telecom operator. The reasoner provides
context information to CCS applications and obtains lower-level
context information from various context producers. These
producers may run on devices with limited resources and
availability (e.g., mobile phones). The main responsibilities of the
reasoner are to run sophisticated and computing-intensive
reasoning algorithms, to enforce the user’s privacy policies
regarding the release of context information, control the use of
bandwidth towards mobile phones, and select context producers
based on the quality of the information they provide. We
implemented the reasoner as an enhanced SQL database.

The context reasoner provides per-application views on the
reasoner and can be customized per application regarding used
protocols, context needs, and access control restrictions. It can
also communicate with different types of context producers, for
instance producers that provide a SIP/SIMPLE-based [12]
interface. The architecture can be extended with new types of
applications or context producers.

2.2 Home/office Environment
We developed two CMSs for homes and small office
environments. The first one is the Context Management
Framework (CMF) [3]. The central notion in the CMF is that of a
personal context broker [13], which keeps track of the set of
context producers that can currently provide context information
about a particular user, including context producers in other CMF
domains (e.g., when the user is visiting that domain). Applications
can query a broker for a certain type of context information (e.g.,
information about the user’s activity), after which the context
broker returns a reference to a context producer that can provide
this information. A personal context broker also enforces the
privacy policies of a user by (1) checking if an application is

allowed to get the type of context information it asked for and (2)
by placing a proxy context producer between the application and
the “real” context producer. A personal context broker returns
references to these proxies to the application, which enables the
proxy to enforce the user’s privacy policies (e.g., by reducing the
quality of context information).

The second system is the Context Distribution Framework
(CDF) [14]. The CDF focuses on context producers that reside on
mobile devices. Its core consists of a specialized context producer
called the Context Distribution Service (CDS). The CDS runs in
the infrastructure and its main responsibility is to dynamically
select the “best” producer for a certain type of context
information, where the meaning of “best” is specified by the
application in terms of its Quality of Context (QoC) requirements
for the particular context type. The CDS subscribes to the CDF’s
context broker so that it receives an event whenever a new
(mobile) context producer registers with the context broker. When
this happens, the CDS compares the new producer’s QoC with
that of other producers that can provide the same type of context
information as well as with the application’s QoC requirements. If
the new producer is “better” than the one currently in use, the
CDS transparently switches to that producer and forwards its
context information to the application. The CDS also notifies the
application about the change. The QoC parameters that the CDS
uses to rank context producers are freshness, spatial resolution,
temporal resolution and probability of correctness. The CDS
includes support for ontologies to represent context information
and is implemented as a service in a Jini network.

2.3 Ad-hoc Environment
Our CMS for ad-hoc environments is called Jexci and is peer-to-
peer-based. In the absence of centralized context brokers, each
Jexci peer implements a part of that functionality. Context
producers and consumers find each other in peer groups, which
are groups of producers that can each provide a particular type of
context information about a particular entity. Implicitly, each peer
group defines an overlay (sub-)network connecting only related
peers. Hierarchical peer groups mirroring the domain hierarchy of
entities provide scalability. Jexci uses the peer-to-peer framework
JXTA [15]. Jexci allows a producer and a consumer to negotiate a
context exchange format and thus enables Jexci users to
independently create new context types and encoding formats for
context.,

To improve context discovery in fully distributed ad-hoc
networks, we designed and implemented the discovery protocol
Ahoy and integrated it with Jexci. Ahoy is based on attenuated
Bloom filters and allows highly efficient on-demand (context)
service discovery [16]. Attenuated Bloom filters (ABFs) consist
of layers of bit vectors to indicate the existence of context
information a certain number of hops away in the ad-hoc network.
Every node stores an attenuated Bloom filter from each direct
neighbor. By consulting those filters, nodes only send queries to
destinations that are likely have the requested context information
with a small probability of getting a false positive.

3. CONTEXT BRIGDES
A context bridge is a functional component that enables context-
aware applications using one type of CMS (the native CMS) to

obtain context information from a context producer in another
type of CMS (the foreign CMS). Project AWARENESS has
developed several bridges that perform this task for the CMSs of
Section 2. These bridges are unidirectional, which means that a
bidirectional bridge requires two bridges, one for each direction.
The requirements for these two bridges may however differ.

In this section, we first consider the functions that any
context bridge needs to provide (Section 3.1). Next, we present
the overall architecture of the bridges developed in
AWARENESS (Section 3.2) and consider two of a bridge’s
functions in more detail: context discovery (Section 3.3) and
context forwarding (Section 3.4). For a few of our bridges, we
also illustrate how they realize these two functions.

3.1 Bridging Functions
A bridge has to resolve the differences between native and foreign
CMSs. To accomplish this, a bridge needs to support the
following functions:
• Identity mapping. A bridge needs to map the entity

identifiers of the native CMS to those of the foreign CMS.
This is because context information is tightly bound to a user
(and other entities such as devices and places) and because
the identity of that user may be different in the foreign CMS.
For example, Alice’s identity in the CMS of the mobile
operator may differ from the identity that the CMS in her
office uses.

• Context discovery. To discover context producers in the
foreign CMS, a bridge needs to translate the context query of
a context consumer in the native CMS to the protocol and
query capabilities of the foreign CMS. Further filtering of
the discovery results is necessary when the foreign CMS
provides less discriminatory queries than the native CMS.
Since we think of context producers as services, this function
is essentially about bridging different service discovery
protocols [17].

• Context forwarding. A bridge needs to forward context
information from the foreign CMS to the native CMS. It
therefore needs to deal with differences in communication
mechanisms in both CMSs, in particular when the native
CMS supports a publish-subscribe mechanism, but the
foreign CMS does not. A bridge also needs to translate
between multiple protocols (e.g., web services and JXTA), as
they are often tightly connected with the environment in
which the CMSs operate.

• Context format mapping. The bridge needs to translate the
context semantics (ontology), encoding, and data formats of
the foreign CMS to those of the native CMS. Ontology
mapping can be very difficult [4] even though the translation
of standard units (e.g., longitude/latitude/projection,
temperature) is straight forward. Other types of context
information (e.g., ‘activity’, which could take the values of
‘working’ or ‘driving’) require clear definitions to be
meaningful across CMSs. In order to exchange context
information augmented with QoC, CMSs also need to
provide QoC definitions [18]. The bridge furthermore needs
to be able to translate between different data formats (e.g.,
SQL, RDF, PIDF, and key-value pairs).

• Context adaptation and reasoning. A bridge may need to
adapt the context information passing through it, for instance
when a context producer in the foreign CMS generates data
at a rate that the native CMS cannot handle (e.g., when the
native environment is an ad-hoc network and the foreign
CMS is that of a mobile operator) and the rate of that
producer also cannot be configured on a per-consumer basis.
A bridge may need to reason over context information in
case the foreign CMS does not directly support the type of
context information that the application needs and is also
unable to compute it (e.g., when the foreign CMS is an ad-
hoc network that only provides low-level context
information). Another reason for having context reasoners as
part of a bridge may be to reduce the number of context
providers published on the native side of the bridge
(aggregation).

• Privacy control. If the foreign CMS does not enforce the
privacy policies of its users regarding the distribution of
context information to the native CMS, the bridge may need
to enforce these policies on behalf of the foreign CMS. This
may require the bridge to adapt the quality of the context
information that it forwards from the foreign to the native
CMS [18]. The foreign CMS may also have its own policies
about the release of its context information to native CMSs.
It could for instance indicate that the native CMS is not
allowed to cache any of the foreign CMS’ information.

3.2 Architecture
Figure 1 provides an overview of the basic AWARENESS
bridging architecture. AWARENESS bridges all share this
architecture, but they realize it in different ways depending on the
native and foreign CMSs involved.

The centre of the architecture is an AWARENESS bridge,
which consists of a context broker and a set of context producers.
Together, the broker and the producers realize the functions of
Section 3.1. The context broker is responsible for identity
management and context discovery, whereas the context
producers act as proxies and take care of context adaptation,
reasoning, and mapping context information to another format.
Both the broker and the context producers are involved in the

enforcement of privacy policies. Observe that a producer of the
bridge may obtain context information from multiple foreign
context producers (not shown in Figure 1), for instance to reason
over that information. As an example, Figure 1 shows a bridge
that consists of two context producers, CP3 and CP4. The context
broker of the bridge is labeled CBB.

The components of an AWARENESS bridge may be
distributed across the native CMS, the foreign CMS, dedicated
bridging nodes, or a combination thereof. The complexity of a
bridge in terms of the functions it needs to provide (see Section
3.1) depends on the differences between the native and foreign
CMSs: the larger the difference, the more complex the bridge’s
functions. For example, if the CMSs only vary slightly, the
bridge’s context transfer functions can simply translate context
request and responses between the native and the foreign CMS. If
the differences are larger, the bridge may also need to possess
context adaptation and reasoning capabilities. For example, if the
foreign CMS is the CMS of a mobile network operator and the
native CMS operates in an ad-hoc network, the bridge may need
to put an upper bound on the rate at which it propagates context
changes into the ad-hoc (native) CMS to prevent it from being
overwhelmed with context updates. More advanced functions like
these do however require the bridge to maintain more state, which
means that the bridge may also need to manage parameters that
determine its degree of scalability. Examples are the number of
users that are visible through the bridge in the native CMS, the
number of concurrent subscriptions on context producers in the
foreign CMS, and the number of queries/notifications per second
passing through the bridge. This is particularly important if the
bridge runs on a resource-constrained device, such as a mobile
phone in an ad-hoc network.

We distinguish two types of bridges: those that are fully
transparent and those that are semi-transparent. Figure 1 shows
the basic architecture of a transparent bridge, which is invisible to
a context-aware application. In this case, the application continues
to use its native context broker (CBN in Figure 1) to discover
native context producers (CP1 and CP2 in Figure 1). When the
native broker finds out that it does not have the producer that the
application needs, it queries the context broker of the bridge
(CBB) to discover the context producers that the bridge provides
and returns any matches to the context-aware application via the
native context broker. The application subsequently interacts with
one of the bridge’s context producers to obtain the context
information it needs (push or pull). The bridge’s context
producers use the context broker of the foreign environment
(CBF) to obtain references to the foreign context producers they
need (the producers act as a client of the foreign context broker),
get the context information from these producers, and send the
(processed) result back to the context-aware application of the
native CMS.

With a semi-transparent bridge (not shown in Figure 1), the
native broker returns a reference to the broker of the bridge when
it cannot find a producer that matches the application’s request.
The application then resubmits its query to the bridge’s broker,
which forwards it to a context broker in the foreign CMS. This
broker returns its results to the bridge’s context broker, which
instantiates context producers for the bridge and links them to the
foreign context producers. The bridge’s broker then returns a
reference to one ore more of its context producers to the
application. The application subsequently interacts with one of
these producers to obtain the context information it needs. The

Figure 1. Basic bridging architecture.

context producers that are part of the bridge register with the
bridge’s context broker.

Note that the context brokers in Figure 1 also need to be able
to discover each other. To accomplish this, the bridge’s context
broker is registered with the native context broker, whereas the
foreign context broker is registered with the context broker of the
bridge (not shown in Figure 1). A context broker may be
distributed across multiple nodes (e.g., in an ad-hoc network) and
does not need to be centralized.

In the following two sections, we introduce three of the
bridges we have developed and discuss their design in terms of
the basic architecture of Figure 1, focusing on the bridges’ context
discovery and forwarding tasks.

3.3 Context Discovery
Figure 2 shows the architecture of the bridge that enables CDF
applications (home/office environment, see Section 2.2) to obtain
context information from context producers in an ad-hoc
environment that uses Ahoy for discovery (ad-hoc environment,
see Section 2.3). The bridge is semi-transparent. The context
broker and the context producers of the bridge are part of the CDF
(the native CMS) because the nodes in the ad-hoc network are
resource constrained mobile devices. Each CDF domain hosts one
Ahoy-CDF bridge for all the Ahoy-based ad-hoc networks it
interfaces with.

The context broker of the bridge interacts with an Ahoy
network through gateway ABF nodes. A gateway node is part of
both the CDF network and the ABF network and is the foreign
context broker (CBF) from the perspective of the bridge (cf.
Figure 1). The context broker on a gateway node interacts with
the context brokers on other nodes in the ad-hoc network to
discover the context producers they host (using the Ahoy
protocol). The context broker of the ad-hoc network is thus fully
distributed.

The bridge’s context broker maintains a list of ABFs that
reflect the current state of the ad-hoc network. The broker
receives these ABFs from the gateway node and uses them to
decide if it needs to forward a discovery query from a CDF
application (see below) into the Ahoy network. The advantage of
this approach is that it avoids traffic floods in the ad-hoc network,

which improves the network’s operation. Storing the list on the
CDF-side (infrastructure) also reduces processing and state on the
gateway node and enables the bridge’s broker to serve multiple
gateway nodes at the same time.

The broker receives a new set of ABFs from the gateway
node when the ad-hoc network changes, for instance when a new
producer appears or an existing one disappears.

When a CDF application is looking for a context producer, it
sends a query message to the CDS (see Section 2.2). If the CDS
cannot find the requested producer in the CDF network (by
querying CBN), it directs the CDF application to query the broker
of the bridge, which translates it into Bloom codes and matches it
against its list of ABFs. If the broker finds a match, it forwards
the query (in the form of Bloom codes) to the target Ahoy
network through the network’s gateway node. Context producers
that can serve the query send their binding information back to
bridge’s broker, following the same path as the query.

When the context broker of the bridge receives a response
from an Ahoy producer, it creates a context producer for it,
configures the new producer with the binding information
provided by the Ahoy context producer, and sends a reference to
the new context producer to the CDF application. In our current
design, both the CDF and the Ahoy network support XML-RPC
for context exchange, which means that the context producers
instantiated by the bridge (CP3 and CP4) are merely empty stubs.

3.4 Context Forwarding
Figure 3 shows the organization of the bridge that enables CMF
applications (home/office environment, see Section 2.2) to obtain
context information from CCS context producers (mobile
environment, see Section 2.1). CCS-CMF bridges are bound to
individual users, which is unlike the Ahoy-CDF bridges that exist
at the level of entire CMS domains. Also unlike Ahoy-CDF
bridges, CCS-CMF bridges are fully transparent.

CCS-CMF bridges are part of CMF domains (native CMS)
because there will typically be many more CMF instances (homes
and offices) than there will be instances of the CCS (mobile
operators). Hosting the CCS-CMF bridges in the CCS would thus
yield a significant increase of state on the CCS-side, which might
negatively affect the CCS’ scalability.

When a CMF application requests context information from
a personal broker (CBN,U in Figure 3), the broker dynamically

Figure 2. CDF applications using Ahoy context producers

(home/office to ad-hoc environment).

Figure 3. CMF applications using CCS context producers
(mobile to home/office environment).

creates a CCS-CMF bridge if it does not have a link to an
appropriate native context producer. The advantage of this
approach is that CCS-CMF bridges can be instantiated when and
where they are required, thus distributing load and increasing
scalability on the CMF-side. This is particularly important in
larger CMF domains (e.g., in offices). Because the CCS-CMF
bridges are bound to individual users, this approach also delegates
identity and authentication mapping between CMF and CCS to
each user: each user configures the required bridges with the
appropriate CCS identities and credentials.

After creating a CCS-CMF bridge, the personal context
broker forwards the discovery request it received from the CMF
application to the bridge’s broker (CBB,U in Figure 3). This broker
creates a context producer for the type of context information that
the CMF application requests and returns a reference to the new
producer back to the application (via the native personal broker).
The context producers of a CCS-CMF bridge are long-lived,
which means that they can be reused for CMF applications that
request the same type of context information about the same user.
As an example, Figure 3 shows two context producers in the
bridge: one for location information (CPL) and one for activity
information (CPA).

A context producer of a CCS-CMF bridge uses the context
broker in the foreign CMS (CBF) to locate the large context
reasoner (CR) in the CCS. It then uses the reasoner to subscribe to
events that signal changes in a particular type of context
information (e.g., location information) for the user that the
personal context broker represents. CMF applications can
subscribe to these events through the bridge’s context producers,
which transparently forward the events from the CCS to the CMF
application. Similarly, CMF applications can query the context
producers in the bridge for context values (of a particular type),
which they will then transparently obtain from the CCS and
forward back to the requesting CMF application.

The CMF uses a different query language than the CCS:
CMF producers support SPARQL queries, whereas CCS
producers accept queries in SQL. When a context producer of the
bridge receives a SPARQL query, it first gets the corresponding
type of context information from the CCS context reasoner by
submitting an SQL query to it. Next, it applies the SPARQL

query on the context information it receives from the CCS
reasoner and sends the result back to the CMF application.

In our current implementation, we statically configured the
address of the CCS context reasoner in the CCS-CMF bridges
(hence the dashed arrows in Figure 3) and combined the context
broker of the bridge with the personal context broker.

Figure 4 shows the organization of the bridge that enables
Jexci applications (ad-hoc environment, see Section 2.3) to obtain
context information from CCS domains (mobile environment, see
Section 2.1). Like an Ahoy-CDF bridge, a CCS-Jexci bridge
operates at the level of domains, which means that it makes the
large reasoner of a CCS domain available in a Jexci network.
CCS-Jexci bridges are fully transparent.

An instance of the CCS-Jexci bridge runs on a gateway node
that is part of the Jexci network, but can also establish
connections with CCS reasoners, typically via a wide area
wireless link. The context broker of a CCS-Jexci bridge is
configured with references to foreign context brokers (CBF in
Figure 4). Different nodes in the same Jexci network may host a
CCS-Jexci bridge for the same CCS domain to distribute the load
of interacting with that domain across multiple Jexci nodes.

During start-up, the context broker of a CCS-Jexci bridge
queries its foreign context brokers to obtain a reference to any
CCS reasoners. Next, the bridge’s broker queries these reasoners
to ask them which domains they serve and advertises this
information in the Jexci network. The bridge uses one JXTA peer
group per CCS domain instead of one peer group per CCS user.
The latter would yield way too many peer groups for JXTA to
handle and would bring down the Jexci network.

A Jexci application submits discovery requests to its local
broker (CBN) and specifies which types of context it needs for
which user. If this is a CCS user, the request ends up at a bridge
that serves the CCS domain where the user is registered. The
bridge’s context broker (CBB) handles the request and queries the
reasoner to ask it which types of context information it can
provide and returns this information back to the Jexci application.
The return message contains the address of the gateway node,
which implicitly acts as a context producer.

The gateway node creates actual context producers only
when the Jexci application needs context information, which
saves resources on the gateway node. For publish-subscribe
interactions, the gateway node creates a context producer (e.g.,
CP2 in Figure 4) when it receives a subscribe message from the
Jexci application. This producer calls the CCS reasoner to
subscribe to the same types of context information and forwards
any context updates that occur on the CCS-side to the Jexci
application. When the gateway node receives a query for context
information from the Jexci application, it creates a temporary
context producer that queries the CCS reasoner, passes the result
back to the Jexci application, and then terminates.

Despite the above approach, a CCS-Jexci bridge must limit
the number of concurrent queries and subscriptions because also
the JXTA connections, which are used for context exchange in the
Jexci infrastructure, require a lot of resources.

In our current implementation, we statically configured the
broker of a CCS-Jexci bridge with the address of a CCS reasoner,
thus bypassing the foreign context brokers.

4. IMPLEMENTATION
Table 1 provides an overview of the bridges we developed for the
CMSs, including the three bridges discussed in Section 3. The

Figure 4. Jexci applications using CCS context producers
(mobile to ad-hoc environment).

bridge that delivers context information from CMS A to CMS B
is in row A, column B. Information on the implementation of
individual CMSs is in the shaded cells.

The CCS is largely written in Java. The bridges use SQL
statements (through JDBC or ODBC) to write data to and read
data from the Postgres SQL database. The CMF core and its
elements like the personal context broker are developed in Java.
The CDF uses Jini technology and lets mobile context producers
participate in the Jini network through the Mobile Service
Platform (MSP) [19]. In Jexci, the context producers are
addressed using XML-RPC (via JXTA pipes or directly). New
context en/decoders can be added to a context producer/consumer
simply by adding a JAR file to the class path. Ahoy is
implemented in the programming language Ruby and uses UDP
over IPv6 [20]. Ahoy has been integrated into Jexci to improve
the peer group discovery.

5. RELATED WORK
The work that comes closest to ours is that of Lehmann et al. [4],
who integrate a CMS for home environments (the Aware Home
Spatial Service) with a CMS for mobile operators (Nexus [21]).
The difference with our work is that they focus on integrating the
data models of the two CMS, whereas our bridges focus on
interoperating functionality, in particular context discovery and
exchange. Integrating CMS-specific data models is however a
crucial component for interoperating CMSs, which is why we
consider the work of Lehmann et al. and our work complementary
to each other. Another difference is that we also take ad-hoc
CMSs into account.

In convergence approaches, various original context
information from applications is uniformed by a common context
model and ontology in a convergence layer before they are
distributed to diverse underlying systems. The ITransIT system
has been proposed in [22] to federate advanced pervasive
transportation systems. This system uses a common spatial data
layer with primary context model (PCM) to model all information

uniformly and ontology (PCOnt) to specify the relationships
between those information. In [7], a core common model is
designed for ubiquitous computing (ubicomp) environments and a
convergence layer called Ubicomp Integration Framework (UIF)
is implemented to adapt existing ubicomp systems to this
common model for wide area access. UIF uses semantic web
technology to interact and support dynamic reconfiguration of the
exposed models. [9, 23] follow a similar approach to converging
different types of CMSs and interacting with one unified API.

Other works on interoperating CMSs deal with federating
multiple instances of the same type of CMS, for instance CMSs of
mobile operators [5, 24], CMSs for small to mid-sized
environments [13], or a combination thereof [25].

6. CONCLUSIONS AND FUTURE WORK
The landscape of pervasive computing will involve different types
of Context Management Systems (CMSs) that are specifically
designed for different types of environments (e.g., homes and
mobile operator environments). To provide context information
about (mobile) users to any context-aware application, these
CMSs will somehow need to interoperate.

In this paper, we discussed the AWARENESS architecture
for interoperating different types of CMSs. The main component
of the architecture is a unidirectional bridge, which enables
applications that use one CMS (the native CMS) to obtain context
information stored in another CMS (the foreign CMS). Our
bridges consist of a context broker and one or more context
producers that specialize in bridging differences between CMSs
for different environments. Our unidirectional bridges may be
paired to form bidirectional bridges.

We outlined the functions that these bridges need to provide
to, focusing on context discovery and context exchange. We
implemented a total of nine bridges (some combined in
bidirectional bridges) and illustrated which technologies we used
for this purpose.

from\to CCS CMF CDF Ahoy Jexci

CCS

Postgres SQL database,
Java extensions enabled
by Perl/Java, PIDF
format.

Location and presence
information from CCS to
CMF. Request-response
interactions in PIDF.

 Application that passes
emergency-related
context info from CCS to
Jexci.

CMF

Location, activity and
device information from
CMF to CCS.

Core in Java, web
services for discovering
context producers, SIP
for discovering personal
context brokers, OWL
format.

CDF

Jini client delivering
health-related emergency
information from CDF to
CCS.

 Core in Java, based on
Jini technology, XML
format.

Gateway node + Jini-
based implementation of
bridge, which support
context discovery from
CDF to Ahoy

Ahoy

 Gateway node + Jini-
based implementation of
bridge, which support
context discovery from
Ahoy to CDF

Core in Ruby, Ahoy
service discovery, key-
value format.

Jexci/ABF peer, Ahoy
module in Java, key-
value format.

Jexci
Location and buddy
information from Jexci to
CCS.

 Jexci/ABF peer, Ahoy
module in Java, key-
value format.

Core in Java, JXTA
based service discovery,
key-value format.

Table 1. Implemented bridges. Bridges discussed in Section 3 are in italics.

The novelty of our work is that we concentrate on resolving
functional differences between CMSs, in particular for context
discovery and exchange. Another innovation is that we also
include ad-hoc networks in the interoperability equation.

Our future work includes the enforcement of privacy policies
in an environment that consists of multiple interoperating CMSs.
This includes mapping the identifiers used in one type of CMS to
those used by another and how to manage trust in such an
environment. Another item of future work is an analysis of the
performance of a few of the bridges we developed.

7. ACKNOWLEDGMENTS
This work has been conducted within the project Freeband
AWARENESS. Freeband is co-sponsored by the Dutch
government under contract BSIK 03025. Henk Eertink reviewed
the draft version of this paper.

8. REFERENCES
[1] M. Weiser, “The Computer of the 21st Century”, Scientific

American, vol. 265, no. 3, September 1991
[2] A. Dey, D. Salber, and G. Abowd, “A Conceptual

Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications”, Special issue
on context-aware computing; Human-Computer Interaction
(HCI) Journal, Volume 16 (2-4), 2001, pp. 97-166

[3] H. van Kranenburg, M. S. Bargh, S. Iacob, and A.
Peddemors, “A Context Management Framework for
Supporting Context-Aware Distributed Applications”, IEEE
Communications Magazine, August 2006, pp. 67-74

[4] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, “From
home to world - supporting context-aware applications
through world models”, 2nd IEEE Annual Conference on
Pervasive Computing and Communications (PERCOM’04),
Orlando, Florida, USA, 2004

[5] I. Roussaki, M. Strimpakou, C. Pils, N. Kalatzis, M.
Neubauer, C. Hauser, and M. Anagnostou, “Privacy-Aware
Modelling and Distribution of Context Information in
Pervasive Service Provision”, IEEE International Conference
on Pervasive Services (ICPS 2006), Lyon, France 2006

[6] F. Perich, S. Avancha, D. Chakraborty, A. Joshi, and Y.
Yesha, “Profile Driven Data Management for Pervasive
Environments”, 13th International Conference on Database
and Expert Systems Applications (DEXA 2002), Aix-en-
Provence, France, September 2002

[7] M. Blackstock, R. Lea, and C. Krasic, “Toward Wide Area
Interaction with Ubiquitous Computing Environments”, 1st
European Conference on Smart Sensing and Context, the
Netherlands, October 2006

[8] M. van Sinderen, A. van Halteren, M. Wegdam, H.
Meeuwissen, and E. Eertink, “Supporting Context-aware
Mobile Applications: an Infrastructure Approach”, IEEE
Communications Magazine, 44 (9). Sept 2006, pp. 96-104

[9] T. Broens, R. Poortinga, J. Aarts, “Interoperating Context
Discovery Mechanisms”, 1st International Workshop on
Architectures, Concepts and Technologies for Service
Oriented Computing (ACT4SOC’07), Barcelona, 2007

[10] J. Brok, “CUMULAR Context Solutions”, Freeband
AWARENESS deliverable Dn2.5.
http://awareness.freeband.nl, December 2006

[11] 3rd Generation Partnership Project (3GPP),
http://www.3gpp.org/

[12] IETF Applications Area Working Group, SIMPLE charter,
http://www.ietf.org/html.charters/simplecharter.html

[13] C. Hesselman, H. Eertink, and M. Wibbels, “Privacy-aware
Context Discovery for Next Generation Mobile Services”,
3rd SAINT2007 Workshop on Next Generation Service
Platforms for Future Mobile Systems (SPMS 2007),
Hiroshima, Japan, January 2007

[14] P. Pawar, A. van Halteren, and K. Sheikh, “Enabling
Context-Aware Computing for the Nomadic Mobile User: A
Service Oriented and Quality Driven Approach”, IEEE
Wireless Communications & Networking Conference
(WCNC 2007), Hong Kong, March 2007

[15] JXTA Peer-to-peer Framework, www.jxta.org
[16] F. Liu, G. Heijenk, “Context Discovery Using Attenuated

Bloom Filters in Ad-hoc Networks”, Journal of Internet
Engineering, Vol 1, No 1, 2007, pp.49-58

[17] Y. Bromberg and V. Issarny, “Service discovery protocol
interoperability in the mobile environment”, Software
Engineering and Middleware (SEM’04), Sept 2004, Linz,
Austria

[18] K. Sheikh, M. Wegdam, and M. van Sinderen, “Middleware
Support for Quality of Context in Pervasive Context-Aware
Systems,” 5th Annual IEEE International Conference on
Pervasive Computing and Communications Workshops
(PerComW’07), New York, USA, March 2007

[19] A. van Halteren and P. Pawar, “Mobile Service Platform: A
Middleware for Nomadic Mobile Service Provisioning”, 2nd
IEEE International Conference On Wireless and Mobile
Computing, Networking and Communications (WiMob
2006), Montreal ,Canada, June 2006

[20] R. Haarman, “Ahoy: A Proximity-Based Discovery
Protocol”, Master’s thesis, January 2007

[21] D. Nicklas, M. Grossmann, T. Schwarz, S. Volz, and B.
Mitschang, “A model-based, open architecture for mobile,
spatially aware applications”, 7th International Symposium
on Spatial and Temporal Databases, SSTD 2001

[22] D. Lee and R. Meier, “Primary-Context Model and
Ontology: A Combined Approach for Pervasive
Transportation Services”, Fifth Annual IEEE International
Conference on Pervasive Computing and Communications
Workshops (PerComW'07), New York, USA, 2007, pp. 419-
424

[23] R. Meier, A. Harrington, T. Termin, and V. Cahill, “A
Spatial Programming Model for Real Global Smart Space
Applications,” 6th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS
06), Bologna, Italy, 2006, pp. 16-31

[24] M. Strimpakou, I. Roussaki, C. Pils, M. Angermann, P.
Robertson, and M. Anagnostou, “Context Modelling and
Management in Ambient-aware Pervasive Environments”,
International Workshop on Location- and Context-
Awareness (LoCA 2005), Munich, Germany, 2005

[25] R. José, F. Meneses, and A. Moreira, “Integrated Context
Management for Multi-domain Pervasive Environments”,
First International Workshop on Managing Context
Information in Mobile and Pervasive Environments (MCMP-
05), Ayia Napa, Cyprus, May 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

