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ABSTRACT
Detecting proximity and separation among mobile targets is
a basic mechanism for many location-based services (LBSs)
and requires continuous positioning and tracking. However,
realizing both mechanisms for indoor usage is still a major
challenge. Positioning methods like GPS cannot be applied
there, and for distance calculations the particular building
topology has to be taken into account. To address these
challenges, this paper presents a novel approach for indoor
proximity and separation detection, which uses location fin-
gerprinting for indoor positioning of targets and walking dis-
tances for modeling the respective building topology. The
approach applies efficient strategies to reduce the number of
messages transmitted between the mobile targets and a cen-
tral location server, thus saving the targets’ battery power,
bandwidth, and other resources. The strategies are eval-
uated in terms of efficiency and application-level accuracy
based on numerous emulations on experimental data.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network Ar-
chitecture and Design-Wireless communication

Keywords
LBS, Proximity/Separation Detection, Fingerprinting

1. INTRODUCTION
Location-based Services (LBSs) take into consideration

the current positions of users or other targets in order to sup-
port navigation, to deliver a list of nearby points of interest
like restaurants or to show buddies being in close proximity.
LBSs can be realized in a reactive or proactive fashion. In
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the former category, location-based data is delivered to the
user only on request, while proactive services are automati-
cally triggered as soon as a pre-defined location event occurs,
for example, when a target enters or leaves a city, district,
building or another geographic zone. The user can then be
informed about that event and receive additional informa-
tion. Unlike reactive LBSs, proactive ones are much more
difficult to realize, because targets need to be permanently
tracked for checking the occurrence of location events. This
paper focuses on two special problems that belong to the
class of multi-target location events, where the positions of
several targets need to be determined and compared on a
permanent basis. Proximity detection is defined as the ca-
pability of an LBS to detect when two of a group of mobile
targets approach each other closer than a pre-defined prox-
imity distance. Analogously, separation detection discovers
when two targets depart from each other by more than a pre-
defined separation distance. The detection of such events
can be used in manifold ways, for example, in the context
of community or dating services for alerting the members of
these communities when other members approach or depart.
The solutions presented in this paper have been especially
tailored for indoor environments like offices, factory floors,
university campuses, hospitals, or railway stations.

In earlier work, mechanisms for proactive proximity and
separation detection have been included into the LBS mid-
dleware TraX, see also [9] and [10]. These mechanisms con-
trol the positioning process within GPS-capable mobile de-
vices carried by the targets and coordinate the transfer of the
derived position fixes to a central location server for checking
for proximity and separation with other targets. This trans-
fer is referred to as position updating, and it may happen
periodically, when the target has covered a certain distance
with respect to the last reported position or if she has en-
tered or left a certain zone. Proximity and separation checks
are based on the line-of-sight or Euclidean distance, which
can be simply calculated from the geographic positions of
the involved targets. TraX applies a combination of different
position updating and polling strategies with the goal to re-
duce the number of messages that pass the GPRS or UMTS
air interface, to lower the battery consumption of the mobile
phones, and to disburden the location server. Unfortunately,
the use of GPS makes TraX applicable only in outdoor en-
vironments, because GPS signals typically do no penetrate
buildings. Alternative outdoor positioning technologies, for
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example cellular methods like Cell-Id, may work indoors,
but lack in providing a sufficient degree of accuracy of posi-
tion fixes as required for both detection schemes. Therefore,
the only solution to offer proximity and separation detection
within buildings is to use an indoor positioning scheme.

In the recent years, many indoor positioning schemes have
been developed differing from each other in the kinds of sig-
nals used (infrared, radio, ultrasound), the type of signal
measurements (signal traveling time, received signal strength,
coverage) and the mathematical methods (fingerprinting,
lateration, angle of arrival) for deriving a position fix from
the measurements. One of the most prominent schemes is
called location fingerprinting (LF). It estimates the position
of a target from measuring the strength of radio beacons
(received signal strength, RSS) emitted by several WLAN
802.11 access points in the close surrounding. The location
of the target is then determined by mapping the measured
values onto RSS patterns, which are called fingerprints and
which have been pre-recorded at well-defined positions for
storage in a map database. LF has been selected for ex-
tending the TraX framework, because it provides a compar-
atively high accuracy of location data when compared to
other technologies. Another advantage is that it does not
require dedicated hardware, that is, it works with existing
WLAN 802.11 installations available in many buildings as
well as with conventional WLAN-capable mobile devices.

Unfortunately, replacing GPS by LF in the TraX mid-
dleware is not enough. Unlike GPS, where mobile devices
can determine their geographic position, LF only delivers a
vector of RSS measurements as observed by the device on
the spot. As a consequence, position updating cannot be
triggered when the target has covered a certain distance or
left a zone, but it requires a new position updating scheme,
which carries RSS values and which is triggered by a certain
change of RSS values. Another novelty concerns the seman-
tic of distance. Checking for proximity and separation under
consideration of Euclidean distances does not make much
sense indoors, because several targets could be located on
top of each other on different floors of a building, to give
only one example. Applying both detection functions for
walking distances is therefore a more reasonable, but also a
more sophisticated approach.

This paper proposes different strategies for efficiently per-
forming proactive proximity and separation detection in in-
door environments based on walking distances and by using
LF. Similar to its outdoor counterparts, the goal of these
strategies is to lower the battery consumption of mobile
WLAN devices carried by the targets, to reduce the work-
load of the server performing the checks and to keep the
amount of messages passing the air interface as low as possi-
ble. The latter especially makes sense in cross-organizational
scenarios, where position update and polling messages are
not sent over the WLAN network used for performing LF,
but by using public bearer services like GPRS or UMTS.

LF and advanced functions for LBSs have been a hot topic
in research during the recent years. The following section
gives an overview about related work and explains differ-
ences to and similarities with the approaches presented in
this paper. Section 3 introduces the TraX middleware from
a conceptual point of view and explains how to extend it
for the purposes of indoor proximity and separation detec-
tion. Section 4 then describes position updating and polling
strategies for both detection functions that work in combi-

nation with LF and walking distances. Finally, Section 5
presents the results achieved by prototype evaluation and
emulation for the proposed strategies, followed by the con-
clusions and discussion of further work in Section 6.

2. RELATED WORK
In the recent years, LF has been evaluated and used mainly

for single target location determination, therefore not ad-
dressing proximity and separation detection [2, 4, 12, 15],
with NearMe [8] as an exception. NearMe supports a short-
distance proximity detection, which takes into consideration
RSS measurements and Euclidean distances only, as well as
a long distance mode, which applies a base station coverage-
graph analysis. NearMe is a client-server approach with
periodic RSS updating between mobile device and location
server, which causes significant overhead when a target does
not move for a longer period of time.

LBSs applying LF in IEEE 802.11 networks and using
proximity information have been built and evaluated for
usability. The location-based messaging system InfoRadar
[11], for example, uses an LF technique proposed by Roos et
al. [12]. A location server polls RSS measurements from the
targets’ devices for estimating their positions and checking
them for proximity subsequently. The ActiveCampus [14]
system provides a set of LBSs to foster social-interactions in
a campus setting. One of these services can list nearby bud-
dies and show maps overlaid with information about bud-
dies, sites and current activities. Targets are located using a
terminal-assisted LF method proposed by Bhasker et al. [2]
and a combination of poll-based and periodic RSS updating,
which, however, turned out to be a bottleneck in this sys-
tem when trying to scale beyond 300 concurrent users. The
strategies proposed in this paper scale much better and are
novel in that they consider walking instead of Euclidean dis-
tances, which, as mentioned before, better reflects the needs
of indoor LBSs.

Several systems support the realization of LBSs based on
LF in general. Many have been proposed for integrating po-
sition fixes produced by different positioning technologies,
among them LF, thus easing implementation and improv-
ing server-side efficiency. Examples of such systems are the
Rover system [13], the Location Stack [5] and its implemen-
tation in the Universal Location Framework (ULF) [3]. They
provide means to integrate and fuse information from several
positioning methods, query location information, improve
scalability and define location-based triggers. The systems
have been integrated with LF techniques applied in Horus
[15] and RADAR [1]. Position fixes are obtained from the lo-
cation sources by push, pull and periodic location updating
methods. The Rover system has been evaluated for server-
side efficiency in terms of CPU-load based on simulated in-
puts. In comparison, this paper proposes strategies for an
efficient message transfer over the air interface, which also
improves server-side efficiency and saves battery resources
at the client-side.

3. TRAX
The strategies proposed in this paper for proximity and

separation detection are part of the LBS middleware TraX
[9], which has been developed for efficiently exchanging po-
sition fixes and for collecting, processing, and interrelating
position fixes of several targets. The framework provides a



set of basic building blocks, which can be applied for a broad
range of LBS applications and which can be dynamically
configured, for example in order to meet accuracy and up-
to-dateness demands on position fixes. The position man-
agement framework is arranged between a layer representing
the on-target parts of one or several positioning methods and
the LBS application, as illustrated in Figure 1. It is subdi-
vided into so-called low-level and high-level functions and
the on-server parts of positioning methods. The layer of the
low-level functions sits on top of the on-target positioning
methods and provides different methods for exchanging posi-
tion fixes or position measurements between a mobile device
and a location server. The high-level position management
offers advanced functions for LBSs, for example proximity
and separation detection as treated in this paper or k-nearest
neighbor search and clustering. They apply the low-level
functions according to a certain strategy. The on-server po-
sitioning methods sit in between the low-level and high-level
layers and provide estimation of position fixes from position
measurements.

TraX was originally tailored for outdoor use and for Eu-
clidean-distance proximity and separation detection in con-
junction with GPS, see the left of Figure 1. The low-level
methods for exchanging position fixes include: position up-
dating based on dynamically configuration of terminals for
updating their positions when leaving a geographical update
zone (PU Zone), and explicit polling of terminals for imme-
diate reports of their positions (PU Polling). The high-level
layer implements the functions of Euclidean-distance prox-
imity and separation detection based on the so-called Dy-
namic Centered Circles (DCC) strategy [9].

In this paper, the middleware is extended for indoor use of
walking-distance proximity and separation detection in con-
junction with LF, see the right of Figure 1. The low-level
methods for exchanging IEEE 802.11 RSS measurements in-
clude: RSS updating for sending RSS measurements when
leaving a pre-configured update zone (RSS-U Zone), and ex-
plicit polling of terminals for immediate reports of RSS po-
sition measurements (RSS-U Polling). The high-level layer
implements the functions of walking-distance proximity and
separation detection based on the strategy proposed in Sec-
tion 4.

LF positioning is supported in a terminal-assisted mode:
the terminal conducts the RSS measurements and reports
it to the location server, the latter usually on request or
by sending periodic updates. The estimation of the target’s
location then happens at the server, which relieves the ter-
minal from carrying the fingerprinting database and from
applying complex estimation algorithms, thus enabling LF
on resource-constrained terminals. In comparison, other LF
architectures such as network-based or terminal-based setups
can either not support resource-constrained devices or can-
not be efficiently optimized in terms of message overhead as
discussed in Kjærgaard et al. [7].

The RSS-U Zone method as presented in Kjærgaard et
al. [7] is an RSS updating protocol that replaces the pe-
riodic updating of RSS measurements as usually practiced
for terminal-assisted LF. Update zones are translated into
compact RSS patterns, which can be passed to the termi-
nal as a so-called RSS detection request. Based on its cur-
rent RSS measurements and these patterns, the mobile de-
vice can decide whether it stays within or without the zone.
Hence, RSS values are transmitted to the server only when
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needed and the overhead associated with periodic updating
or polling is avoided. For deciding whether the terminal is
within or without the zone with reasonable computational
costs, a Bayes estimator is used that collapses the big prob-
abilistic model over all locations available at the location
server into a simpler one (maximum of 500 bytes), which
distinguishes only between being within or without a con-
figurable set of locations (the update zone). It turned out
that this approach only induces little computational burden
on the device and significantly saves the amount of mes-
sages passing the air interface when compared to periodic
RSS updating. Despite of these advantages, it showed that
the accuracy of the Bayes estimator is comparable to the
classical approach.

4. APPROACH
The presented approach for indoor proximity and separa-

tion detection modifies the DCC strategy for working with
walking distances and combines it with zone-based RSS re-
porting. The DCC strategy dynamically assigns each target
update zones in order to correlate the positions of multi-
ple targets. In indoor environments, such update zones can
be effectively realized with zone-based RSS reporting, and
walking distances between mobile users are much more rel-
evant than Euclidean ones.



4.1 Walking Distances
For calculating walking distances, a topological building

model must be constructed. A building can be described by
a set of elements (rooms, corridors, stairways, etc.), all of
which have a certain spatial expansion and one or more con-
nection points to neighboring elements. A cell is defined as
the basic unit of location the LF system can distinguish, that
is, it is assumed that localization happens in terms of cells
instead of coordinates. A cell usually covers small rooms or
parts of a corridor. A more fine-grained discrimination is
unrealistic, because of the moderate accuracy of current LF
systems. Hence, building elements are always fully covered
by one or more cells, and no cell can be part of more than
one element. For simply calculating walking distances, the
location of a target within a cell is always assumed to be the
center point of the cell’s enclosing rectangle. This model
also solves the determination of walking distances between
rooms on different floors.

However, a problem of this approach is that a target does
not necessarily cross the center points of interjacent cells
when walking from a source to a destination cell. To give an
example, in Figure 2 cells on different sides of the corridor
should be reachable directly and not by passing through the
corridor cell’s center point. As a solution, in addition to
the center point, each cell is associated with a set of tran-
sit points, which connect a cell to neighboring cells. The
topological model of a building is then defined as an undi-
rected connected graph B = {P, E}, where P is the set of
all center and transit points of all cells. The set of weighted
edges E represents the distances between connected points.
The center and transit points of one cell are always fully
connected. Thus, the walking distance dwalk : C × C → R
between two cells is defined as the length of the shortest
path between their center points, which, however, may in-
clude passing interjacent cells through their transit points
only.

4.2 DCC with Euclidian Distances
The classical DCC strategy includes a location server for

monitoring the positions of several targets in order to detect
when a pair of them gets closer to each other than a prox-
imity distance dp or when it separates by more than a sepa-
ration distance ds. The basic message flow between location
server and device is as follows: when proximity or separation
detection is requested for a pair of targets, their positions
are first polled and compared. If the detection condition is
already met, the requesting application is notified and the
procedure stops. Otherwise, position update requests, which
carry the definition of the update zones, are sent to both
of the devices. The zones are chosen in a way that without
any of the two devices triggering an update proximity and
separation respectively cannot occur. The devices then con-
tinuously check generated position fixes against the update
zone. In case of a match, a position update is sent to the
location server. There, the reported position is compared to
the update zones placed on the other target’s device, which
may or may not result in a need to poll it for its exact po-
sition as well. If, based on the exact positions, proximity
or separation is detected, the application is notified and the
procedure stops. Otherwise, new position update requests
are sent to the devices.

The update zones in the DCC strategy are circle-shaped
and centered around the terminal’s last reported position.
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Figure 3: DCC with Euclidean distances.

Figure 4: DCC for cells and walking distances

Positions are reported only when leaving the circle. For
proximity detection, the circle computation works as follows,
compare Figure 3: suppose ti reports its current position
and the neighbor of ti with the closest circle turns out to
be tj . Assuming the circle of tj has the radius rj and the
center point cj , then ti is assigned a new circle with center
point ci set to its current position and with radius ri :=
dist(cj , ci) − rj − dp. In this way it is impossible that the
distance between ti and tj can get below dp without either
of the two leaving its circle and reporting a position update.

For separation detection, suppose that from all targets
tj is farthest away from ti, assuming that tj is located at
the border of its circle in opposite direction to ti, which
leads to the so-called maximum distance between both tar-
gets. The circle computed for ti again has the center point
ci set to its current position, but the radius is set to ri :=
ds − dist(cj , ci)− rj . Analogous to before, the distance be-
tween ti and tj can thus not exceed ds without sending a
position update. By choosing the neighbor tj as described,
the proximity and separation conditions are also guaranteed
with respect to other possible neighbors ti is tracked with.

4.3 DCC with Walking Distances
Indoor proximity detection based on walking distances

uses the proximity distance dp > 0 and an associated bor-
derline tolerance b >= 0. Let ci be the current cell of target
ti and cj the cell of tj . Furthermore, let dwalk(ci, cj) be
the walking distance between the targets’ current cells as
defined before. Then, proximity is checked by the following
conditions:

1. If dwalk(ci, cj) < dp, then proximity must be detected.

2. If dp ≤ dwalk(ci, cj) ≤ dp + b, then proximity may be



detected.

3. If dwalk(ci, cj) > dp + b, then proximity must not be
detected.

For separation detection based on the separation distance
ds > 0 the conditions are defined analogous. The purpose
of the fuzziness interval given by the borderline tolerance b
is to avoid excessive location reporting when the distance
between ti and tj is approaching dp. Without b, it would
be necessary to track the devices on a very fine-grained level
just to determine the exact moment when dwalk(ti, tj) meets
dp. Put differently, the parameter b enables a trade off be-
tween desired detection accuracy and costs in terms of trans-
mitted messages. In any way, it would not make sense to
specify a higher detection accuracy than the accuracy of po-
sition fixes delivered by the used LF system. The reason for
the gain in efficiency when using a bigger value for b is that,
as described more extensively in [9], the minimum radius of
the update circles used by the DCC strategy can be limited
to b

2
. Obviously, bigger circles lead to less position updates

on average.
In order to apply the DCC strategy to the topological in-

door model, the walking distance space (WDS) of a cell is
introduced. Given a radius r, WDS(ci, r) of a cell ci equals
the set of all cells cj whose walking distance dwalk(ci, cj) to
ci is smaller than or equal to r. Hence, instead of geograph-
ical circle-shaped update zones centered around the last re-
ported position, our adaption of DCC for indoors calculates
the WDS with respect to a target’s last estimated cell based
on the calculated radius. This update zone, which is defined
in terms of cells, is then configured at the targets’ terminals
by a respective RSS detection request using the RSS pattern
technique described in [7]. The rest of the DCC algorithm
basically remains the same: when a target ti leaves its up-
date zone, an RSS update is reported to the server. Based
on the update, the current cell ci of ti is estimated. In case
of proximity detection, the minimum walking distance m
between ci and the closest cell of the current update zones
of all other targets tj is calculated. If m is small enough
so that proximity could occur, an RSS polling is issued to
the respective target(s) tj and its (their) current cell(s) cj

is (are) estimated as well. If, based on the cell estimates,
the trigger condition is fulfilled, the application is notified.
Otherwise, the minimum distance the targets ti and tj may
walk without conflicting with one another, or with a zone
of the other targets, is calculated. From these distances,
two update zones (WDSs based on the estimated cells) are
computed and assigned to the targets’ terminals by means
of new RSS detection requests. In case m was not too small
before, only ti is assigned a new update zone, reflecting a
WDS with radius ri := m−dp. For separation detection the
procedure is analogous.

As an example for proximity detection, Figure 4 shows a
scenario inside a building, where the devices of three targets
are configured with update zones (dark areas). Device t1 has
just reported an RSS update and its new update zone has
been calculated as follows: the closest neighboring update
zone to t1’s estimated cell was the one of t3, so that the
distance between the update zone assigned to t1 and t3 is
as close to dp as possible. As a consequence, the walking
distance between the zone of t1 and the zone of t2 is larger
than dp (in the model distances along stairs are weighted
heavier than horizontal ones).

5. EXPERIMENTAL RESULTS
For evaluating the approach, a simple location-based com-

munity service was implemented, which keeps the users of an
office environment up-to-date about which persons of their
buddy list are currently staying within a walking distance
of p or smaller. Each possible pair of buddies is either ob-
served for proximity or separation events. When a proximity
event is detected, the buddy’s name appears on the user’s
proximity list and separation detection is started for both
of them. If, in turn, separation is detected, the person is
removed from the list and proximity detection is restarted.

The fuzziness intervals for separation and proximity de-
tection are made non-overlapping in order to avoid possible
ping-pong effects. For a borderline tolerance of b, prox-
imity detection is initialized with dp = p − b and separa-
tion detection with ds = p. Thus, if the walking distance
dwalk(ti, tj) between two target persons ti and tj is below
p− b, then they must appear on each other’s proximity list.
If p− b ≤ dwalk(ti, tj) ≤ p+ b, then they may appear on the
list. Finally, if dwalk(ti, tj) > p + b, then they must not be
on the list.

5.1 Prototype
In order to show the practical feasibility of our approach

with state-of-the-art equipment, a prototype was implemen-
ted and tested with Fujitsu Siemens Pocket LOOX 720 PDAs
with built-in WiFi (IEEE 802.11) functionality. At the PDA,
the functions for measuring RSS and evaluating RSS detec-
tion requests are implemented as a .NET application for
Windows Mobile 2003 SE. The TraX server is implemented
as a Java application, passing RSS detection requests to the
PDAs and receiving RSS updates from the PDAs. Connec-
tivity to the terminals was provided by a WiFi infrastructure
using a proprietary protocol on top of TCP. For estimating
locations from RSS updates and for computing RSS detec-
tion requests from sets of cells the TraX server utilizes an
existing LF server.

A field test with two targets and an area spanning two
floors with about 30 cells and 14 reachable base stations
was conducted. After experimenting with different configu-
rations, the proximity distance of the community service p
was set to 12 m and the borderline tolerance b to 5 m. First,
the targets walked in different patterns on the two floors.
During one walk, a target went to the second floor while the
other stayed on the first one. Then both targets walked to
the second floor and back together. Finally, both walked up
and back again, however, with the second target following
at a certain distance.

From our experiences, it can be stated that the system
worked properly and most of the time correct proximity and
separation states were reported. However, also wrong or
missing detections were experienced, which, apart from gen-
eral LF inaccuracy, had two reasons: first, some communica-
tion delays happened as a result of roaming between the base
stations used in the experiment. With the used combination
of WiFi driver on the PDAs and type of WiFi access points,
these delays amounted to several seconds, which made the
system miss some detections and also report several detec-
tions in a bulk after the event had already passed. Second,
the sampling rate of the used PDA is only 0.5 Hz, and hence
the position derived at a device is delayed by up to 2 sec-
onds. Considering both devices, the true distance between
two targets then deviates from the measured one by up to 4



Figure 5: Walks recorded at two floors.

seconds of walking.

5.2 Emulation
In addition to the prototype and in order to obtain quan-

titative results, emulations were run based on data collected
from a second test site. This test site offers 31 reachable
WiFi base stations. It was divided up into 126 cells with an
average size of 16 m2 matching rooms or parts of hallways,
spanning two floors. Each cell was fingerprinted by walk-
ing around in the cell for 60 seconds with a laptop that was
equipped with an Orinoco Silver 802.11 card. After that,
six sets of walks were collected, each comprising three 40-
minutes-walks simultaneously performed with three devices,
totaling about 12 hours. The fingerprinting and walk collec-
tion were separated by several weeks. Three of the six walk
sets were recorded by the PDAs also used for the prototype.
The other three used the laptops with the Orinoco cards.
The RSS values were collected at a sampling rate of 0.5 Hz
and 1 Hz respectively. Each sample of a walk contains a
time-stamp, the measured RSS values of the surrounding
base stations, as well as the current ground truth, which
was manually specified on a laptop-shown map. During the
recording of a set of walks always one of the three devices
was kept stationary, while the other two were carried along
different routes through the building. The targets walked at
moderate speeds, with several pauses and over two alternat-
ing floor levels, compare Figure 5.

Based on the recorded data the approach was examined in
terms of efficiency and accuracy. For that, from the zone de-
tection methods presented in [7] the Bayes estimator was se-
lected. As a benchmark for comparison, a reference strategy
based on terminal-assisted LF with periodic RSS reporting
at 1 Hz was assumed. In this way, for all possible pairs of
targets and at every moment in time the location server can
decide whether the proximity criterion is met or not. For
location estimation from reported RSS values at the server-
side the same LF system, which is based on the techniques
described in [4], was used by the proposed DCC strategy as
well as by the reference strategy. The PDA’s RSS measure-
ments were normalized to match the fingerprints collected
with the Orinoco cards using the method proposed in [6].

As explained before, three operations are needed for tar-
get tracking: RSS detection requests, RSS updates, and RSS
pollings. While DCC combines all three operations, the ref-
erence strategy only uses RSS updates. Each of these oper-
ations causes one message in the uplink and another one in
the downlink. The only exception are RSS updates in the

DCC strategy. They need no explicit acknowledgement in
the downlink, because they are always confirmed by a new
position RSS update request message. Technically, up- and
downlink have different resource-consuming properties and
should be treated separately. For brevity, however, they are
not distinguished in the following and the total number of
messages transferred per target is summed up.
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Figure 6: (a) # of messages dependent on proximity
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of terminals

Another issue is the amount of transferred data. While
message acknowledgments as well as polling requests (the
downlink message of an RSS polling) are very lightweight,
RSS updates as well as polling responses carry measured
RSS values, which amounts to more data. For example, the
Orinoco and the PDA walks contain on average around 5-7
base stations per sample. Furthermore, experiments with an
Apple Airport Express card yielded about 14 visible stations
at a time. However, in practice only the 5-7 strongest sta-
tions need to be reported, because including more stations
will not significantly increase the accuracy. Thus, the size
of an RSS update has an upper limit, which, however, is de-
pendent on the underlying technology. The RSS detection
request messages (downlink) have the biggest size, which,
according to [7], can be limited to 500 bytes for the Bayes
estimator. For the other (more inaccurate) RSS detection
methods, the size is typically smaller.

Whether the goal is to save transferred bytes or messages
depends on the constraints considered. Monetary costs for
transmission over public bearer services like GPRS or UMTS
are typically billed according to data volume in bytes. On
the other hand, server scalability is rather constricted by the
number of messages that have to be handled in the uplink.
Considering physically limited resources like the air-interface



or the battery power at the device used for message sending
and receiving, the number of transmitted frames seems most
critical. For IEEE 802.11 this figure equals the number of
transferred messages, because all described message types
are small enough to fit within one 802.11 frame. There-
fore and also because the number of bytes per message can
be specified rather arbitrarily, the following evaluation only
discusses the number of transferred messages.

For evaluating message efficiency, three parameters were
varied: the proximity distance p, the number of terminals
observed in a pairwise fashion (i.e., the size of the buddy
list), and the borderline tolerance b. Additionally to the
DCC and the reference strategy based on collected RSS val-
ues, DCC was also performed on ground truth, which be-
haves as if the RSS detection requests worked with perfect
accuracy.

Figure 6a shows the number of messages transferred per
target dependent on p averaged for the three walk sets col-
lected with the Orinoco cards. The time was normalized to
10 minutes. Three things become apparent: first, in compar-
ison to the reference strategy, DCC based on RSS reduces
the amount of messages strongly (about factor 9). Second,
the performance of all three approaches is rather indepen-
dent from the chosen proximity distance. While this was
expected for the reference strategy, which steadily sends 120
messages per minute, for DCC this can be explained by the
fact that independent of the current distance of a pair of tar-
gets and p, both of them are permanently observed either
for proximity or for separation events. The third observa-
tion is the difference between the performance of DCC based
on RSS and DCC based on ground truth. The former trig-
gers about 2.5 times as much messages as the latter. Obvi-
ously, the employed RSS detector (Bayes estimator) triggers
a number of wrongly sent RSS updates, which do still be-
long to the cells contributing to the update zone and which
are therefore correctly not sent by DCC based on ground
truth. However, it can be stated that the difference between
the real and the ideal DCC detector is still acceptable when
taking into account the savings compared to the reference
strategy. Also, it must be stated that the collected walks
represent a mobility pattern presumably more mobile than
in a typical office scenario.

Figure 6b shows the number of messages per target de-
pendent on the number of pairwise observed targets. For
this, all of the 3 ∗ 3 = 9 walks collected with the Orinoco
cards were aligned in time and played simultaneously. Ex-
pectedly, the number of messages per target used by the ref-
erence strategy stays the same, while for DCC it increases.
The proportion between messages sent by DCC based on
RSS and DCC based on ground truth starts with a value of
2.8:1 for two targets, then slowly decreases with an increas-
ing number of targets and settles at a value of about 1.8:1
for five to nine targets. The slope of the DCC curves is not
too steep, so that the approach seems practicable even for
bigger buddy lists. Note that the number of targets tracked
pairwise (equals the size of the buddy list) is not equal to the
number of users of the community services. While our aim
is to make the service scalable to thousands of users, this
examination was related to the size of a single user’s buddy
list, that is, the number of users she constantly wants to
keep track of, a figure which is assumed to be rather small.
Thus, by limiting the number of messages per user as de-
scribed before, server scalability in terms of the number of

users is improved.
Figure 7a depicts the message overhead dependent on the

borderline tolerance b. For the Orinoco cards as well as for
the PDAs, all three-person-walk sets were averaged. Two
observations are noteworthy here: first, the number of mes-
sages in all configurations decreases by roughly the same
factor of about 50 % from b = 1 to b = 24. This can be
explained by taking into account that the minimum radius
measured in walking distance of a DCC zone is limited to b

2
.

Thus, with an increasing b the minimum zone size increases,
which leads to a decreasing number of RSS updates. The
second observation is that DCC with RSS performs consid-
erably worse for the PDAs than for the Orinoco cards (the
factor ranges between 2.6 and 3.8). One reason for this may
be that the PDA’s RSS measurements need to be normalized
as described before to match the fingerprints in the database,
which were collected with the Orinoco card. The normal-
ization function does, however, not perfectly account for the
difference in RSS measuring between the Orinoco card and
the PDA, which degrades accuracy in general. Hence, the
RSS detectors at the PDAs produce more wrongly sent RSS
updates.
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Figure 7: (a) # of messages dependent on borderline
tolerance b, (b) Accuracy dependent on borderline
tolerance b

The application-level accuracy of the presented strate-
gies is analyzed according to a simple metric: based on
the ground truth at each moment in time and for each
pair of tracked targets ti and tj , the current walking dis-
tance dist(ti, tj) is computed. It is mapped onto a state
X ∈ {P, F, S} with X = P if dist(ti, tj) < p−b (ti and tj are
in proximity), X = F if p− b ≤ dist(ti, tj) ≤ p + b (they are
within the fuzziness interval), or X = S if dist(ti, tj) > p+b
(they are separated). Based on this mapping, the number



of situations (time frames of one second) are counted where
the DCC and the reference strategy indicate a wrong state
information, that is, when the state XDCC or Xref deviates
from the ground truth Xgt. However, a wrong state infor-
mation is only logged when Xgt = P or Xgt = S, because
within the fuzziness interval both states are allowed. The
metric is very simple, because in the tested service there
is an interplay between proximity and separation detection.
For testing the events separately, it would be necessary to
consider false and true positives and negatives respectively
and derive from that metrics like sensitivity and precision.
In this case, however, a positive with respect to proximity
detection is a negative for separation detection. Since both
situations (X = P and X = S) have a comparable proba-
bility (dependent on the building layout and the proximity
distance), the two event types actually cancel each other out
and hence one accuracy metric suffices.

Figure 7b plots the achieved accuracy (that is, the per-
centage of situations where no wrong state information is
given) for the DCC as well as for the reference strategy.
First, for all curves the accuracy increases with an increas-
ing borderline tolerance, which is due to the decreasing im-
pact of LF inaccuracy on distinguishing the states S and P .
Second and confirmatory for the good applicability of the
DCC strategy, its accuracy is generally not worse than that
of the reference strategy. It performs even slightly better
for a low borderline tolerance and slightly worse for higher
borderline values. Third, the Orinoco measurements yield a
higher accuracy than those of the PDAs. However, it can be
stated that in general a high accuracy is achieved (all four
strategies are always above 94.5 %), even for a low borderline
tolerance.

6. CONCLUSION AND FURTHER WORK
The paper has demonstrated that proactive proximity and

separation detection can be effectively realized for indoor
environments, while being resource-aware at the same time.
The evaluation showed that the presented approach can de-
crease the number of transmitted messages with a factor of
9. The approach is feasible for very resource-limited devices
like mobile phones or active tags and makes use of state-of-
the-art LF technology and device hardware. Also, despite
the general inaccuracy of LF, it turned out that at an ap-
plication level a rather high detection accuracy above 94.5%
can be achieved. A possible extension to the described com-
munity service, which recognizes targets closer than a static
threshold, would be a buddy tracker that constantly shows
the user a sorted list of the n-nearest-neighbors among his
buddies. One piece of future work is to show how such a
service can be realized by dynamically applying proximity
and separation detection to pairs of targets.
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[9] A. Küpper and G. Treu. Efficient proximity and
separation detection among mobile targets for
supporting location-based community services. ACM
SIGMOBILE Mobile Computing and Communications
Review, 10(3):1–12, July 2006.
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