
A Pro-active Mobility Extension for Pub/Sub Systems
Abdulbaset Gaddah

Carleton University
1125 Colonel By Drive

Ottawa, Ont., Canada K1S 5B6

agaddah@sce.carleton.ca

Thomas Kunz
Carleton University

1125 Colonel By Drive
Ottawa, Ont., Canada K1S 5B6

tkunz@sce.carleton.ca

ABSTRACT

In this paper, we propose a novel and efficient mobility extension
based on a pro-active approach (i.e., the context transfer/caching
occurs prior to the subscriber movement) with the objective to
extend existing pub/sub systems to the mobile environments. We
also describe the notion of neighbor graph, which forms the basis
for pre-loading the subscriber context one hop ahead of its current
location. We have investigated the adequacy of our proposed pro-
active approach in supporting mobile subscribers and compared
its behavior with a durable subscription-based approach adapted
by JMS-based pub/sub systems. The experimental results show
that our pro-active approach reduces the message loss by more
than 50% and the message duplication to zero compared to the
durable subscription-based approach. It also achieves better
throughput results with low cost in terms of mobility extension
overhead.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – distributed application; C.4 [Computer Systems

organization]: Performance of Systems

General Terms

Algorithms, Design, Performance, Experimentation

Keywords

Pub/Sub systems, mobility, JMS, Wireless network, middleware

1. INTRODUCTION
Computing devices with wireless connectivity are rapidly gaining
popularity, as our dependence on the data accessed through them
is growing. Users anticipate to access different information and
services while they are roaming. Due to the limited and dynamic
resources of the mobile computing systems, users may voluntary
or involuntary disconnect from the network (i.e., running out of
battery, loss of connectivity, commuting between locations). They
expect that data disseminated while they are disconnected can be
persistently buffered and delivered upon their reconnection. These
constraints raise the demand for middleware infrastructure, based
on a flexible and scalable interaction style, to meet the dynamic

nature of mobile computing, and facilitate the development of
innovative applications.

The pub/sub interaction paradigm has been widely used to model
information dissemination applications [3], where publishers are
event producers, subscribers are event consumers, and brokers are
event dispatchers. Publishers notify the outside world about the
occurrence of certain events. Subscribers express their interest in
receiving a particular set of events by means of subscriptions.
Upon receiving a new event, the event broker matches the event
against all the subscriptions and then forwards it to all interested
subscribers. The decoupling of publishers and subscribers in time,
flow, and space along with the anonymous features of the pub/sub
systems make them a good choice for supporting mobile, wireless
systems in a natural manner. Most existing middleware systems
are optimized for fixed environments (i.e., clients do not roam and
the infrastructure itself is fixed). Hence, several add-on protocols
are needed to extend such systems to support mobile subscribers.

One approach of extending pub/sub systems is based on the use of
durable subscriptions along with persistent notifications [4][11].
In this approach, the network of distributed brokers buffers
persistent notifications irrespective of their current active
subscriptions until the notifications are no longer valid. When the
mobile subscriber reconnects to the system, only the valid
notifications are delivered to it in the published order. Such an
extension may increase the overall overhead of distributed brokers
due to the costly buffering process. This may result in degrading
the system’s performance. Also, the number of lost notifications
can increase as the buffer space drains quickly or the notifications
become invalid due to a large disconnection interval. Duplicated
messages can be received when the subscribers reconnect to the
previously visited brokers.

We propose a novel and efficient solution that is based on a pro-
active approach, i.e. the context transfer/caching occurs before the
subscriber movement. This is achieved with the help of a data
structure, neighbor graph, which dynamically captures the subset
of brokers to which the subscriber context should be forwarded.
Our approach is based on the notion of a replicator proxy, that is,
the proxy creates a dummy replica of the moving subscriber to act
on its behalf. To minimize the overhead of state-transfer, we only
transfer the subscriptions of each subscriber to the next-hop future
brokers rather than its actual events. These subscriptions are only
activated when the subscriber disconnects from the network and
deactivated once it reconnects. During the deactivation process,
events that belong to such subscriptions are garbage collected.
Our experimental results show that the pro-active approach
reduces the message loss by more than 50% and message
duplication to zero compared to the durable subscription-based
approach. Moreover, our approach decreases the overhead on the
distributed brokers as the buffering process occurs upon demand.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware’08, February 12-15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2762

We believe that our experimental results are valid for various
pub/sub systems when they are deployed in a mobile, wireless
environment.

With respect to previous work in extending the pub/sub systems,
Caporuscio et al. evaluated the behavior of SIENA [1] in wired
and GPRS-based networks. They mainly focused on measuring
the performance of a mobility extension developed specifically for
extending SIENA to mobile, wireless domains. Their
experimental results investigated the number of duplicated and
lost messages, but defined no other metrics to evaluate the system
performance. Ivana and Ignac [11] proposed a mobility extension
that delivers only valid events to the subscribers just after the
activation of their subscriptions. Expired events are removed from
their buffers. Each broker maintains a list of valid events that have
been sent to the subscribers and neighbor brokers. Subscribers
must provide a list of the previous received events to avoid
duplicate events. This approach clearly creates extra traffic in the
broker network, and increases the usages of broker memory and
processing time. In contrast, our approach reduces this overhead
as it propagates only the subscriptions to the neighboring brokers
and buffers events on- demand. Umar et al. [4] presented their
experience in evaluating the performance of a commercial JMS-
based pub/sub system in wired/wireless networks. The nature of
their work differs from ours as it mainly focuses on studying the
effect of some mobility parameters on the system performance and
did not propose a new mobility extension. The REBECA [7] has
recently been extended to support mobility. The last visited broker
plays the role of a proxy subscriber. When a subscriber reconnects
to a new broker, it re-submits its subscriptions. The new broker
finds the junction of delivery paths to the new and old brokers by
inspecting its routing table and its list of received advertisements,
and compares it to the received subscription. It then sends a
fetching request to the old broker to retrieve the subscriber events.
The events stored by the old broker are routed through the
junction to reach the new broker, and then the subscriber. It has
not justified why subscribers cannot maintain the information
about the last visited broker. There are currently no results that
evaluate the performance of the approach. The mobility extension
in ELVIN [13] uses a central caching proxy server that mediates
the original server and mobile units for caching events for
disconnected subscribers. This approach creates a performance
bottleneck at the proxy server as the subscribers must always
reconnect to the central proxy. It also induces significant network
traffic due to potential triangular routing. JEDI [2] has added an
extension to support mobility that is based on explicit moveIn and
moveOut operations to relocate subscribers. Subscribers explicitly
trigger these operations during the handoff process, which can be
problematic if a wireless connection breaks down unexpectedly
due to physical mobility or interference.

The paper is organized as follows. Sect. 2 presents the pro-active
context distribution algorithm that is based on the notion of
neighbor graph. Sect. 3 describes the implementation of the pro-
active approach. Sect. 4 illustrates the experimental setup. Sect. 5
evaluates and compares the behavior of pro-active and durable
subscription-based approaches. Sect. 8 concludes this paper.

2. PRO-ACTIVE APPROACH
The core idea of our pro-active approach is largely based on a
mechanism that intelligently transfers/buffers subscriber context
(subscriptions/messages) one hop ahead of its current broker prior

to the actual movement of the mobile subscriber. We also present
the notion of neighbor graph that forms the basis of this approach
as it dynamically captures the candidate subset of brokers to
which subscriber-context should be pro-actively forwarded and
buffered.

2.1 Pro-active Context Distribution Algorithm

Pro-active Context Distribution Algorithm

Step 1: IF subscriber S connects to Bj THEN
 FOR all Bi Є Neighbor(Bj) DO
 Propagate_Sub(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 2: IF subscriber S disconnects from Bj THEN
 FOR all Bi Є Neighbor(Bj) DO
 Activate_Sub(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 3: IF subscriber S reconnects to Bj THEN
 FOR all Bi Є Neighbor(Bj) DO
 Deactivate_Sub(Bj, S, Bi)
 Remove_Msgs(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 4: IF subscriber S reconnects to Bk from Bj THEN
 Propagate_Msgs(Bj, S, Bk)
 FOR all Bi Є Neighbor(Bj) DO
 Remove_Sub(Bj, S, Bi) /* i ≠ k */
 Remove_Msgs(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 5: IF subscriber S reconnects to Bj from Bk THEN
 IF Sub(S) is not in Buffer(Bj) THEN
 Obtain_Sub(Bk, S, Bj)
 Obtain_Msgs(Bk, S, Bj)
 ENDIF
 FOR all Bi Є Neighbor(Bj) DO
 Propagate_Sub(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 6: IF subscriber S unsubscribes from Bj THEN
 FOR all Bi Є Neighbor(Bj) DO
 Remove_Sub(Bj, S, Bi)
 Remove_Msgs(Bj, S, Bi)
 ENDFOR
 ENDIF

Step 7: IF Bj receives Sub(S) or Msgs(S) from neighbors
THEN
 Store(Bj, Sub(S)) or
 Store(Bj, Msgs(S))
 ENDIF

Step 8: IF Bj triggers Timeout(S) THEN
 FOR all Bi Є Neighbor(Bj) DO
 Remove_Sub(Bj, S, Bi)
 Remove_Msgs(Bj, S, Bi)
 ENDFOR

ENDIF

Figure 1. The pro-active context distribution

We next describe our pro-active context distribution algorithm.
The algorithm can be decomposed into the following three steps:
(1) propagate/buffer subscriptions to/at the neighbor brokers; (2)
activate subscriptions and buffer messages locally; (3) deliver
messages and reset buffer. Figure 1 presents the pseudo code for
the algorithm that is executed on broker Bj.

The following notation is used in the description:

• S: denotes a subscriber who is potentially mobile.

• Bj: denotes the initial hosted broker for subscriber S.

• Bi: denotes the next-hop broker to Bj.

• Neighbor(Bj): refers to the set of neighbor brokers of Bj.

• Timeout(S): refers to a chosen T time to keep handling
Sub(S) and Msgs(S) of a disconnected subscriber S. when T
expires, subscriber context is garbage collected. (T ≥ average
handoff interval at all brokers).

• Sub(S): denotes the subscriptions related to subscriber S.

• Msgs(S): denotes the messages related to subscriber S.

• Propagate_Sub(Bfrom, S, Bto): denotes the propagation of
Sub(S) from Bfrom to Bto.

• Propagate_Msgs(Bfrom, S, Bto): denotes the propagation of
Msgs(S) from Bfrom to Bto.

• Obtain_Sub(Bfrom, S, Bto): denotes that Bto obtains Sub(S)
from Bfrom.

• Obtain_Msgs(Bfrom, S, Bto): denotes that Bto obtains Msgs(S)
from Bfrom.

• Remove_Sub(Bold, S, Bnghbr): denotes that Bold sends a
notification message to Bnghbr in order to remove Sub(S) from
the Bnghbr buffer.

• Remove_Msgs(Bold, S, Bnghbr): denotes that Bold sends a
notification message to Bnghbr in order to remove Msgs(S)
from the Bnghbr buffer.

• Store(Bj, Sub(S)): store the subscriptions of subscriber S
into the buffer of Bj.

• Store(Bj, Msgs(S)): store the messages of subscriber S into
the buffer of Bj.

• Buffer(Bj): denotes the buffer maintained at Bj.

• Deactivate_Sub(Bold, S, Bnghbr): Bold sends a notification
message to Bnghbr in order to deactivate Sub(S) at the Bnghbr.

• Activate_Sub(Bold, S, Bnghbr): Bold sends a notification
message to Bnghbr in order to activate Sub(S) at the Bnghbr.

This algorithm makes a few assumptions about the target pub/sub
system. It assumes a set of brokers organized in a general graph
(or a peer-to-peer) topology to form a distributed communication
service. The peer brokers directly communicate with each other to
exchange subscriptions and messages. We also assume that all the
generated messages are sent to all the brokers in the system. This
assumption is based on [10] that strongly recommends this
strategy in highly mobile environments due to the practical limit
on the number of multicast addresses and related overheads. Our
algorithm is only limited to manage subscriber mobility, and is
not concerned about publisher mobility explored by others [8]. A
stepwise description of this algorithm is given next.

Step 1 of the algorithm is started when a subscriber S connects to
a certain broker Bj in the system. The broker Bj propagates a
passive copy of the subscriber’s subscriptions Sub(S) to all the

brokers Bi that are neighbors of the broker Bj Neighbor(Bj). Each
neighbor broker Bi locally stores Sub(S). In the meantime, the
subscriber S consumes its messages from the broker Bj through its
active subscription. The pro-active algorithm is based on the
notion of a neighbor graph, which will be described later in this
section. The neighbor graph is automatically build and maintained
by each broker in the system.

Step 2 of the algorithm is started as the subscriber S temporarily
disconnects from the network due to poor network connectivity or
handoff procedure. Since the broker Bj does not receive an
acknowledgement from the subscriber S, after some re-transmit
attempts it considers S as temporarily disconnected and thus sends
an Activate_Sub(Bj, S, Bi) request to all the brokers Bi that are in
Neighbor(Bj). The brokers Bi acknowledge the receipt of this
request and activate the Sub(S). Accordingly, all the neighbor
brokers Bi will locally buffer all the incoming messages Msgs(S)
that match the Sub(S). It should be noted that the message ID of
the last message the subscriber S consumed (for each
subscription) is enclosed with the activation request and the
neighbor brokers Bi only buffer the messages after the message
with this ID. Similarly, the broker Bj keeps buffering the messages
for the subscriber S as it may reconnect to it again.

Step 3 of the algorithm is started when the subscriber S reconnects
to the same broker Bj. This results in sending a
Deactivate_Sub(Bj, S, Bi) message to all neighbor brokers Bi
requesting them to deactivate the Sub(S) and to terminate the
buffering process. Then, a Remove_Msgs(Bj, S, Bi) message is
followed requesting to clean up the local buffer of each neighbor
broker Bi. In the meantime, the broker Bj delivers all the buffered
messages to the subscriber S.

Step 4 of the algorithm is started when the subscriber S reconnects
to a different broker Bk. The broker Bk informs the broker Bj that
the subscriber S reconnected to it. First, the broker Bj sends all the
messages missed during the process of Activate_Sub(Bj, S, Bi)
process to the broker Bk as discussed in step 2. Then, it sends two
messages, Remove_Sub(Bj, S, Bi) and Remove_Msgs(Bj, S, Bi), to
all the Neighbor(Bj) excluding the broker Bk. These messages
remove the Sub(S) and Msgs(S) from the local buffer of all the
Neighbor(Bj). The broker Bk is excluded from receiving these
messages as the subscriber S is connected to it. One point worth
mentioning here is that the Remove_Sub(Bj, S, Bi) semantic will
change as the neighbor graph is built. Both brokers Bk and Bj
exchange their neighbor graph tables in order to reduce the
overhead of deleting/inserting Sub(S) requests. Throughout the
neighbor graph table, the broker Bj decides which Sub(S) should
be deleted and which Sub(S) should be deactivated for later use by
the broker Bk. Similarly, the broker Bk can identify which Sub(S)
should be propagated to its neighbors.

Step 5 of the algorithm is started as the subscriber S reconnects to
the broker Bj from the broker Bk. The broker Bj first checks if the
context of the subscriber S, i.e. Sub(S) and Msgs(S), is available in
its buffer. If the subscriber’s context is not in the buffer then the
broker Bj will inform the broker Bk to send the subscriber’s
context. This may happen in two different scenarios: (1) the
broker Bk is not a neighbor of the broker Bj. Therefore, the broker
Bj has no information about the subscriber S. (2) the subscriber S
is the first to visit the broker Bj from its neighbor Bk. If the
subscriber’s context is found in the buffer of the broker Bj, similar
actions to step 1 will take place.

Step 6 of the algorithm is started as the subscriber S deletes one of
its subscriptions. As a result of this request, the broker Bj issues
two messages, Remove_Sub(Bj, S, Bi) and Remove_Msgs(Bj, S,

Bi), to all its neighbors. These two messages will respectively
delete the subscriber’s subscription Sub(S) and its related
messages if there are any in the buffer.

Step 7 of the algorithm is started when the broker Bj receives the
subscriber’s context from the broker Bk. The subscriber’s context
will be stored in a persistent buffer.

Step 8 of the algorithm takes place as the subscriber S disconnects
from the broker Bj for good. When the disconnected time reaches
the timeout period, the broker Bj sends a request to its neighbors
to remove the subscriber’s context from their buffers. This is a
necessary step as buffering and managing the subscriber’s context
can severely affect the broker performance.

2.2 Neighbor Graph
The neighbor graph is an undirected graph with a set of edges that
represent mobility paths between the vertices (or brokers). Hence,
the neighbors of a given vertex v in the graph correspond to the
set of potential next brokers. As it is difficult to predict the
subscriber movement, we need to identify the candidate subset of
next future brokers in order to transfer/buffer the subscriber-
context prior to the occurrence of the handoff process (pro-

actively). The neighbor graph provides the abstractions to achieve
this goal.

2.2.1 Neighbor Graph Generation
The neighbor graph can be generated either in a static manner,
i.e., manually constructed once and never changes over time, or in
a dynamic manner, i.e., automatically generated and adaptively
changes according to the mobility graph. A static neighbor graph
is problematic as it fails to approximate the mobility graph which
changes dynamically over time. Hence, we chose to dynamically
construct an adaptive neighbor graph.

There are two complementary methods for the brokers to learn the
edges in the graph. The first method is to embed the address of the
old broker with the reconnection request sent by the subscriber to
the new broker, thereby establishing the reconnection relationship
between the two brokers. The second method is to use the request
for message transfer received from another broker to establish the
relationship. Each broker locally manages the edges in a Least
Recently Used (LRU) approach. This is essential to remove the
outlier edges, i.e. the ones that do not model recently-used
relationship. Such edges may temporarily occur when a mobile
subscriber puts its terminal in power save mode and moves to
different locations to reconnect to any other broker in the network
topology. As a result, a timestamp based LRU method ensures the
freshness of the neighbor graph, and removes the outlier edges
over time. The autonomous creation of the neighbor graph makes
it adaptive to dynamism in the reconnection relationship (i.e.,
adding and removing brokers, network topology changes).

Each broker locally stores its neighbor graph, i.e., the list of its
neighbor brokers. The whole graph thus is stored in a distributed
manner. The following pseudocode is used to generate the local
view of the graph that is executed at each broker. Here, we refer to
the broker that executes the algorithm as Bcurrent.

• Receive a reconnection request: As a mobile subscriber S
reconnects to Bcurrent from Bi, Bcurrent adds Bi to its list of
neighbors.

• Receive a subscriber-context transfer: As a broker Bcurrent
receives a context transfer from Bi, it adds Bi to the list of
neighbors.

• Entity-deletion: If none of the above addition operations takes
place during a given timeout interval T, the Bi entity will be
removed from the neighbor graph. T ≥ the average frequency
interval of addition operations at all broker nodes.

It should be noted that the first subscriber to cross over an edge
will receive its context in reactive fashion. This will be gradually
changed to pro-active fashion as the edges are added to the graph.
The edge degree of a given broker (vertex) in a neighbor graph is
the number of outward edges from that broker. It determines the
overhead of context transfer/caching in the pro-active approach.
To control this overhead, the broker’s degree can be bounded by a
fixed upper bound (M).

3. IMPLEMENTATION
The pro-active approach is implemented within an independent
layer of proxies between the subscribers and their messaging
brokers. This layer is mainly responsible for replicating dummy
subscribers at the next future brokers to buffer messages on behalf
of the moving subscriber. It also dynamically captures the
mobility graph of the distributed brokers’ network to identify the
subset of next neighboring brokers. A single proxy process runs
with each broker to manage user mobility from one broker to the
other. Note that the proxy layer is completely transparent to the
brokers and the applications. We have integrated a monitoring
component with the broker process to transparently track the
subscribers’ states (i.e., connect, disconnect, handoff) as well as
the ID of the last message consumed by the subscriber. Also, each
subscriber has to keep track of the last broker to which it was
connected to.

When a subscriber connects to a broker, the proxy will be notified
and receives a copy of the subscriber’s subscription. The proxy
locally stores the subscription and uses it to instantiate an inactive
dummy subscriber. In the meanwhile, it propagates a copy of the
subscription to all neighbors, and instructs its peers to create the
same dummy subscriber using the forwarded subscription. When
the subscriber disconnects from the network, all the
corresponding dummy subscribers at the neighboring brokers are
activated to buffer messages on behalf of the disconnected
subscriber. The dummy subscribers use the ID of the last received
message of the actual subscriber to prevent message duplication.
Therefore, only messages with higher ID are stored for the
subscriber. When the subscriber reconnects to a new broker, the
proxy at that broker notices this and informs the related dummy
subscriber to stop storing messages and to return to inactive
mode. The broker in the meanwhile starts delivering the stored
messages to the subscriber. The set of neighbor graphs located at
the old and new brokers now must be inspected to ensure that new
dummy subscribers are created on all neighboring nodes of the
new broker and old dummy subscribers are either removed or
deactivated. In this implementation, tracking the address of the
broker is necessary as it is needed during the creation process of
the neighbor graph and when the reactive approach is applied

before the building of this graph. We also use the broker address
to distinguish the handoff state from the reconnect state.

4. EXPERIMENTAL SETUP
For our experimental study, we have chosen Java Message Service
(JMS) [12] as our base pub/sub platform. We have incorporated
our pro-active extension into the selected JMS implementation to
explore its behavior and compare it with the durable subscription-

based approach supported by JMS implementations. JMS offers
several modes that lend themselves well to the mobile, wireless
environments. It adapts two subscription modes, nondurable and
durable. In the nondurable mode, messages are forwarded only to
subscribers who are presently online while in the durable mode
messages are also forwarded to subscribers that are not currently
connected. JMS also offers two communication modes, point-to-

point and pub/sub. In this study, we consider the durable and
pub/sub modes. Detailed descriptions of the JMS features can be
found in [12].

We performed all our experiments on an overlay network of six
Intel based Pentium 4 nodes running RedHat Linux 9, inter-
connected by a 100 Mbps switch. Two nodes were used for
running two instances of the JMS broker. A router node was used
for running a wireless network emulator. One node was used for
running a single, stationary message publisher. The remaining two
nodes were used for running the mobile subscribers. Subscribers
that share the same machine run in separate threads and establish
separate connections, but use the same Java Virtual Machine and
JMS Client library. The JVM used for running the brokers and the
clients is Sun SDK 1.4.2, started with the options –Xms64m and –
Xmx256m as a minimum and maximum heap size. Although this
is a limited configuration, it is sufficient for the purpose of this
paper: evaluating different mobility support extensions.

The JMS supports content-based filtering with the help of
message selectors (conditional expressions). It allows subscribers
to specify their selectors as an argument when they create their
subscriptions to express their interest in receiving a certain set of
messages. In our setup, each subscriber exploits a specific selector
range that is randomly chosen to be 1/5th of the total selector
range. Similarly, the message publisher assigns a single selector
value ranging from 0 to 99 with each generated message.

A mobile subscriber in this setup represents an application
running on a mobile terminal that transparently moves from one
broker to the other. It initially registers with one of the two JMS
brokers by sending a single durable subscription. Through a
mobility scenario written in Java, the subscriber keeps migrating
between the two brokers during the course of the experiments. In
our experiments, subscriber threads were created and executed on
two stationary machines. Subscribers are initially split evenly
between the two JMS brokers. However, due to mobility, the
number of subscribers at each broker fluctuates over time,
resulting in brokers serving a relatively lager number of
subscribers at times while at other times the broker may serve
only a small number of subscribers.

A Java program is implemented to model subscribers’ mobility.
Each subscriber goes through different mobility states as
described next. The connect state is the starting point for all
subscribes in our mobility model: a subscriber is connected to one
of the two JMS brokers and consumes messages. Each subscriber
remains in this state for a randomly generated, exponentially
distributed time with a mean β=60 seconds. With an equally and

randomly selected probability, a subscriber either moves to
disconnect or handoff state. The disconnect state reflects the case
of signal breakdowns due to poor network connectivity. A
subscriber remains in this state for a randomly generated,
exponentially distributed time with a mean δ=10 seconds. With a
similar probability, the subscriber moves either back to the
connect state and reconnects to the same broker or goes to the
handoff state. The handoff state corresponds to the case where a
subscriber moves out of the covered range of its previous broker.
After staying in the handoff state for a randomly generated,
exponentially distributed time with a mean δ=10 seconds, the
subscriber moves back to the connect state and connects to a
different broker.

All the communications between the subscribers and the brokers
are tunneled via an emulated wireless channel that is created using
a network emulator called NistNet [9]. NistNet is a popular
software tool that is implemented as a kernel module extension to
the Linux operating system. It can be used to emulate various
network environments. We used NistNet to model the
characteristics of an IEEE 802.11 wireless LAN network based on
a set of configuration parameters such as packet delay, packet
loss, packet duplication, and network bandwidth. All these
parameters were set to the most commonly used values reported
for IEEE 802.11 wireless LAN networks [6][14].

The reported results were captured from the measurement data
obtained under different workloads. Each experiment was run for
a duration that was long enough to reach a steady state. We
ensured that the publisher/subscriber machines were not the
bottlenecks in our experiments. We kept both CPU and memory
utilizations at less than 65%, thereby preventing publisher and
subscriber bottlenecks from impacting the overall system
performance. Each broker machine was fully dedicated to running
a single instance of the JMS broker. Before running any
experiment, topic destinations and message stores were purged
and reinitiated to start each test with a clean slate. All subscribers
were consuming messages in asynchronous manner. Each
subscriber was using a separate connection to receive its
messages. Network latency for creating subscribers’ connections
was not included in our results.

4.1 Performance Measures
• Subscriber throughput (Ts): Total number of messages

received per second. It is obtained by adding up the number of
messages received by individual subscribers and dividing by
the total duration of the experiment.

• Percentage of message loss (L): Percentage of missed
messages by all the subscribers. It was obtained by calculating
the difference between the total published and received
messages and then dividing by the total published messages.

• Percentage of message duplication (D): Percentage of
duplicated messages received by all the subscribers. It is
obtained by dividing the total duplicated messages by the total
received messages.

• Message processing time (Ls): Average processing time that it
takes the broker to process messages. It is obtained by adding
up the processing time of each message and then dividing the
total by the total number of received messages.

• Handoff latency (H): Time between sending the reconnect
request and receiving the first message of the corresponding

subscriber at its new broker.

5. PERFORMANCE EVALUATION AND

COMPARISON
This section evaluates and compares the behavior of the pro-
active and durable subscription-based approaches in terms of
mobility service overhead, handoff latency, message
loss/duplication, and overall throughput.

5.1 The Mobility Extension Overhead
The overhead of using the pro-active and durable subscription-
based extensions is evaluated in terms of two different metrics:
the average processing time of the messages and the aggregated
throughput of the subscribers. These metrics provide a good
indicator of the overhead incurred by both extensions. To study
this overhead under different load conditions, we have varied the
total number of subscribers that can be served by the brokers.

Figure 2 shows the incurred message processing time (Ls) and the
overall throughput (Ts) as the subscriber population increases.
From the figure, it can be observed that there is a proportional
relationship between the message processing time and the number
of served subscribers. This is an expected behavior of the system
since increasing the number of subscribers adds extra load on the
system, thereby the message processing time increases. The graph
shows that the pro-active approach experiences a relatively higher

overhead in terms of message processing time compared to the
durable subscription-based approach. This can be attributed to the
additional load on the brokers to serve dummy subscribers, which
is not present in the durable subscription-based approach. This
load includes managing extra connections, (de)activating dummy
subscribers, and purging buffers. On the other hand, the pro-
active approach shows better throughput than the durable
subscription-based approach as it prevents message duplication
and minimizes message loss. The pro-active approach therefore
offers a tradeoff between the message serving overhead and the
overall throughput.

5.2 The Handoff Latency
We evaluate the handoff latency under different load conditions
imposed by the number of served subscribers (10, 50, 100, 150,
and 200). We define the handoff latency as the time between
sending the reconnect request and receiving the first message of
the corresponding subscriber at its new broker. Figure 3 shows the
cumulative distribution graph of the handoff latency observations.

From the figure, we observe that the pro-active and durable-based
approaches show approximately similar handoff latency. Almost
80% of the handoffs are performed in less than 48 and 40 ms with
the pro-active and durable-based approaches respectively. This
indicates that the pro-active approach imposes low handoff
latency as the subscriber context is always available at its new
location prior to its movement. A portion of the handoff latency in
the pro-active approach is a result of the switchover process
involved between the actual and dummy subscriber before the
buffered messages start being forwarded. While the actual
subscriber takes over the dummy one should be deactivated and
all neighbors should be notified about the arrival of the actual
subscriber. Another portion of this latency, which also exists in
the durable-based approach, is attributed to the preparation time
for the broker to start delivering the stored messages. This time is
mainly based on the broker’s load conditions.

5.3 Overall Performance
We evaluate the behavior of pro-active and durable subscription-
based approaches in terms of message loss/duplication, and
overall throughput. The results of these metrics are given as a
function of publication rate, and queue size. This allows us to
study both mobility extensions under different system load levels.

Figure 4 (a) and 4 (b) show the percentage of message loss and
duplication, along the left y-axis and the overall throughput along
the right y-axis. The results are measured as the publication rate
increases up to the maximum, the rate that the system can sustain.
The publication rate has a direct impact on the percentage of
message loss as we have a limited queue size. This can be seen in
the graph where the message loss increases almost linearly with
the increase of publishing rate. From the graphs, we can note that
the pro-active approach reduces the message loss by more than
50% compared to the durable subscription-based approach. This
approach suffers from high message loss because it forces the
brokers to continue storing messages for disconnected
subscribers. This will lead to overflowing the brokers’ buffers and
hence many messages will be overwritten. In contrast, the pro-
active approach buffers messages on demand, that is, only when
the subscribers disconnect from the network. This can optimize
the buffer usage and hence decreases the message loss. Also,
subscribers that move to a new broker for the first time will miss

167

569

761

846
914

255

781

997

1098

969

0

200

400

600

800

1000

1200

10 50 100 150 200

Number of Subscribers

T
s

(M
sg

s/
S

e
c
)

0

50

100

150

200

250

300

M
e
ss

a
g

e
 P

r
o

c
e
ss

in
g

 T
im

e
 (

m
s)

Durable-based (Ts) Pro-active (Ts) Durable-based (Ls) Pro-active (Ls)

Figure 2: The mobility extension overhead

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Time (ms)

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n

Pro-active Approach Durable-based Approach

Figure 3. The cumulative distribution of handoff times.

the published messages during their handoffs.

The pro-active approach shows zero message duplication in all
cases as it involves only one broker in delivering the messages of
the reconnected subscribers. In this approach, the ID of the last
received message is used to prevent the impact of race conditions
during the subscriber handoffs. In contrast, a number of
duplicated messages occur in the durable subscription-based
approach as it requires the old and new brokers to keep storing
messages for the moving subscriber. This results in receiving
duplicated messages when the subscriber moves between the
brokers.

From the graphs, we note that the pro-active approach achieves
relatively higher throughput results than the durable subscription-
based approach. This is a result of preventing message
duplication, reducing message loss, and eliminating the overhead
of buffering messages endlessly at every visited broker.

Figure 5 (a) and 5(b) respectively present the results of message
loss, duplication, and overall throughput for the pro-active and
durable subscription-based approaches with an increase of the
queue sizes (10, 30, 60, and 90Kbytes). The figures show an
inversely-proportional relationship between the queue size and the
percentage of message loss. As the queue size increases, more
messages can be accommodated and remain longer in the queue.

Thus, the percentage of message loss decreases. This implies that
the queue size has a direct impact on the system performance and
should be well selected. It should be noted that increasing queue
size beyond a certain threshold will not result in any further
reduction of message loss, because a portion of the loss can be
attributed to the handoff protocol and the characteristics of the
wireless network. From the graphs, we note that the pro-active
approach reduces message loss by nearly 50% compared to the
durable subscriptions-based approach in all queue sizes. This is a
result of the same reason described in Figure 4.

From the graphs, we note that the pro-active approach has
reduced message duplication to zero in all cases. In contrast, the
durable subscription-based approach suffers from message
duplication due to the same reason described earlier. Message
duplication shows a proportional relation with the queue size in
this approach. This is because larger queue sizes can
accommodate a larger number of identical messages. Note that
larger queues may decrease message loss to a certain limit, but on
the other hand increase message duplication noticeably.

The figures show that with the increase in the queue size, the
achieved throughput does not change significantly. As the queue
size increases, the publishing rate tends to decrease due to the
overhead of the larger queue sizes. This includes the increased
load of forwarding more messages to the subscribers and the
frequent call to garbage collection due to the growth of heap

(a) The durable subscription-based approach

1.01 1.16
1.55

2.28

10.21

8.62

7.21

5.87

0

2

4

6

8

10

12

10 30 60 90

Queue Size (KBytes)

P
e
r
c
e
n

ta
g

e
 o

f
D

 a
n

d
 L

0

200

400

600

800

T
s

(M
se

g
s/

S
e
c
)

Msg Duplication (D) Msg Loss (L) Throughputs (Ts)

(b) The pro-active approach

0 0 0 0

5.10

3.97

3.38

2.16

0

1

2

3

4

5

6

10 30 60 90

Queue Size (KBytes)

P
e
r
c
e
n

ta
g

e
 o

f
D

 a
n

d
 L

0

200

400

600

800

1000

1200

T
s

(M
sg

s/
S

e
c
)

Msg Duplication (D) Msg Loss (L) Throughputs (Ts)

Figure 5. System performance at given queue sizes

(a) The durable subscription-based approach

8.44

3.78

2.73
2.27

1.16

2.52

4.42

5.26

6.25

8.62

0

2

4

6

8

10

5 10 15 20 Maximum

Publication Rate (Msgs/Sec)

P
e
r
c
e
n

ta
g

e
 o

f
D

 a
n

d
 L

0

200

400

600

800

T
s

(M
sg

s/
S

e
c
)

Msg Duplication (D) Msg Loss (L) Throughputs (Ts)

(b) The pro-active approach

0 0 0 0 0
0.29

0.71

1.35

1.90

3.90

0

1

2

3

4

5

6

5 10 15 20 Maximum

Publication Rate (Msgs/Sec)

P
e
r
c
e
n

ta
g

e
 o

f
D

 a
n

d
 L

0

200

400

600

800

1000

1200

T
s

(M
sg

s/
S

e
c
)

Msg Duplication (D) Msg Loss (L) Throughputs (Ts)

Figure 4. System performance at given publishing rates

memory size within the JVM. As the publishing rate decreases,
the subscriber throughput tends to decrease as well. On the other
hand, larger queue sizes reduce message loss, which in turn
increases the throughput. Hence, the subscriber throughput more
or less remains constant until the queue size hits its threshold
value. Beyond this value, the throughput will be negatively
affected as the publishing rate decreases without any reduction in
message loss. In all cases, the pro-active approach shows better
throughput results compared to the durable subscription-based
approach. This is an outcome of reducing message loss and
duplication as well as the load of the endless buffering at every
visited broker.

6. CONCLUSIONS AND FUTURE WORKS
We have presented a mobility support extension that is based on a
pro-active approach to support mobility in pub/sub systems. The
proposed approach ensures that the subscriber context is always
one hop ahead of its current broker. We have described a
relocation algorithm that provides the possibility to seamlessly
extend pub/sub systems to mobile, wireless environments. We
explored the adequacy of our proposed pro-active approach using
a prototype implementation, presented evaluation results that
investigate its performance and compared it to the solution based
on durable subscriptions supported by the JMS implementations.
The experimental results showed that our approach achieves better
results compared to the durable subscription-based approach with
respect to message loss/duplication, and overall throughput. The
results indicate that our approach decreased message loss by more
than 50% and message duplication to zero. It also achieves better
throughput results under all scenarios with low costs in terms of
mobility extension overhead.

We recognize that the experimental testbed described in this paper
does not model a truly large network. We plan for the future work
to deploy our approach on a large-scale network, especially with
high frequency of handoffs, to explore scalability concerns.

7. ACKNOWLEDGMENTS
Our thanks to Carleton University and the Natural Sciences and
Engineering Research Council of Canada (NSERC), for funding
this project and giving us the opportunity to conduct this work.

8. REFERENCES
[1] Caporuscio, M., Carzaniga, A., and Wolf, A. Design and

Evaluation of a Support Service for Mobile, Wireless
Publish/Subscribe Applications. IEEE Transactions on

Software Engineering, Vol. 29 (Dec. 2003), 1059-1071.

[2] Cugola, G., Di Nitto, E., and Fuggetta, A. The JEDI Event-
Based Infrastructure and Its Application to the Development
of the OPSS WFMS. IEEE Transactions on Software

Engineering, 27, 9 (Sept. 2001), 827-850.

[3] Eugster, P., T., Felber, P., Guerraoui, R., and Kermarrec, M.
The Many Faces of Publish/Subscribe. ACM Computing

Surveys, Vol. 35, No. 2, June 2003, 114-131.

[4] Farooq, U., Parsons, E., and Majumdar, S. Performance of
Publish/Subscribe Middleware in Mobile Wireless Networks.
In Proceedings of the 4th International Workshop on

Software and Performance (WOSP04), Redwood City, CA,
Jan. 2004, 278-289.

[5] Grigoras, D. Challenges to the Design of Mobile Middleware
Systems. In Proceedings of the international Symposium on

Parallel Computing in Electrical Engineering

(PARELEC'06), Washington, DC, September 2006, 14-19.

[6] Gupta, N. and Kumar, P. R. A Performance Analysis of the
IEEE 802.11 Wireless LAN Medium Access Control.
Communications in Information and Systems, 2003 3(4),
279-304.

[7] Muhl, G., Ulbrich, A., Herrmann, K., and Weis, T.
Disseminating Information to Mobile Clients Using Publish-
Subscribe. In Proceedings of the IEEE Internet Computing,

Vol. 8, No. 3, June 2004, 46-53.

[8] Muthusamy, V., Petrovic, M., and Jacobsen, H.-A. Effects of
Routing Computations in Content-Based Routing Networks
with Mobile Data Sources. In Proceedings of the 11th

annual international conference on Mobile computing and

networking (MobiCom'05), (August 2005) New York, NY,
USA, 103–116.

[9] National Institute of Standards and Technology. NIST
Network Emulation Tool.
http://snad.ncsl.nist.gov/itg/nistnet.

[10] Opyrchal, L. Astley, M., Auerbach, J. S., Banavar, G., Strom,
R. E., and Sturman, D. C. Exploiting IP Multicast in
Content-Based Publish/Subscribe Systems. In Proceedings

of 1FIP/ACM International Conference on Distributed

Systems Platforms and Open Distributed Processing

(Middleware 2000) (April 2000), New York, NY, 185-207.

[11] Podnar, I. and Lovrek, I. Supporting mobility with persistent
notifications in publish/subscribe systems. In the

Proceedings of Third International Workshop on

Distributed Event-based Systems (DEBS 2004), Edinburgh,
Scotland, UK, 24-25 May 2004, 80 -85.

[12] Sun Microsystems. Java Message Service (JMS) API
Specification. http://java.sun.com/products/jms. 2002.

[13] Sutton, P., Arkins, R., and Segall, B. Supporting
Disconnectedness-Transparent Information Delivery for
Mobile and Invisible Computing. In Proceedings of the 1st

international Symposium on Cluster Computing and the

Grid (CCGRID’01) (May 15 - 18, 2001). IEEE Computer
Society, Washington, DC, 277-285.

[14] Yin, J., Wang, X., and Agrawal, D. P. Modeling and
Optimization for Wireless Local Area Network (WLAN).
Computer Communications Journal, Special Issue on

Performance Issues of Wireless LANs, PANs, and Ad Hoc

Networks, vol. 28, (June 2005), 1204 -1213.

