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ABSTRACT 

In this paper, we propose a novel and efficient mobility extension 
based on a pro-active approach (i.e., the context transfer/caching 
occurs prior to the subscriber movement) with the objective to 
extend existing pub/sub systems to the mobile environments. We 
also describe the notion of neighbor graph, which forms the basis 
for pre-loading the subscriber context one hop ahead of its current 
location. We have investigated the adequacy of our proposed pro-
active approach in supporting mobile subscribers and compared 
its behavior with a durable subscription-based approach adapted 
by JMS-based pub/sub systems. The experimental results show 
that our pro-active approach reduces the message loss by more 
than 50% and the message duplication to zero compared to the 
durable subscription-based approach. It also achieves better 
throughput results with low cost in terms of mobility extension 
overhead. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems – distributed application; C.4 [Computer Systems 

organization]: Performance of Systems 

General Terms 

Algorithms, Design, Performance, Experimentation 

Keywords 

Pub/Sub systems, mobility, JMS, Wireless network, middleware 

1. INTRODUCTION 
Computing devices with wireless connectivity are rapidly gaining 
popularity, as our dependence on the data accessed through them 
is growing. Users anticipate to access different information and 
services while they are roaming. Due to the limited and dynamic 
resources of the mobile computing systems, users may voluntary 
or involuntary disconnect from the network (i.e., running out of 
battery, loss of connectivity, commuting between locations). They 
expect that data disseminated while they are disconnected can be 
persistently buffered and delivered upon their reconnection. These 
constraints raise the demand for middleware infrastructure, based 
on a flexible and scalable interaction style, to meet the dynamic 

nature of mobile computing, and facilitate the development of 
innovative applications. 

The pub/sub interaction paradigm has been widely used to model 
information dissemination applications [3], where publishers are 
event producers, subscribers are event consumers, and brokers are 
event dispatchers. Publishers notify the outside world about the 
occurrence of certain events. Subscribers express their interest in 
receiving a particular set of events by means of subscriptions. 
Upon receiving a new event, the event broker matches the event 
against all the subscriptions and then forwards it to all interested 
subscribers. The decoupling of publishers and subscribers in time, 
flow, and space along with the anonymous features of the pub/sub 
systems make them a good choice for supporting mobile, wireless 
systems in a natural manner. Most existing middleware systems 
are optimized for fixed environments (i.e., clients do not roam and 
the infrastructure itself is fixed). Hence, several add-on protocols 
are needed to extend such systems to support mobile subscribers. 

One approach of extending pub/sub systems is based on the use of 
durable subscriptions along with persistent notifications [4][11]. 
In this approach, the network of distributed brokers buffers 
persistent notifications irrespective of their current active 
subscriptions until the notifications are no longer valid. When the 
mobile subscriber reconnects to the system, only the valid 
notifications are delivered to it in the published order. Such an 
extension may increase the overall overhead of distributed brokers 
due to the costly buffering process. This may result in degrading 
the system’s performance. Also, the number of lost notifications 
can increase as the buffer space drains quickly or the notifications 
become invalid due to a large disconnection interval. Duplicated 
messages can be received when the subscribers reconnect to the 
previously visited brokers. 

We propose a novel and efficient solution that is based on a pro-
active approach, i.e. the context transfer/caching occurs before the 
subscriber movement. This is achieved with the help of a data 
structure, neighbor graph, which dynamically captures the subset 
of brokers to which the subscriber context should be forwarded. 
Our approach is based on the notion of a replicator proxy, that is, 
the proxy creates a dummy replica of the moving subscriber to act 
on its behalf. To minimize the overhead of state-transfer, we only 
transfer the subscriptions of each subscriber to the next-hop future 
brokers rather than its actual events. These subscriptions are only 
activated when the subscriber disconnects from the network and 
deactivated once it reconnects. During the deactivation process, 
events that belong to such subscriptions are garbage collected. 
Our experimental results show that the pro-active approach 
reduces the message loss by more than 50% and message 
duplication to zero compared to the durable subscription-based 
approach. Moreover, our approach decreases the overhead on the 
distributed brokers as the buffering process occurs upon demand. 
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We believe that our experimental results are valid for various 
pub/sub systems when they are deployed in a mobile, wireless 
environment. 

With respect to previous work in extending the pub/sub systems, 
Caporuscio et al. evaluated the behavior of SIENA [1] in wired 
and GPRS-based networks. They mainly focused on measuring 
the performance of a mobility extension developed specifically for 
extending SIENA to mobile, wireless domains. Their 
experimental results investigated the number of duplicated and 
lost messages, but defined no other metrics to evaluate the system 
performance. Ivana and Ignac [11] proposed a mobility extension 
that delivers only valid events to the subscribers just after the 
activation of their subscriptions. Expired events are removed from 
their buffers. Each broker maintains a list of valid events that have 
been sent to the subscribers and neighbor brokers. Subscribers 
must provide a list of the previous received events to avoid 
duplicate events. This approach clearly creates extra traffic in the 
broker network, and increases the usages of broker memory and 
processing time. In contrast, our approach reduces this overhead 
as it propagates only the subscriptions to the neighboring brokers 
and buffers events on- demand. Umar et al. [4] presented their 
experience in evaluating the performance of a commercial JMS-
based pub/sub system in wired/wireless networks. The nature of 
their work differs from ours as it mainly focuses on studying the 
effect of some mobility parameters on the system performance and 
did not propose a new mobility extension. The REBECA [7] has 
recently been extended to support mobility. The last visited broker 
plays the role of a proxy subscriber. When a subscriber reconnects 
to a new broker, it re-submits its subscriptions. The new broker 
finds the junction of delivery paths to the new and old brokers by 
inspecting its routing table and its list of received advertisements, 
and compares it to the received subscription. It then sends a 
fetching request to the old broker to retrieve the subscriber events. 
The events stored by the old broker are routed through the 
junction to reach the new broker, and then the subscriber. It has 
not justified why subscribers cannot maintain the information 
about the last visited broker. There are currently no results that 
evaluate the performance of the approach. The mobility extension 
in ELVIN [13] uses a central caching proxy server that mediates 
the original server and mobile units for caching events for 
disconnected subscribers. This approach creates a performance 
bottleneck at the proxy server as the subscribers must always 
reconnect to the central proxy. It also induces significant network 
traffic due to potential triangular routing. JEDI [2] has added an 
extension to support mobility that is based on explicit moveIn and 
moveOut operations to relocate subscribers. Subscribers explicitly 
trigger these operations during the handoff process, which can be 
problematic if a wireless connection breaks down unexpectedly 
due to physical mobility or interference. 

The paper is organized as follows. Sect. 2 presents the pro-active 
context distribution algorithm that is based on the notion of 
neighbor graph. Sect. 3 describes the implementation of the pro-
active approach. Sect. 4 illustrates the experimental setup. Sect. 5 
evaluates and compares the behavior of pro-active and durable 
subscription-based approaches. Sect. 8 concludes this paper. 

2. PRO-ACTIVE APPROACH 
The core idea of our pro-active approach is largely based on a 
mechanism that intelligently transfers/buffers subscriber context 
(subscriptions/messages) one hop ahead of its current broker prior 

to the actual movement of the mobile subscriber. We also present 
the notion of neighbor graph that forms the basis of this approach 
as it dynamically captures the candidate subset of brokers to 
which subscriber-context should be pro-actively forwarded and 
buffered. 

2.1 Pro-active Context Distribution Algorithm 
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Step 1: IF subscriber S connects to Bj THEN 
   FOR all Bi Є Neighbor( Bj ) DO 
    Propagate_Sub( Bj, S, Bi ) 
   ENDFOR 
  ENDIF 

Step 2: IF subscriber S disconnects from Bj THEN 
   FOR all Bi Є Neighbor( Bj ) DO 
    Activate_Sub( Bj, S, Bi ) 
   ENDFOR 
  ENDIF 

Step 3: IF subscriber S reconnects to Bj THEN 
   FOR all Bi Є Neighbor( Bj ) DO  
    Deactivate_Sub( Bj, S, Bi ) 
    Remove_Msgs( Bj, S, Bi )  
   ENDFOR 
  ENDIF 

Step 4: IF subscriber S reconnects to Bk from Bj THEN 
   Propagate_Msgs( Bj, S, Bk ) 
   FOR all Bi Є Neighbor( Bj ) DO  
    Remove_Sub( Bj, S, Bi ) /* i ≠ k */ 
    Remove_Msgs( Bj, S, Bi )    
   ENDFOR 
  ENDIF 

Step 5: IF subscriber S reconnects to Bj from Bk THEN 
   IF Sub( S ) is not in Buffer( Bj ) THEN  
    Obtain_Sub( Bk, S, Bj ) 
    Obtain_Msgs( Bk, S, Bj ) 
   ENDIF 
   FOR all Bi Є Neighbor( Bj ) DO 
    Propagate_Sub( Bj, S, Bi ) 
   ENDFOR 
  ENDIF 

Step 6: IF subscriber S unsubscribes from Bj THEN 
   FOR all Bi Є Neighbor( Bj ) DO  
    Remove_Sub( Bj, S, Bi ) 
    Remove_Msgs( Bj, S, Bi ) 
   ENDFOR 
  ENDIF 

Step 7: IF Bj receives Sub( S ) or Msgs( S ) from neighbors 
THEN 
   Store(Bj, Sub( S ) ) or 
   Store(Bj, Msgs( S ) ) 
  ENDIF 

Step 8: IF Bj triggers Timeout( S ) THEN 
   FOR all Bi Є Neighbor( Bj ) DO  
    Remove_Sub( Bj, S, Bi ) 
    Remove_Msgs( Bj, S, Bi ) 
   ENDFOR 

ENDIF 

Figure 1. The pro-active context distribution 



We next describe our pro-active context distribution algorithm. 
The algorithm can be decomposed into the following three steps: 
(1) propagate/buffer subscriptions to/at the neighbor brokers; (2) 
activate subscriptions and buffer messages locally; (3) deliver 
messages and reset buffer. Figure 1 presents the pseudo code for 
the algorithm that is executed on broker Bj. 

The following notation is used in the description: 

• S: denotes a subscriber who is potentially mobile. 

• Bj: denotes the initial hosted broker for subscriber S. 

• Bi: denotes the next-hop broker to Bj. 

• Neighbor(Bj): refers to the set of neighbor brokers of Bj. 

• Timeout(S): refers to a chosen T time to keep handling 
Sub(S) and Msgs(S) of a disconnected subscriber S. when T 
expires, subscriber context is garbage collected. (T ≥ average 
handoff interval at all brokers). 

• Sub(S): denotes the subscriptions related to subscriber S. 

• Msgs(S): denotes the messages related to subscriber S. 

• Propagate_Sub(Bfrom, S, Bto): denotes the propagation of 
Sub(S) from Bfrom to Bto.  

• Propagate_Msgs(Bfrom, S, Bto): denotes the propagation of 
Msgs(S) from Bfrom to Bto. 

• Obtain_Sub(Bfrom, S, Bto): denotes that Bto obtains Sub(S) 
from Bfrom.  

• Obtain_Msgs(Bfrom, S, Bto): denotes that Bto obtains Msgs(S) 
from Bfrom. 

• Remove_Sub(Bold, S, Bnghbr): denotes that Bold sends a 
notification message to Bnghbr in order to remove Sub(S) from 
the Bnghbr buffer. 

• Remove_Msgs(Bold, S, Bnghbr): denotes that Bold sends a 
notification message to Bnghbr in order to remove Msgs(S) 
from the Bnghbr buffer.   

• Store(Bj, Sub( S )): store the subscriptions of subscriber S 
into the buffer of Bj. 

• Store(Bj, Msgs( S )): store the messages of subscriber S into 
the buffer of Bj. 

• Buffer(Bj): denotes the buffer maintained at Bj. 

• Deactivate_Sub(Bold, S, Bnghbr): Bold sends a notification 
message to Bnghbr in order to deactivate Sub(S) at the Bnghbr. 

• Activate_Sub(Bold, S, Bnghbr): Bold sends a notification 
message to Bnghbr in order to activate Sub(S) at the Bnghbr. 

This algorithm makes a few assumptions about the target pub/sub 
system. It assumes a set of brokers organized in a general graph 
(or a peer-to-peer) topology to form a distributed communication 
service. The peer brokers directly communicate with each other to 
exchange subscriptions and messages. We also assume that all the 
generated messages are sent to all the brokers in the system. This 
assumption is based on [10] that strongly recommends this 
strategy in highly mobile environments due to the practical limit 
on the number of multicast addresses and related overheads. Our 
algorithm is only limited to manage subscriber mobility, and is 
not concerned about publisher mobility explored by others [8]. A 
stepwise description of this algorithm is given next. 

Step 1 of the algorithm is started when a subscriber S connects to 
a certain broker Bj in the system. The broker Bj propagates a 
passive copy of the subscriber’s subscriptions Sub(S) to all the 

brokers Bi that are neighbors of the broker Bj Neighbor(Bj). Each 
neighbor broker Bi locally stores Sub(S). In the meantime, the 
subscriber S consumes its messages from the broker Bj through its 
active subscription. The pro-active algorithm is based on the 
notion of a neighbor graph, which will be described later in this 
section. The neighbor graph is automatically build and maintained 
by each broker in the system. 

Step 2 of the algorithm is started as the subscriber S temporarily 
disconnects from the network due to poor network connectivity or 
handoff procedure. Since the broker Bj does not receive an 
acknowledgement from the subscriber S, after some re-transmit 
attempts it considers S as temporarily disconnected and thus sends 
an Activate_Sub(Bj, S, Bi) request to all the brokers Bi that are in 
Neighbor(Bj). The brokers Bi acknowledge the receipt of this 
request and activate the Sub(S). Accordingly, all the neighbor 
brokers Bi will locally buffer all the incoming messages Msgs(S) 
that match the Sub(S). It should be noted that the message ID of 
the last message the subscriber S consumed (for each 
subscription) is enclosed with the activation request and the 
neighbor brokers Bi only buffer the messages after the message 
with this ID. Similarly, the broker Bj keeps buffering the messages 
for the subscriber S as it may reconnect to it again. 

Step 3 of the algorithm is started when the subscriber S reconnects 
to the same broker Bj. This results in sending a 
Deactivate_Sub(Bj, S, Bi) message to all neighbor brokers Bi 
requesting them to deactivate the Sub(S) and to terminate the 
buffering process. Then, a Remove_Msgs(Bj, S, Bi) message is 
followed requesting to clean up the local buffer of each neighbor 
broker Bi. In the meantime, the broker Bj delivers all the buffered 
messages to the subscriber S. 

Step 4 of the algorithm is started when the subscriber S reconnects 
to a different broker Bk. The broker Bk informs the broker Bj that 
the subscriber S reconnected to it. First, the broker Bj sends all the 
messages missed during the process of Activate_Sub(Bj, S, Bi) 
process to the broker Bk as discussed in step 2. Then, it sends two 
messages, Remove_Sub(Bj, S, Bi) and Remove_Msgs(Bj, S, Bi), to 
all the Neighbor(Bj) excluding the broker Bk. These messages 
remove the Sub(S) and Msgs(S) from the local buffer of all the 
Neighbor(Bj). The broker Bk is excluded from receiving these 
messages as the subscriber S is connected to it. One point worth 
mentioning here is that the Remove_Sub(Bj, S, Bi) semantic will 
change as the neighbor graph is built. Both brokers Bk and Bj 
exchange their neighbor graph tables in order to reduce the 
overhead of deleting/inserting Sub(S) requests. Throughout the 
neighbor graph table, the broker Bj decides which Sub(S) should 
be deleted and which Sub(S) should be deactivated for later use by 
the broker Bk. Similarly, the broker Bk can identify which Sub(S) 
should be propagated to its neighbors. 

Step 5 of the algorithm is started as the subscriber S reconnects to 
the broker Bj from the broker Bk. The broker Bj first checks if the 
context of the subscriber S, i.e. Sub(S) and Msgs(S), is available in 
its buffer. If the subscriber’s context is not in the buffer then the 
broker Bj will inform the broker Bk to send the subscriber’s 
context. This may happen in two different scenarios: (1) the 
broker Bk is not a neighbor of the broker Bj. Therefore, the broker 
Bj has no information about the subscriber S. (2) the subscriber S 
is the first to visit the broker Bj from its neighbor Bk. If the 
subscriber’s context is found in the buffer of the broker Bj, similar 
actions to step 1 will take place. 



Step 6 of the algorithm is started as the subscriber S deletes one of 
its subscriptions. As a result of this request, the broker Bj issues 
two messages, Remove_Sub(Bj, S, Bi) and Remove_Msgs(Bj, S, 

Bi), to all its neighbors. These two messages will respectively 
delete the subscriber’s subscription Sub(S) and its related 
messages if there are any in the buffer. 

Step 7 of the algorithm is started when the broker Bj receives the 
subscriber’s context from the broker Bk. The subscriber’s context 
will be stored in a persistent buffer. 

Step 8 of the algorithm takes place as the subscriber S disconnects 
from the broker Bj for good. When the disconnected time reaches 
the timeout period, the broker Bj sends a request to its neighbors 
to remove the subscriber’s context from their buffers. This is a 
necessary step as buffering and managing the subscriber’s context 
can severely affect the broker performance. 

2.2 Neighbor Graph 
The neighbor graph is an undirected graph with a set of edges that 
represent mobility paths between the vertices (or brokers). Hence, 
the neighbors of a given vertex v in the graph correspond to the 
set of potential next brokers. As it is difficult to predict the 
subscriber movement, we need to identify the candidate subset of 
next future brokers in order to transfer/buffer the subscriber-
context prior to the occurrence of the handoff process (pro-

actively). The neighbor graph provides the abstractions to achieve 
this goal.  

2.2.1 Neighbor Graph Generation 
The neighbor graph can be generated either in a static manner, 
i.e., manually constructed once and never changes over time, or in 
a dynamic manner, i.e., automatically generated and adaptively 
changes according to the mobility graph. A static neighbor graph 
is problematic as it fails to approximate the mobility graph which 
changes dynamically over time. Hence, we chose to dynamically 
construct an adaptive neighbor graph.  

There are two complementary methods for the brokers to learn the 
edges in the graph. The first method is to embed the address of the 
old broker with the reconnection request sent by the subscriber to 
the new broker, thereby establishing the reconnection relationship 
between the two brokers. The second method is to use the request 
for message transfer received from another broker to establish the 
relationship. Each broker locally manages the edges in a Least 
Recently Used (LRU) approach. This is essential to remove the 
outlier edges, i.e. the ones that do not model recently-used 
relationship. Such edges may temporarily occur when a mobile 
subscriber puts its terminal in power save mode and moves to 
different locations to reconnect to any other broker in the network 
topology. As a result, a timestamp based LRU method ensures the 
freshness of the neighbor graph, and removes the outlier edges 
over time. The autonomous creation of the neighbor graph makes 
it adaptive to dynamism in the reconnection relationship (i.e., 
adding and removing brokers, network topology changes). 

Each broker locally stores its neighbor graph, i.e., the list of its 
neighbor brokers. The whole graph thus is stored in a distributed 
manner. The following pseudocode is used to generate the local 
view of the graph that is executed at each broker. Here, we refer to 
the broker that executes the algorithm as Bcurrent. 

• Receive a reconnection request: As a mobile subscriber S 
reconnects to Bcurrent from Bi, Bcurrent adds Bi to its list of 
neighbors. 

• Receive a subscriber-context transfer: As a broker Bcurrent 
receives a context transfer from Bi, it adds Bi to the list of 
neighbors. 

• Entity-deletion: If none of the above addition operations takes 
place during a given timeout interval T, the Bi entity will be 
removed from the neighbor graph. T ≥ the average frequency 
interval of addition operations at all broker nodes. 

It should be noted that the first subscriber to cross over an edge 
will receive its context in reactive fashion. This will be gradually 
changed to pro-active fashion as the edges are added to the graph. 
The edge degree of a given broker (vertex) in a neighbor graph is 
the number of outward edges from that broker. It determines the 
overhead of context transfer/caching in the pro-active approach. 
To control this overhead, the broker’s degree can be bounded by a 
fixed upper bound (M). 

3. IMPLEMENTATION 
The pro-active approach is implemented within an independent 
layer of proxies between the subscribers and their messaging 
brokers. This layer is mainly responsible for replicating dummy 
subscribers at the next future brokers to buffer messages on behalf 
of the moving subscriber. It also dynamically captures the 
mobility graph of the distributed brokers’ network to identify the 
subset of next neighboring brokers. A single proxy process runs 
with each broker to manage user mobility from one broker to the 
other. Note that the proxy layer is completely transparent to the 
brokers and the applications. We have integrated a monitoring 
component with the broker process to transparently track the 
subscribers’ states (i.e., connect, disconnect, handoff) as well as 
the ID of the last message consumed by the subscriber. Also, each 
subscriber has to keep track of the last broker to which it was 
connected to. 

When a subscriber connects to a broker, the proxy will be notified 
and receives a copy of the subscriber’s subscription. The proxy 
locally stores the subscription and uses it to instantiate an inactive 
dummy subscriber. In the meanwhile, it propagates a copy of the 
subscription to all neighbors, and instructs its peers to create the 
same dummy subscriber using the forwarded subscription. When 
the subscriber disconnects from the network, all the 
corresponding dummy subscribers at the neighboring brokers are 
activated to buffer messages on behalf of the disconnected 
subscriber. The dummy subscribers use the ID of the last received 
message of the actual subscriber to prevent message duplication. 
Therefore, only messages with higher ID are stored for the 
subscriber. When the subscriber reconnects to a new broker, the 
proxy at that broker notices this and informs the related dummy 
subscriber to stop storing messages and to return to inactive 
mode. The broker in the meanwhile starts delivering the stored 
messages to the subscriber. The set of neighbor graphs located at 
the old and new brokers now must be inspected to ensure that new 
dummy subscribers are created on all neighboring nodes of the 
new broker and old dummy subscribers are either removed or 
deactivated. In this implementation, tracking the address of the 
broker is necessary as it is needed during the creation process of 
the neighbor graph and when the reactive approach is applied 



before the building of this graph. We also use the broker address 
to distinguish the handoff state from the reconnect state. 

4. EXPERIMENTAL SETUP 
For our experimental study, we have chosen Java Message Service 
(JMS) [12] as our base pub/sub platform. We have incorporated 
our pro-active extension into the selected JMS implementation to 
explore its behavior and compare it with the durable subscription-

based approach supported by JMS implementations. JMS offers 
several modes that lend themselves well to the mobile, wireless 
environments. It adapts two subscription modes, nondurable and 
durable. In the nondurable mode, messages are forwarded only to 
subscribers who are presently online while in the durable mode 
messages are also forwarded to subscribers that are not currently 
connected. JMS also offers two communication modes, point-to-

point and pub/sub. In this study, we consider the durable and 
pub/sub modes. Detailed descriptions of the JMS features can be 
found in [12]. 

We performed all our experiments on an overlay network of six 
Intel based Pentium 4 nodes running RedHat Linux 9, inter-
connected by a 100 Mbps switch. Two nodes were used for 
running two instances of the JMS broker. A router node was used 
for running a wireless network emulator. One node was used for 
running a single, stationary message publisher. The remaining two 
nodes were used for running the mobile subscribers. Subscribers 
that share the same machine run in separate threads and establish 
separate connections, but use the same Java Virtual Machine and 
JMS Client library. The JVM used for running the brokers and the 
clients is Sun SDK 1.4.2, started with the options –Xms64m and –
Xmx256m as a minimum and maximum heap size. Although this 
is a limited configuration, it is sufficient for the purpose of this 
paper: evaluating different mobility support extensions. 

The JMS supports content-based filtering with the help of 
message selectors (conditional expressions). It allows subscribers 
to specify their selectors as an argument when they create their 
subscriptions to express their interest in receiving a certain set of 
messages. In our setup, each subscriber exploits a specific selector 
range that is randomly chosen to be 1/5th of the total selector 
range. Similarly, the message publisher assigns a single selector 
value ranging from 0 to 99 with each generated message. 

A mobile subscriber in this setup represents an application 
running on a mobile terminal that transparently moves from one 
broker to the other. It initially registers with one of the two JMS 
brokers by sending a single durable subscription. Through a 
mobility scenario written in Java, the subscriber keeps migrating 
between the two brokers during the course of the experiments. In 
our experiments, subscriber threads were created and executed on 
two stationary machines. Subscribers are initially split evenly 
between the two JMS brokers. However, due to mobility, the 
number of subscribers at each broker fluctuates over time, 
resulting in brokers serving a relatively lager number of 
subscribers at times while at other times the broker may serve 
only a small number of subscribers. 

A Java program is implemented to model subscribers’ mobility. 
Each subscriber goes through different mobility states as 
described next. The connect state is the starting point for all 
subscribes in our mobility model: a subscriber is connected to one 
of the two JMS brokers and consumes messages. Each subscriber 
remains in this state for a randomly generated, exponentially 
distributed time with a mean β=60 seconds. With an equally and 

randomly selected probability, a subscriber either moves to 
disconnect or handoff state. The disconnect state reflects the case 
of signal breakdowns due to poor network connectivity. A 
subscriber remains in this state for a randomly generated, 
exponentially distributed time with a mean δ=10 seconds. With a 
similar probability, the subscriber moves either back to the 
connect state and reconnects to the same broker or goes to the 
handoff state. The handoff state corresponds to the case where a 
subscriber moves out of the covered range of its previous broker. 
After staying in the handoff state for a randomly generated, 
exponentially distributed time with a mean δ=10 seconds, the 
subscriber moves back to the connect state and connects to a 
different broker. 

All the communications between the subscribers and the brokers 
are tunneled via an emulated wireless channel that is created using 
a network emulator called NistNet [9]. NistNet is a popular 
software tool that is implemented as a kernel module extension to 
the Linux operating system. It can be used to emulate various 
network environments. We used NistNet to model the 
characteristics of an IEEE 802.11 wireless LAN network based on 
a set of configuration parameters such as packet delay, packet 
loss, packet duplication, and network bandwidth. All these 
parameters were set to the most commonly used values reported 
for IEEE 802.11 wireless LAN networks [6][14]. 

The reported results were captured from the measurement data 
obtained under different workloads. Each experiment was run for 
a duration that was long enough to reach a steady state. We 
ensured that the publisher/subscriber machines were not the 
bottlenecks in our experiments. We kept both CPU and memory 
utilizations at less than 65%, thereby preventing publisher and 
subscriber bottlenecks from impacting the overall system 
performance. Each broker machine was fully dedicated to running 
a single instance of the JMS broker. Before running any 
experiment, topic destinations and message stores were purged 
and reinitiated to start each test with a clean slate. All subscribers 
were consuming messages in asynchronous manner. Each 
subscriber was using a separate connection to receive its 
messages. Network latency for creating subscribers’ connections 
was not included in our results.  

4.1 Performance Measures 
• Subscriber throughput (Ts): Total number of messages 

received per second. It is obtained by adding up the number of 
messages received by individual subscribers and dividing by 
the total duration of the experiment. 

• Percentage of message loss (L): Percentage of missed 
messages by all the subscribers. It was obtained by calculating 
the difference between the total published and received 
messages and then dividing by the total published messages. 

• Percentage of message duplication (D): Percentage of 
duplicated messages received by all the subscribers. It is 
obtained by dividing the total duplicated messages by the total 
received messages. 

• Message processing time (Ls): Average processing time that it 
takes the broker to process messages. It is obtained by adding 
up the processing time of each message and then dividing the 
total by the total number of received messages. 

• Handoff latency (H): Time between sending the reconnect 
request and receiving the first message of the corresponding 



subscriber at its new broker.  

5. PERFORMANCE EVALUATION AND 

COMPARISON 
This section evaluates and compares the behavior of the pro-
active and durable subscription-based approaches in terms of 
mobility service overhead, handoff latency, message 
loss/duplication, and overall throughput. 

5.1 The Mobility Extension Overhead 
The overhead of using the pro-active and durable subscription-
based extensions is evaluated in terms of two different metrics: 
the average processing time of the messages and the aggregated 
throughput of the subscribers. These metrics provide a good 
indicator of the overhead incurred by both extensions. To study 
this overhead under different load conditions, we have varied the 
total number of subscribers that can be served by the brokers.  

Figure 2 shows the incurred message processing time (Ls) and the 
overall throughput (Ts) as the subscriber population increases. 
From the figure, it can be observed that there is a proportional 
relationship between the message processing time and the number 
of served subscribers. This is an expected behavior of the system 
since increasing the number of subscribers adds extra load on the 
system, thereby the message processing time increases. The graph 
shows that the pro-active approach experiences a relatively higher 

overhead in terms of message processing time compared to the 
durable subscription-based approach. This can be attributed to the 
additional load on the brokers to serve dummy subscribers, which 
is not present in the durable subscription-based approach. This 
load includes managing extra connections, (de)activating dummy 
subscribers, and purging buffers. On the other hand, the pro-
active approach shows better throughput than the durable 
subscription-based approach as it prevents message duplication 
and minimizes message loss. The pro-active approach therefore 
offers a tradeoff between the message serving overhead and the 
overall throughput. 

5.2 The Handoff Latency 
We evaluate the handoff latency under different load conditions 
imposed by the number of served subscribers (10, 50, 100, 150, 
and 200). We define the handoff latency as the time between 
sending the reconnect request and receiving the first message of 
the corresponding subscriber at its new broker. Figure 3 shows the 
cumulative distribution graph of the handoff latency observations. 

From the figure, we observe that the pro-active and durable-based 
approaches show approximately similar handoff latency. Almost 
80% of the handoffs are performed in less than 48 and 40 ms with 
the pro-active and durable-based approaches respectively. This 
indicates that the pro-active approach imposes low handoff 
latency as the subscriber context is always available at its new 
location prior to its movement. A portion of the handoff latency in 
the pro-active approach is a result of the switchover process 
involved between the actual and dummy subscriber before the 
buffered messages start being forwarded. While the actual 
subscriber takes over the dummy one should be deactivated and 
all neighbors should be notified about the arrival of the actual 
subscriber. Another portion of this latency, which also exists in 
the durable-based approach, is attributed to the preparation time 
for the broker to start delivering the stored messages. This time is 
mainly based on the broker’s load conditions. 

5.3 Overall Performance  
We evaluate the behavior of pro-active and durable subscription-
based approaches in terms of message loss/duplication, and 
overall throughput. The results of these metrics are given as a 
function of publication rate, and queue size. This allows us to 
study both mobility extensions under different system load levels.  

Figure 4 (a) and 4 (b) show the percentage of message loss and 
duplication, along the left y-axis and the overall throughput along 
the right y-axis. The results are measured as the publication rate 
increases up to the maximum, the rate that the system can sustain. 
The publication rate has a direct impact on the percentage of 
message loss as we have a limited queue size. This can be seen in 
the graph where the message loss increases almost linearly with 
the increase of publishing rate. From the graphs, we can note that 
the pro-active approach reduces the message loss by more than 
50% compared to the durable subscription-based approach. This 
approach suffers from high message loss because it forces the 
brokers to continue storing messages for disconnected 
subscribers. This will lead to overflowing the brokers’ buffers and 
hence many messages will be overwritten. In contrast, the pro-
active approach buffers messages on demand, that is, only when 
the subscribers disconnect from the network. This can optimize 
the buffer usage and hence decreases the message loss. Also, 
subscribers that move to a new broker for the first time will miss 
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Figure 2: The mobility extension overhead 
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Figure 3. The cumulative distribution of handoff times. 



the published messages during their handoffs. 

The pro-active approach shows zero message duplication in all 
cases as it involves only one broker in delivering the messages of 
the reconnected subscribers. In this approach, the ID of the last 
received message is used to prevent the impact of race conditions 
during the subscriber handoffs. In contrast, a number of 
duplicated messages occur in the durable subscription-based 
approach as it requires the old and new brokers to keep storing 
messages for the moving subscriber. This results in receiving 
duplicated messages when the subscriber moves between the 
brokers. 

From the graphs, we note that the pro-active approach achieves 
relatively higher throughput results than the durable subscription-
based approach. This is a result of preventing message 
duplication, reducing message loss, and eliminating the overhead 
of buffering messages endlessly at every visited broker. 

Figure 5 (a) and 5(b) respectively present the results of message 
loss, duplication, and overall throughput for the pro-active and 
durable subscription-based approaches with an increase of the 
queue sizes (10, 30, 60, and 90Kbytes). The figures show an 
inversely-proportional relationship between the queue size and the 
percentage of message loss. As the queue size increases, more 
messages can be accommodated and remain longer in the queue. 

Thus, the percentage of message loss decreases. This implies that 
the queue size has a direct impact on the system performance and 
should be well selected. It should be noted that increasing queue 
size beyond a certain threshold will not result in any further 
reduction of message loss, because a portion of the loss can be 
attributed to the handoff protocol and the characteristics of the 
wireless network. From the graphs, we note that the pro-active 
approach reduces message loss by nearly 50% compared to the 
durable subscriptions-based approach in all queue sizes. This is a 
result of the same reason described in Figure 4. 

From the graphs, we note that the pro-active approach has 
reduced message duplication to zero in all cases. In contrast, the 
durable subscription-based approach suffers from message 
duplication due to the same reason described earlier. Message 
duplication shows a proportional relation with the queue size in 
this approach. This is because larger queue sizes can 
accommodate a larger number of identical messages. Note that 
larger queues may decrease message loss to a certain limit, but on 
the other hand increase message duplication noticeably. 

The figures show that with the increase in the queue size, the 
achieved throughput does not change significantly. As the queue 
size increases, the publishing rate tends to decrease due to the 
overhead of the larger queue sizes. This includes the increased 
load of forwarding more messages to the subscribers and the 
frequent call to garbage collection due to the growth of heap 
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(b) The pro-active approach 
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Figure 5. System performance at given queue sizes 
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(b) The pro-active approach 
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Figure 4. System performance at given publishing rates 



memory size within the JVM. As the publishing rate decreases, 
the subscriber throughput tends to decrease as well. On the other 
hand, larger queue sizes reduce message loss, which in turn 
increases the throughput. Hence, the subscriber throughput more 
or less remains constant until the queue size hits its threshold 
value. Beyond this value, the throughput will be negatively 
affected as the publishing rate decreases without any reduction in 
message loss. In all cases, the pro-active approach shows better 
throughput results compared to the durable subscription-based 
approach. This is an outcome of reducing message loss and 
duplication as well as the load of the endless buffering at every 
visited broker. 

6. CONCLUSIONS AND FUTURE WORKS 
We have presented a mobility support extension that is based on a 
pro-active approach to support mobility in pub/sub systems. The 
proposed approach ensures that the subscriber context is always 
one hop ahead of its current broker. We have described a 
relocation algorithm that provides the possibility to seamlessly 
extend pub/sub systems to mobile, wireless environments. We 
explored the adequacy of our proposed pro-active approach using 
a prototype implementation, presented evaluation results that 
investigate its performance and compared it to the solution based 
on durable subscriptions supported by the JMS implementations. 
The experimental results showed that our approach achieves better 
results compared to the durable subscription-based approach with 
respect to message loss/duplication, and overall throughput. The 
results indicate that our approach decreased message loss by more 
than 50% and message duplication to zero. It also achieves better 
throughput results under all scenarios with low costs in terms of 
mobility extension overhead. 

We recognize that the experimental testbed described in this paper 
does not model a truly large network. We plan for the future work 
to deploy our approach on a large-scale network, especially with 
high frequency of handoffs, to explore scalability concerns. 
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