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ABSTRACT 
This paper presents an advanced dynamically configurable 
middleware for automotive embedded systems. The layered 
architecture of the middleware, and the way in which core 
and optional services provide transparency and flexible 
platform independent support for portability, is described. 
The design of the middleware is positioned with respect to 
the way it overcomes the specific technical, environmental, 
performance and safety challenges of the automotive 
domain. The use of policies to achieve flexible run-time 
configuration is explained with reference to the core policy 
technology which has been extended and adapted 
specifically for this project. The component model is 
described, focussing on how the configuration logic is 
distributed throughout the middleware and application 
components, by inserting ‘decision points’ wherever 
deferred logic or run-time context-sensitive configuration is 
required. Included in this discussion are the way in which 
context information is automatically provided to policies to 
inform context-aware behaviour; the dynamic wrapper 
mechanism which isolates policies, provides transparency to 
software developers and silently handles run-time errors 
arising during dynamic configuration operations. 
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1. INTRODUCTION 
Modern automotive control systems operate in complex 
environments in which many software and hardware 

components interact to provide a wide range of 
functionalities, and in which a diverse array of potential 
problems and inefficiencies can arise. The embedded nature 
of the systems brings additional problems such as restricted 
computational resources and updating behaviour is difficult.  
However, future use-scenarios imply frequent configuration 
changes to update versions, support field upgrades, and 
allow owner customisation for example for infotainment 
preference settings, fleet-specific configuration and driver 
profiles that can be taken from vehicle to vehicle. To meet 
these challenges, the traditional fixed behaviour systems 
must give way to more flexible dynamic systems. The trend 
is the same for many other types of embedded systems, [1]. 
The next generation of control systems need to have several 
potentially conflicting qualities which include high 
performance in real-time, high robustness, efficiency, 
extensibility and support for flexible, simple and fast 
(re)configuration. 
The Dynamically Self-Configuring Automotive Systems 
project (DySCAS) is developing a middleware (MW) that 
meets the above mentioned challenges. The key 
motivational themes driving the design are: flexibility - to 
permit timely upgrades and reconfiguration at low cost; 
reliability - to ensure safety and predictability, and to 
support self-diagnosis and repair where possible; and 
transparency - so that application developers and end users 
are provided with appropriately abstract interfaces to the 
underlying control system and are thus relieved of the 
complexity burden. 1 2 3

To achieve the desired qualities, the DySCAS MW 
comprises a number of software components each of which 
can embed dynamically replaceable logic at pre-defined 
‘Decision Points’ (DPs). The MW has been designed such  
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that the application software sees a single system image and 
is not directly aware of physical hardware resources such as 
Electronic Control Units (ECUs) and sensors. This enables 
the MW to perform reconfiguration ‘silently’, for example 
to achieve load balancing for performance optimisation, or 
task relocation to overcome an ECU failure. A high-level 
policy grammar permits behaviour within each DP to be 
specified very flexibly, and to be changed when required 
without redeploying code. An innovative ‘Dynamic 
Wrapper’ (DW) mechanism enables the dynamic 
configuration behaviour to automatically collapse down to 
pre-defined static behaviour on a per-DP basis should any 
run-time problems arise which would affect the correctness 
of the dynamic adaptation. 
 

2. Automotive challenges and DySCAS 
Embedded electronic systems have been widely employed 
in modern automotive vehicles. By means of computer 
software and hardware, automotive embedded systems offer 
unique opportunities for advanced functionalities, high 
performance, and flexibilities in system development and 
maintenance. Today vehicles in series production already 
contain the same amount of electronics as aircraft did two 
decades ago. It is predicted that the share of automotive 
embedded systems in respect to a vehicle’s total value will 
reach 40% by 2015, bringing in innovations and new 
features in driver assistance, fuel efficiency, vehicle 
integration and traffic safety [2]. The increased use of 
embedded electronic systems in vehicles, however, also 
implies growth and change in product and development 
complexity. For many advanced applications, there are 
emerging needs on the integration of distributed data and 
functionalities and the incorporation of behaviours with 
different criticalities and types (e.g., time- and event-
triggered tasks), further characterized by real-time, resource 
and dependability constraints. In system development, such 
product complexity is augmented by the involvement of 
multiple stakeholders and organisations, heterogeneous 
technologies and components, and lifecycle concerns in 
regards to maintenance, upgrade, variability and reuse. To 
cope with the technical and managerial challenges, new 
technologies, tools, and methodologies are necessary [3]. 
Current automotive embedded electronic systems adopt a 
static configuration scheme, in which the environment 
assumptions, system functionalities and behaviours, 
component compositions and resource deployment are 
defined during the development process and kept stable 
over the complete lifetime. This is, however, insufficient for 
many future scenarios of automotive vehicles. 
Technological improvements have lead to more powerful, 
yet cheaper and smaller ECUs and a greater variety of 
sensor types; facilitating new and exciting use cases. User-
expectations and competition between manufacturers have 
led to an increased importance being attached to the ability 
to support automatic dynamic configuration to achieve fault 

tolerance, optimised performance and user customisation. 
Like embedded systems in other domains (e.g., avionics and 
med-tech), automotive embedded systems are safety critical 
because of their effects on the vehicle, the environment and 
humans. Meanwhile, automotive embedded systems also 
constitute consumer products and are thus sensitive to 
usability, cost-efficiency, and reliability. For example, it is 
expected that future automotive vehicles will provide the 
ability of building ad-hoc networks between vehicles and 
with external mobile devices to share information and 
functionality. The ability of allowing cost efficient and 
reliable field-upgrades of software is also considered 
important for vehicle customization, personalization, and 
incorporation of technology innovations. For the reasons of 
dependability, time-to-market and lifecycle efficiency, 
future scenarios of automotive embedded systems also call 
for enhanced QoS (quality of service) support. This will 
permit post-development time optimization according to the 
actual resource utilizations and operation conditions. The 
support for load-balancing, on-line V&V, and error-
handling also makes it possible to reduce the number of 
ECUs, wiring, and power consumption and to potentially 
migrate part of the costly development-time testing effort to 
run-time. 
DySCAS aims to advance the basic technologies and 
introduces context-aware and self-managing behaviours into 
automotive embedded electronic systems [4]. Targeting the 
above mentioned future scenarios, the DySCAS approach 
explicitly addresses the automotive needs in regards to 
configuration flexibility, quality assurance, and complexity 
control in particular in the infotainment and telematics 
domains. DySCAS develops and proposes a MW system 
that allows automotive embedded systems to dynamically 
reconfigure themselves according to the environmental 
conditions, application states and resource deployment, to 
cope with unexpected events, emerging use cases and 
optimization needs, and external devices not known at the 
deployment time. To promote industrial acceptance, the 
DySCAS approach explicitly addresses a number of 
challenges facing automotive products, including the MW 
overheads and predictability, the provision and management 
of design and operation information at run-time, the 
synchronisation of distributed behaviours, and the concerns 
of usability, security, and robustness. These are discussed in 
the remainder of this section. 
Many automotive applications have real-time requirements, 
ranging over closed loop periodic controllers to multimedia 
and communication functions. The systems are often highly 
resource constrained because of the large series being 
produced. To introduce MW solutions in automotive 
embedded systems, the performance overheads in time and 
in resource utilization (e.g., bus, CPU, and memory) need to 
be properly handled. While overheads are unavoidable 
because of the MW mechanisms, the DySCAS approach 
aims to keep the MW overhead as small as possible while 



making the behaviours predictable. To this end, the choice 
of algorithms, the instantiation, mapping, and allocation of 
MW services, as well as the planning and controlling of the 
MW tasks, are all of importance. For the dynamic 
operations, predictability will be achieved through 
mechanisms that negotiate and reserve necessary resources 
in advance and provide synchronisation with application 
conditions. One particular concern is the choice of target 
platforms. The DySCAS project does not restrict the MW 
solutions but stipulates a strategy by explicitly specifying 
the assumptions and dependencies of the MW services on 
the system software and hardware platforms. The 
AUTOSAR RTE is here used as a reference [5] 
complemented by some typical MW configuration and 
instantiation alternatives, allowing the engineers to further 
optimize the needed capacity in engineering practices. 
One challenge related to the QoS and dynamic 
configuration is dealing with the complexity of embedded 
systems and the existence of multiple quality concerns. 
Instead of a single optimization need, there can be multiple 
and sometimes conflicting adaptation goals and behaviours, 
varying according to the vehicle states and service modes. 
Moreover, depending on the functional interdependencies 
of application programs and the sharing of system resources 
and devices in a system, a change on the system 
configuration or component behaviour can affect the overall 
functionality and performance negatively. To avoid 
unexpected impacts on system dependability, the decisions 
also need to take the vehicle state, such as in terms of 
vehicle speed and direction into consideration. For example, 
it is controversial to allow software download and update 
when the car is moving at 100km/h. The DySCAS approach 
aims to provide necessary run-time support for enabling a 
systematic and efficient implementation of QoS and 
dynamic configuration behaviours in automotive systems. 
The core is a set of MW services that facilitates the 
sampling of system configuration and operation states, the 
computation for QoS and dynamic configuration decisions, 
and the actuations of such decisions. 
For a networked system, it is important that the decisions 
are made based on a consistent global view and actuated in 
a synchronized way. This in turn necessitates the MW 
support for consolidating distributed information in regards 
to vehicle conditions, application states, operation events, 
and resource availability, as well as the support for 
disseminating the consolidation results. Another important 
aspect underlying the embedded decisions is the 
incorporation of offline design decisions, specifying the set-
points of QoS control, the variability of functional and 
operational dependencies, and the design and technology 
constraints on reconfiguration and software upgrade. The 
assumption in DySCAS is that the system developers will 
derive such information based on the system architecture 
specification. The MW provides support for tracking and 
maintaining such information at system runtime (e.g., as 

component meta-data). To validate the MW support and 
promote dynamic configuration in automotive systems, the 
DySCAS project is currently investigating algorithms for 
resolving the architectural dependencies and change impacts 
at system run-time. 
The move from static system to dynamic configurations is a 
large step for the automotive industry. The introduction of 
adaptive aspects of configuration and behaviours, and the 
ability to defer part of the configuration decisions and V&V 
efforts beyond the point of systems deployment, call for 
enhanced support for error detection, error handling, and 
error repair. The intended support is related to the control 
and coordination of related operations such as: monitoring 
the system execution, planning for rollback and producing 
checkpoints, transferring and recovering component states, 
re-flashing a node and controlling the execution states of 
application software and devices. 
 

3. Background and related work 
  

3.1 Middleware and Control 
Over the years, a wide range of MW technologies has been 
developed for distributed computer systems, targeting 
various application areas. MW technologies for distributed 
software focus on the deployment and integration of 
independently developed software components, while 
emphasizing the support for scalable and dynamic 
configuration. MW in this direction includes for example 
EJB [6], DOT NET [7], CORBA and CCM [8]. Many of 
such MW products are not suitable for embedded systems 
due to their memory and performance overheads or the lack 
of support for real-time, data consistency, and fault-
tolerance. To overcome these shortcomings, many MW 
solutions for real-time and embedded systems have been 
developed, including HADES [9], ARMADA [10], and the 
RT-CORBA implementations TAO [11] and ZEN [12]. In 
the domains of sensor networks, ubiquitous and networked 
embedded systems, there are also MW technologies 
developed to support advanced dynamic configuration and 
automated software maintenance. MW in this direction 
includes 2K [13] and RUNES [14], applying meta-object 
protocols and reflection for run-time inspection and 
adaptation of configuration and behaviours [15], QoS 
control for optimal performance and reliability when the 
availability of resources changes [16]. There are also many 
dedicated MW efforts targeting particular aspects or 
application domains of dynamic configuration, such as the 
Jini network technology [17] for the plug-and-play of non-
real-time services and devices, the HAVi [18] software 
architecture for the configuration and interoperation of 
home networks, the OSGi architecture [19] for coordinated 
development, deployment and management of network 
services, and the Simplex architecture [20] for the online 
upgrade of automatic control software. One formal 
approach is given by the component framework Lusceta 



[21], providing not only a QoS-aware reflective MW, but 
also formalisms for specifying, simulating, analyzing, and 
run-time synthesizing QoS management. 
Due to the lack of compatibility in regards to the automotive 
specific standards and technologies in respect to system 
specification and implementation, existing MW solutions 
will not be suitable as base technologies on which the 
DySCAS MW system can be built. Nevertheless, these 
generic solutions together provide a reference source for the 
design of the DySCAS architecture in regards to MW 
structuring, fault-tolerance, and execution control. One 
important basis for the DySCAS architecture is the 
AUTOSAR (AUTomotive Open System ARchitecture) [5] 
standard. It provides a domain specific approach to the 
specification and management of application software 
components, system services and run-time environment, and 
the overall system configuration integrating application and 
system resources. While AUTOSAR is limited to static 
configuration, the standardized architecture framework and 
modelling support constitutes a very important basis for 
DySCAS to understand and specify the application and 
platform characteristics. 
 

3.2 Policy-based configuration 
In DySCAS, policy-based computing is used to achieve the 
dynamic configuration of the automotive MW. Policies 
provide a powerful means of representing the logic required 
to make decisions which is decoupled from the underlying 
deployed code. Policies are flexible and can be formalised 
by using a closed grammar described in a formal notation 
such as EBNF or a schema definition language. A suitably 
expressive language enables a wide range of behaviour to 
be represented at high level by a relatively simple policy 
description. Policies can also be used at a lower, more-
detailed level if required. 
Policy technologies usually provide general guiding 
strategies or can only be changed between executions [22, 
23]. Ponder [24] permits run-time changeable security 
policies and has a very feature rich and extensible grammar. 
It is suitable for use in self-adapting policy-based security 
software but may not be as well suited for applications with 
other requirements. Ponder has been used in [25] for the 
management of differentiated services networks. 
AGILE [26] is the policy language used in DySCAS. A 
policy script can be loaded into an application at run-time to 
change the behaviour of the application at the point where 
the script is inserted. The scripts are loaded and processed 
by an AGILE library instance. The DySCAS MW supports 
run-time adaptability though the use of AGILE-Lite; a 
lightweight, embedded version of AGILE [27, 28].  
The points at which decision logic can be changed, called 
Decision Points (DPs), are specified at design time; [29] 
provides a detailed explanation of DPs and the supporting 
mechanisms. Policy scripts can be loaded into these points 
(usually when the component containing the DP is 

initialised) and can replaced with other policy scripts during 
run-time, yielding different or more advanced decisions.  
The AGILE language has a level of flexibility more 
normally associated with a lower-level programming 
language. For example, indirect addressing is supported at 
the policy script level, so that all constructs can be 
dynamically configured by changing the parameter 
variables supplied. Consider ‘rule’ constructs which can be 
used to implement Boolean logic as well as simple 
conditional tests. It is possible to use the outcome of one 
rule to contextually change the behaviour of another rule by 
changing the actual parameters (not simply the values) 
compared in the second rule. Other dynamically 
configurable constructs include: 
1. Utility Functions. A simple tool for choosing a path 

based on which of the provided options has highest utility 
value in a given context. The utility of an option is 
obtained as the sum of the products of each term and 
weight pair (terms represent sensed environmental 
conditions, weights represent the relative importance of 
each term). The action associated with the option that has 
the highest utility is performed. 

2. Tolerance Range Checks. A TRC checks a variable 
against upper and lower bound conditions (specified as a 
centre value and an acceptable range value; both 
dynamically configurable). A three-way fork is 
implemented, with separate actions performed in each 
case of above upper bound, within bounds, and below 
lower bound. This is a simple and effective way to restrict 
certain actions from being performed unless a condition is 
violated by more than a configurable margin, and is thus 
particularly useful in hysteresis control. 

Although powerful, AGILE policies at the same time can 
define functionality at a high level so that developers can 
focus on the intended business logic and need not be experts 
in concepts such as autonomics and policy-based 
configuration. A policy can be a statement of intent, without 
having to describe exactly how the behaviour is achieved, 
(since the lower-level mechanisms are pre-built). An 
AGILE policy editing tool further simplifies the task of 
preparing policy scripts; making script editing less 
problematic and less error-prone, see also [26, 30, 31]. 
Policy languages currently do not support ‘learning’ in the 
AI sense, which in any case would be too big a leap for 
automotive embedded systems which represent a highly 
safety-critical domain. However, the AGILE language does 
provide a means of persisting adapted policy state 
(representing user preferences, contextually-informed 
decisions etc.) in the form of a ‘template’ which can be used 
to initiate other instances of the policy (i.e. in other DPs, or 
in the same DP at a later time). This mechanism allows long 
term adaptation, spanning many evaluations of a policy.  
 

4. The DySCAS Middleware 
The architecture constitutes an overall design for the 



intended DySCAS MW system where various policy-driven 
self-management mechanisms are defined, integrated, and 
realized in an automotive context. Figure 1 provides an 
outline of the DySCAS MW architecture, including the 
major MW services and the external interfaces towards the 
application software and target platform. Above the 
portability layer, the MW system is structured into three 
levels of control. This layering strategy allows a 
hierarchical decomposition of control tasks through which a 
larger reconfiguration problem is reduced to more 
elementary operations. This pattern is widely adopted in 
many complex control systems [32]. 
DySCAS MW services are further divided in two groups: 
(1) optional services, providing basic support for network 
and platform transparencies, and (2) core services, 
providing embedded reasoning and decision support 
through the contained policies and other control functions. 
The optional services are placed in the Instantiation 
Interface (shown as dashed blocks in figure 1). These 
services interact directly with the underlying system 
platforms and provide support in respect of portability, 
interoperability, transparent communication, concurrency 
control, membership management, much as the support 
offered by other traditional MW systems. These services are 
optional as the support can be obtained through systems, 
network, or other external MW. Under these circumstances, 
the components implementing such services act as 
wrappers/containers for the corresponding external services. 
Across the architecture layers, there are three paths of 
control: 1. context monitoring and event detection path; 2. 
reasoning and decision path; and 3. actuation and 
synchronisation path. The context monitoring and event 
detection path performs the role of monitoring the context 
given by the current status of vehicle, applications as well 
as the current deployment of target and external resources. 
It monitors the events/states of interest and consolidates the 
information into a consistent context definition. This path is 
data intensive and runs from the system platform to the 
Resource Deployment Management Service (RDMS) via 
the DySCAS Instantiation Interface. Multiple context 
monitoring and event detection paths can exist in a 
networked system, targeting individual nodes, network 
realms, and the entire network system separately. The 
dissemination of the context information is supported based 
on the publish/subscribe paradigm. In each MW service 
component, there is a context management proxy 
responsible for subscribing necessary context information 
published by local or remote RDMS, preprocessing the 
obtained context information such as into normalized 
quality figures, and triggering the computation or decision 
modules in the case of context change. 
The reasoning and decision path starts when a context 
change is detected (e.g., discovering an external device) by 
the monitoring and detection path. It performs the roles of 
assessing such events/states and planning for the 

configurational adaptations. The contained policies capture 
the configuration rules, including the allowed variability 
and constraints. This provides a system with the ability to 
reason about the correctness and efficiency of its current 
state, and to plan for changes without eroding the 
architecture or violating the functionality and dependability 
(e.g., safety, security, and availability). In DySCAS, this 
path is subdivided into: 1. a dynamic configuration control 
path, supported by the Autonomic Configuration 
Management Service (ACMS), and 2. a dependability and 
QoS path, supported by the Dependability & Quality 
Management Service (DQMS).  
Of great importance to the DySCAS MW system is the 
actuations and synchronizations of dynamic configurational 
actions on a distributed system. This is supported by the 
actuation and synchronisation path, invoked by 
configurational decisions in the reasoning and decision 
path. Major MW services in this path include the 
Autonomic Configuration Handler (ACH), the Resource 
Deployment Management Service (RDMS), the SW Load 
Management Service (SLMS), as well as other services in 
the Instantiation Interface providing support for the 
portability and system interaction. Through this path, each 
dynamic configuration decision (e.g., updating a software 
component) is refined first into a set of elementary 
operations (e.g., invoking transferring states, unloading, 
loading, initializing, and executing a software component) 
and then into more primitive operations in terms of device 
and system service invocations. The actuation and 
synchronisation path also provides the scheduling and 
triggering support for the actuations across a distributed 
platform. During the executions, the status is frequently 
monitored. A failed execution may cause rescheduling of 
the operations or revising of configurational decisions. 
In DySCAS, each individual resource domain, ranging from 
an individual ECU node at the lowest level, to a network 
domain, and to an aggregation of networks, is allowed to 
have its own complete set of core services that together 
form a global monitoring and decision hierarchy in a 
cascade way. For example, in a networked system, there can 
be multiple MW control paths, targeting individual 
resources separately (e.g., a node or a network realm). 
Normally, each of these services is deployed for an 
individual resource domain, such as each node and for an 
entire network domain (e.g., a group of ECUs sharing a 
specific communication bus). Global decisions in a 
networked system are then derived by consolidating local 
decisions. Each DySCAS MW service can act as a proxy for 
consolidating a global system view or for obtaining system-
wide decisions. For performance reasons, the DySCAS MW 
also allows the context information suppliers and the 
decision makers to be allocated at different positions within 
a network according to the computational resources 
available. For dependability reasons, the services can be 
implemented with redundant components or distributed. 



 
Figure 1. A schematic overview of the DySCAS architecture. 
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Figure 2. A software component with 

multiple DPs 
 

 

 

5. The DySCAS Dynamic Component Model 
The application and resource flexibility in a DySCAS 
system is realized using techniques inspired by the policy-
based computing paradigm. In contrast to those approaches 
that only provide change from one entire system 
configuration to another, this method allows small changes 
to occur independently at various points throughout the 
system. We describe a methodology for very flexible 
configuration of software post-deployment and without the 
need to compile new code or even restart the system. 
As explained in section 4, the configuration ‘intelligence’ 
needs to be distributed across components. DySCAS 
achieves this in three key ways: A flexible, designed-for-
purpose MW; a versatile component model which supports 
dynamic mapping of components’ context requirements and 
dynamic mapping of the executional behaviours of 
components (e.g. start-up initialization and ordering, 
operation modes); and policy-based configuration, in which 
each component (in the MW as well as application 
software) can include a number of policies which can be 
easily upgraded without changes to the deployed code. 
The architecture has been designed with dynamic self-
configuration as a core-feature and not a bolt-on. The 
fundamental concept is that each software component that 
makes up the MW itself, or applications that operate at the 
next level, can embed zero or more DPs. Each DP can be 
dynamically configured by loading a policy at run time. If a 
component has multiple DPs each operates independently 
having its own policy and context requirements. 
The DySCAS dynamic component model describes several 
design, operational and interaction aspects of software 
components in the DySCAS system, to support the required 
flexibility with respect to deferred behaviour and dynamic 
configuration. The model specifies:  
• A method for design-time embedding of DPs into 

software components; 
• Run-time support for the operation of DPs; 
• Support for multiple independent DPs per software 

component;  
• The ability to specify default behaviour per DP, for 

example if a policy is not loaded;  
• A mechanism to dynamically load the appropriate policy 

into a DP from an on-system repository;  
• A mechanism to dynamically replace a policy with a 

new version;  
• A mechanism to automatically map the required context 

information to each DP; 
• The Repository Service (RS), which provides the 

appropriate policy for a DP on demand; 
• The Context Management Service (CS), which provides 

the required context information to policies within DPs;  
• The Dynamic Wrapper mechanism (DW) which 

facilitates automatic handling of faults arising from the 
operation of dynamic configuration.  

The basic approach is to identify, at design time, places in 
the software where dynamically changeable behaviour is 
appropriate. At each of such points a DP is embedded into 
the compiled code, marking out the possibilities for 
reconfiguration after deployment. The way which a decision 
is made (the logic) is not statically compiled into the DP; it 
is specified in a policy which is loaded (in the form of a 
data file, via an API method) into the DP at run-time. This 
separation of decision logic from the compiled code is an 
advanced method of policy based computing and is the key 
to post-deployment reconfiguration in DySCAS. Figure 2 
shows the design-time view of a software component with a 
combination of multiple DPs and statically compiled 
functional blocks. 
A key characteristic of computing systems in the 
automotive domain is the difficulty in making changes post-
deployment during a long vehicle lifecycle. Under current 
practice this can only be achieved by directly servicing each 
vehicle by suitability qualified personnel with specific 
equipment. DPs allow flexible run-time configuration of 
software components, at any time that policies can be 
loaded into the system. This can be physically, a user 



transfers new policies to the vehicle using a storage 
medium, or directly to a wireless enabled vehicle. This 
capability not only allows the changes to be made to correct 
possible problems but also to make use of new devices and 
information.  
The DP concept also future proofs applications. There are 
circumstances where a developer is aware that future 
enhancements to behaviour will be necessary, but is not 
aware of the details at the time of application deployment. 
In such cases DPs can be embedded at the appropriate 
places in the logic and very simple policies can be provided 
initially which can be replaced with more-sophisticated 
logic when necessary. 
 

5.1 Dynamic context management 
The fact that post-deployment configuration changes are 
supported implies that in general the context requirements 
of a DP’s policy are not known at the time of software 
deployment (because the policy logic itself is deferred). It 
would be possible to design a system in which the context 
information available to a particular DP were fixed when 
the DP was inserted. For example a DP which controls 
cabin temperature can be known to need ‘current 
temperature’ and ‘current desired temperature’ as input 
context even before the actual policy logic which controls 
the temperature is provided. However, such a fixed 
approach to context provision limits any future policy logic 
to reasoning based on the same context information types. A 
new use-scenario in which the cabin temperature control is 
to take into account the state of alertness of the driver 
(automatically cooling the cabin when the driver’s control 
inputs are sensed to be less precise – indicating drowsiness) 
can only be supported if the additional context information 
can be provided to the new policy. Dynamic context 
mapping also helps to facilitate independent upgrade of 
functionally dependent components. Consider a scenario 
where component A generates context information 
consumed by component B (for simplicity assume that each 
component has a single DP, i.e. a single policy operates in 
each component). An upgrade of component A may result 
in context information being produced to a different 
precision, in a different format, or in the generation of new 
context information not previously available. In a fixed 
context-mapped system such changes cause component 
incompatibilities and thus component upgrades ripple 
through the system. However, if context mapping is 
dynamic, only the policy for component B need be changed 
(without changing the code) thus keeping the number of 
component changes low and thus simplifying the change 
management process which in turn enhances reliability 
whilst reducing change and testing costs. 
However, dynamic context mapping introduces several new 
challenges which include: how to dynamically identify and 
match together the appropriate context producers and 
consumers; whether to directly couple, or decouple the 

consumer-producer component pairings, how to maintain 
low interaction intensity between components (and thus to 
keep communications overheads and complexity low), and 
how to handle a ‘Context Not Available’ situation 
experienced at a consumer. 
To achieve dynamic context mapping, and to automatically 
handle the challenges identified above, the DySCAS 
component model includes a pair of mechanisms: the 
Context Manager Service (CS); and the Dynamic Wrapper 
(DW) - see section 5.3.2.  
The CS is itself policy-configurable so that it can be made 
to operate in different modes as required by an implementer, 
and its behaviour can be dynamically changed if required. 
The default operation model is publish-subscribe-consume. 
A component that requires a particular context item issues a 
subscribe request to the CS, which updates a subscriber 
table of current context demands. A component that 
produces a particular context item publishes it to the CS 
(which updates a context information table). The CS checks 
to see if the value has changed and if so pushes out the new 
value to all subscribers. In this way the CS decouples the 
producer and consumer and also reduces communication 
and processing at the consumer since context is only pushed 
to them on a state change basis, and not at the rate that 
individual samples are produced. The CS also serves as a 
cache of most recent values which are made available when 
a new consumer is initiated, thus avoiding the new 
consumer having to either contact several producers 
directly, or waiting until all required context values have 
been pushed to it. Changing the CS policy would enable for 
example broadcast operation or a hybrid of broadcast and 
the subscribe approach. 
A further key benefit of the CS is that provides transparency 
to the developers of software components in that a context 
producing component does not need any design time 
consideration of consumer components, and a consumer 
component does not need any design time consideration of 
what context will be used or where it is generated. 
Managing the context information in this way also supports 
reconfiguration of the location of running software. For 
instance, an important software component may be shifted 
from one node to another due to resource availability. The 
context information required by this component’s DPs can 
be routed to the new location dynamically. 
 

5.2 Behavioural boundaries 
The critical nature of the application domain requires 
careful consideration when allowing configuration changes 
to be made. During the normal software development 
procedure, the compiled code (the static function blocks 
shown in figure 2) can be extensively tested and proven 
using formal methods. Robustness and fault-tolerance of the 
methodology is guaranteed by limiting reconfiguration 
within a software component using two design-time 
specified constructs. Firstly, the number and location of the 



decision points within the component, define the possible 
changes to the behaviour. Secondly, the dynamic wrapper 
associated with each DP specifies the behavioural 
boundaries for that DP, so that any policy-based 
reconfiguration cannot result in actions beyond these limits 
(this is explained in more detail in section 5.3.2). 
 

5.3 Middleware integration 
The DySCAS MW supports dynamic policy-based 
reconfiguration by providing a policy evaluation library, 
AGILE-Lite, and supporting DP and DW mechanisms. 
Dynamic context management (described above) is also 
provided to support policy-dependant context requirements. 
 
5.3.1 Decision Point Support 
AGILE-Lite provides DP organisation, the functionality to 
parse and evaluate a policy at run-time and robustness 
features using the Dynamic Wrapper mechanism. The 
library is a lightweight implementation for embedded 
systems, requiring minimal resources to achieve dynamic 
and robust behaviour (the ‘lightest’ version to date has a 
memory footprint of just 34kbytes). It supports an XML 
grammar based on the AGILE policy language [26]. When 
requested, AGILE-Lite will evaluate a specified DP and 
produce a decision result based on the currently loaded 
policy and current context information.  
Internally the library architecture contains three functional 
layers shown in figure 3:  
• Decision Evaluation Module (DEM); parses and 

evaluates policies, producing a result based on the 
policy logic and current context. 

• Dynamic Wrapper (DW); responsible for silent handling 
of errors and ensuring a legal result is returned for a 
evaluation request. 

• Decision Point API; provides developer access, 
including loading and evaluation of policies for 
specified decision point. 

 
Middleware / application component
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Dynamic Wrapper

Decision Evaluation
ModulePolicy

Middleware / application component
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Dynamic Wrapper
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Figure 3. 3-layer architecture of the AGILE-Lite library 

 
5.3.2 The Dynamic Wrapper 
As shown in figure 3, the DW forms the interface between 
the software component (via the API) and the DEM.  
The DW is responsible for making context subscription 
requests to the CS on behalf of its specific DP. A policy’s 
required context inputs (termed ‘environment variables’) are 
identified when the policy is parsed by the DEM. 
The DW is also responsible for providing mechanisms for 
basic validation and robustness support. During the policy 
load operation the DW determines whether: 

• An appropriate policy was located and provided by RS, 
• The policy script was loaded from file correctly, 
• The policy was parsed correctly, and found to be 

referentially self-consistent, 
• The policy meets the DP specification (in particular this 

requires that the possible logic outputs of the policy 
match the DP configuration). 

In case of any of the above problems, the policy load 
processes is deemed to be unsuccessful and the wrapper sets 
up error flags for diagnostic purposes. Where a previous 
policy had been successfully loaded, automatic rollback to 
that policy is initiated. 
When the DP is invoked (and thus the policy must be 
evaluated), the  DW monitors whether a policy has been 
loaded in the DP, and that the various policy objects that 
constitute the policy logic have each been instantiated 
correctly (for example there was sufficient memory 
allocated). The policy objects include the types: Policy, 
Template, Variable, Action, Rule, UtilityFunction, 
ToleranceRangeCheck, and ReturnValue. Additionally, 
through the context subscription mechanism, the DW 
determines if a context-not-available situation arises – 
which would prevent the policy logic reaching the correct 
outcome. 
If any of the above DP-evaluation tests fail, the DW sets up 
corresponding error flags and returns the DP-specific 
‘default’ value, which is pre-defined by the software 
developer. Thus the DW ensures that, should any run-time 
problem occur related to the dynamic policy configuration 
aspect, the affected DP collapses down to statically defined 
and thus totally predictable and verifiable behaviour.  
Through its silent error handling (i.e. by trapping errors 
generated in the DEM, and returning a predefined ‘legal’ 
return value to the component), the DW makes a significant 
contribution to system robustness and safety. The 
implementation of dynamically configurable components 
has been achieved in a manner which can be only 
advantageous in comparison to static components and will 
never decrease the system stability and integrity. From a 
component developer point of view, the DW is entirely 
transparent, because it works silently and cannot cause 
component failure. The only way to detect its intervention is 
to check whether error flags were set or not. In general, a 
developer can simply use the decision result produced by 
the DP in their code. 
 
5.3.3 The DP API 
During the design of a policy-configurable component, the 
developer identifies those points at which dynamic 
behaviour is required. For each of these points one DP 
should be created. At DP instantiation it is required to 
specify default outcome (in case of dynamic evaluation 
failure) and all other valid outputs. The developer should 
then decide how the component will behave in response to 
the policy decision. To complete each DP, an AGILE policy 



script is written and stored in the RS, to be loaded at run-
time. When the component is executed and a DP is 
evaluated, a decision is made using this policy and the 
current context information. The decision then becomes a 
data item within the component and processed as coded by 
the developer. The DW ensures that this decision is either 
the default value or one of the other supplied valid outputs. 
This transparency removes the burden of writing any 
special error handling code for the DP. 
The API functions make the three layer library structure 
transparent to the component developer. If the component 
developer is not interested in errors arising during policy 
loading or decision evaluation and chooses not to test or 
handle any error flag set up silently by dynamic wrapper, it 
is actually indistinguishable whether the component 
evaluation returned and actual policy decision or the default 
value predefined at DP instantiation. This transparency 
simplifies the use of the library and guarantees that the 
worst possible outcome of a failure in dynamic decision 
evaluation is safe, static and non context-aware behaviour 
of a component. A DP can be embedded and operational as 
a deferred logic place holder, prior to providing a policy. 
 

6. Automatic internal reconfiguration 
DySCAS configuration is implicitly dynamic, but it can be 
triggered in a variety of ways. Policy-based configuration of 
components is usually performed each time the component 
is initialized. New DP-specific policies can also be loaded 
into the system between, or during run-times. A new policy 
may be loaded ‘pulled’ because a user requests a specific 
upgrade, or ‘pushed’ during an annual service or may be 
automatically loaded ‘in the field’ perhaps delivered from 
the vehicle manufacturer’s back-end systems to the vehicle 
via a wireless network hotspot. 
However, additional forms of automatic dynamic 
configuration are directly supported directly by the MW. In 
particular it is necessary to support load balancing to ensure 
efficient use of resources within the vehicle, and in some 
cases the resources of temporarily attached user devices. To 
run applications or tasks for example of the vehicle 
infotainment system more efficiently, a migration to the 
additional mobile device makes sense to use its unused 
resources. Thus it is possible to migrate for example tasks 
of the navigation system to a connected PDA for faster and 
more detailed map rendering and more optimal calculation 
of routing information.  
After the connection of the PDA to the vehicle infotainment 
network with the aid of standardized interfaces like 
Bluetooth or WLAN, the device is discovered and the 
appropriate device information, locally running processes, 
and device and network resources are registered by a 
dedicated service. 
In consideration of all running processes and the resources 
situation within the vehicle infotainment system appropriate 
services decide on a possible load balancing according to  

strategies; based on characteristics and parameters of the 
system and tasks, and initiate the task migration where 
required. Thus the appropriate navigation system tasks 
migrate from the navigation system to the PDA. After the 
calculation the results of the tasks are sent back to the 
navigation system, where they are used. 
To realize the use case scenario described above the MW 
architecture is required to fulfill several requirements: 
• Event management – Added devices and device removal 

have to be discovered by the vehicle infrastructure. 
• Device registration - Detailed information and capabilities 

of the newly added devices have to be registered. 
• Resource management - Status information and resource 

load of each device (ECU) have to be known. 
• Load balancing - Potential task migrations have to be 

initiated based on strategies which take into consideration 
characteristics and parameters of the system and tasks. 

A detailed description of these four tasks within the 
automotive MW architecture is provided in [33] and [34]. 
For the load balancing we use a cost based strategy. The 
Load Balancer evaluates possible migration of tasks to the 
additional device. Migration is only a useful option if the 
cost of migrating is lower than the cost of keeping tasks 
with their original device. The cost benefit ratio for tasks of 
busy devices is computed which helps the Load Balancer to 
form the decision of whether to migrate or not.  
The calculation of migration costs of tasks is realized 
according to the priority list of the most loaded strategy 
(i.e., tasks with a high load have a higher priority). This 
enhancement enables dynamic load balancing and is 
therefore a basis for self-optimisation in a vehicle network. 
The Load Balancing mechanism is automatically invoked, 
and it can also be internally policy-configured for additional 
flexibility – for example several different load balancing 
algorithms can be simultaneously deployed within the same 
component each optimal under different circumstances. A 
policy is used to contextually select which of the fixed 
algorithms is the most appropriate at a given instant. 
 

7. Conclusion 
The research issues addressed by the DySCAS project are 
quite challenging. The automotive domain traditionally uses 
static functionality because of issues which include strict 
real-time performance and the safety critical nature of the 
systems. Thus whilst the potential advantages of introducing 
dynamic configuration and context-aware behaviour are 
very high, opening up whole realms of future use-cases, the 
accompanying technical requirements are very demanding. 
The project is still ongoing and presented here are partial 
solutions towards the desired dynamically configurable 
systems. This paper has described some of the novel and 
technically advanced aspects of the automotive MW, 
focusing on the architecture and the software component 
model. In combination these two aspects permit very 
flexible dynamic configuration and context-awareness by 



distributing the configurational intelligence across the 
various components as required. A dynamic context 
mapping service decouples components so that component 
upgrades can be performed in isolation. The strong 
obligations of robustness, validation and verification are 
met by wrapping the dynamic configuration mechanism 
with an automatic fault-handling mechanism which silently 
downgrades a problem component to static default 
behaviour. 
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