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Ali Şaman Tosun
Department of CS
University of Texas

at San Antonio
tosun@cs.utsa.edu

ABSTRACT

Bitmap indices have been successfully used in scientific databases
and data warehouses. Run-length encoding is commonly used to
generate smaller size bitmaps that do not require explicit decom-
pression for query processing. For static data sets, compression
is shown to be greatly improved by data reordering techniques that
generate longer and fewer runs. However, these data reorganization
methods are not applicable to dynamic and very large data sets be-
cause of their significant overhead. In this paper, we present a dy-
namic data structure and algorithm for organizing bitmap indices
for better compression and query processing performance. Our
scheme enforces a compression rate close to the optimum for a tar-
get ordering of the data which results in fast query response time.
For our experiments, we use Gray code ordering as the tuple order-
ing strategy. However, the proposed scheme efficiently works for
any desired ordering strategy. Experimental results show that the
proposed framework provides better compression and query exe-
cution time than the traditional approaches.

1. INTRODUCTION
Bitmap indices have been successfully implemented in commer-

cial Database Management Systems such as Oracle [2, 3], Informix
[9, 18], and have been used by many applications, e.g., data ware-
houses (OLAP), statistical and scientific databases [12, 21, 22].
Point and range queries are efficiently answered with bitwise logi-
cal operations directly supported by computer hardware. Although
uncompressed bitmap indices involving a small number of rows
and columns may work efficiently, large scale data sets require
bitmap compression to reduce the index size while maintaining the
advantage of fast bitwise logical operations [1, 2, 4, 11, 23]. The
general approach is to utilize compression schemes that are based
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on run-length encoding1 . The advantage of run-length encoding
is that the compressed bitmaps do not require explicit decompres-
sion during query processing. The two popular run-length encoding
based compression techniques are the Byte-aligned Bitmap Code
(BBC) [2] and the Word-Aligned Hybrid (WAH) code [23].

Run-length encoding compression performs better with sorted
data, therefore reordering techniques have been successfully ap-
plied to significantly improve the performance of run-length en-
coding based bitmap compression [10, 20]. However, finding an
optimal data order to minimize the compressed size of a boolean
table has been shown to be NP-hard through a reduction to Travel-
ing Salesperson Problem (TSP) [10]. As an efficient TSP heuristic,
Gray codes are shown to increase the lengths of runs in bitmap
columns and improve the compression performance [20]. Gray
code based techniques achieve comparable compression performance
to more expensive TSP-based approaches while running consider-
ably faster.

In typical scientific and data warehousing applications, massive
volumes of data are frequently generated through experiments, mea-
surements, or computer simulations. The updates are typically
appends rather than deletions or value-changes. To make these
massive data collections manageable for human analysts, efficient
mechanisms to support the appends are vital. A typical application
where bitmaps are widely utilized is a data warehouse, where facts
are aggregated using several dimensions. As more transactions oc-
cur, new information is periodically inserted. Since bitmap updates
are periodically done in batch mode, the new data is not available
until the next scheduled update.

Using the current bitmap structures, a new tuple is inserted to
the end of the index. As the ratio of the appended tuples increases,
the overall compression efficiency is limited by the insertion order
of the new tuples. In order to improve the compression efficiency,
one could reorder the data periodically. However, the reordering
schemes are known to be effective when the data fits in the main
memory. For large data sets, scalable techniques are needed to han-
dle insertions. Another alternative to maintain the data order and
the compression performance would be to insert the new records
to the appropriate location within the existing data. However, cur-
rent bitmap structures do not efficiently support this approach due
to the way data is organized. For instance, for a bitmap index that
is compressed with run-length encoding, a single update (a bit flip
from zero to one or vice versa) on a run will cause the run to be
interrupted and more runs need to be created to compress the in-
dex. This would require the index to be reorganized since we need

1Run-length encoding is the process of replacing repeated occurrences of a symbol by
a single instance of the symbol and a count.
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Attribute I Attribute II

Tuple b1=f b2=m b1=1 b2=2 b3=3

t1 = (f, 3) 1 0 0 0 1
t2 = (m, 2) 0 1 0 1 0
t3 = (f, 1) 1 0 1 0 0
t4 = (f, 3) 1 0 0 0 1
t5 = (m, 1) 0 1 1 0 0

Table 1: Simple bitmap for two attributes with 2 and 3 bins

to shift all the following runs. In general, the recommendation is
to make batch updates, i.e., drop the index, apply the changes and
rebuild the index afterwards [5, 7, 15]. Obviously this approach
consumes a lot of resources. Therefore, the traditional bitmap in-
dices are accepted as an effective method only for static databases.

In this paper, we present a dynamic bitmap index scheme based
on a structured partitioning that allows on-the-fly partial data re-
ordering. By utilizing a dynamic structure, our goal is to improve
the bitmap insertions further by keeping a given data order and also
by targeting better compression and query execution performances.
This way the applicability of bitmaps, along with the reordering
methods, will be expanded to more domains. The proposed scheme
efficiently works for any desired ordering technique. We also con-
duct an analysis of Gray code and lexicographical orderings.

The rest of the paper is organized as follows. In Section 2 we
briefly cover the background on bitmaps. Section 3 provides the un-
derlying technical motivation of our scheme. We discuss the main
framework of our approach in Section 4, and Section 5 shows the
experimental results. Finally, we conclude in Section 6.

2. BACKGROUND AND PRELIMINARIES
For an equality encoded bitmap index, data is partitioned into

several bins, where the number of bins per each attribute could
vary. If a value falls into a bin, this bin is marked “1", otherwise
“0". Since a value can only fall into a single bin, only a single “1"
can exist for each row of each attribute. After binning, the whole
database is converted into a huge 0-1 bitmap, where rows corre-
spond to tuples and columns correspond to bins. Table 1 shows an
example with two attributes, which are quantized into 2 and 3 bins,
respectively. The first tuple t1 falls into the first bin of Attribute I,
and the third bin of Attribute II. Note that after binning we can treat
each tuple as a binary number, e.g., t1 = 10001 and t2 = 01010.

Bitmaps are compressed using run-length encoders not only to
decrease the bitmap index size but also to enable efficient query ex-
ecution performance while running the queries over the compressed
bitmaps. The following subsections briefly describe the techniques
for bitmap compression and updates on bitmaps.

2.1 Run-Length Based Compression
An earlier run-length encoding based bitmap compression scheme,

BBC [2], stores the compressed data in bytes, therefore the com-
puter memory is processed in a way that is not word-aligned, i.e.,
one byte at a time during most operations. Analysis shows that, for
BBC, the time spent on bitwise logical operations is dominated by
the time spent in CPU rather than in reading bitmaps from disk [24].
On a modern computer, accessing a byte takes the same amount of
time as accessing a word, which is the main property that allowed
WAH, a word-based compression scheme, to be designed in a CPU-
friendly fashion. WAH is efficient since the bitwise operations can
be performed on words without extracting individual bytes. There
are two types of WAH words: literal words and fill words. In our
implementation, it is the most significant bit that indicates the type
of the word. Let w denote the number of bits in a word, the lower
(w−1) bits of a literal word contain the bit values from the bitmap.
If the word is a fill, then the second most significant bit is the fill bit,

original bits 1×1, 20×0, 3×1, 79×0, 21×1

31-bit groups 1×1, 20×0, 3×1, 7×0 31×0 31×0 10×0, 21×1

groups in hex 40000380 00000000 00000000 001FFFFF

WAH(hex) 40000380 80000002 001FFFFF

Table 2: WAH compression for 124-bit vector

and the remaining (w−2) bits store the fill length. Table 2 depicts
an example of WAH compression. The first row includes the origi-
nal bits in a column of a bitmap table. In the last row, first and third
words are the literal words, and the second is a fill word. WAH
imposes the word-alignment requirement on the fills, which is the
key to ensure that logical operations only access words. A com-
parison between WAH and BBC indicates that bit operations over
the compressed WAH bitmap file are faster than BBC (2-20 times)
[23] while BBC gives slightly better compression ratios. In this
paper, we utilized WAH as the compression technique. However,
our scheme efficiently works for any run-length based compression
architecture, including BBC.

2.2 Gray Code Order (GCO)
The original Gray code order (GCO) is a reordering technique

such that two adjacent binary numbers differ only by one bit. For
instance (000, 001, 011, 010, 110, 111, 101, 100) is a binary Gray
code. One can achieve GCO recursively as follows: i) Let S =
(s1, s2, ..., sn) be a Gray code. ii) First write S forwards and then
append the same code S by writing it backwards, so that we have
(s1, s2, ..., sn, sn, ..., s2, s1). iii) Append 0 at the beginning of
the first n numbers, and 1 at the beginning of the last n numbers.
For instance, take the Gray code (0, 1). Write it forwards and back-
wards, and we get: (0, 1, 1, 0). Then we add 0’s and 1’s to get:
(00, 01, 11, 10). This approach is also referred as the reflection
technique.

For a bitmap table, let B(tx, i) be the ith bit of d-bit binary tuple
tx. The Hamming distance between two binary tuples tx and ty is
given as follows: H(tx, ty) =

Pd

i=1
|B(tx, i) − B(ty, i)|. For

example, the hamming distance between (11111) and (11001) is
2. Note that, for a GCO produced with the reflection technique,
H(ti, ti+1) = 1.

For a boolean matrix with d columns, we define the rank of a
d-bit binary tuple as the position of the tuple in GCO of the matrix.
In Figure 1(b), e.g., the rank of t3 is 0 and the rank of t2 is 3.

As described in the previous section, run length encoding based
schemes pack consecutive same-value-bits into runs, which does
the actual job of compression, e.g., fill words for WAH. GCO tech-
nique has been proposed to improve the compression of runs in
bitmaps [20]. Figure 1 illustrates the basic idea behind GCO. On
the left matrix, there are 20 runs (6 on the first column and 5, 5, 4
on the following columns) whereas on the right matrix, reordering
the tuples reduces the number of runs to 14. Figure 2 depicts the
effect of running the GCO algorithm. Black and white segments
represent the runs of ones and zeros respectively. On the left is
the numerical (or lexicographical) order of a boolean matrix with
4 columns. GCO of the same matrix is presented on the right. As
the figure illustrates, the aim of GCO is to produce longer and thus
fewer runs than the lexicographic order.

The essential idea of traditional reordering techniques in batch
periods is to keep the data in order so that the total compression
and the query execution performance are improved. However, out-
of-core and online algorithms are needed for these methods to be
applicable in real-life settings where the data sets typically do not fit
into main memory, and the data is updated mostly through appends.
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Figure 1: Example of tuple reordering
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Figure 2: Gray Code Ordering

2.3 Bitmap Updates
A recent work concerning the efficient bitmap index updates is

presented in [6]. In this study, each bitmap (or bin) is expanded
by adding a single synthetic fill-word to the end, namely 0-fill-pad-
word, which can compress huge amounts of literal-words whose
values are all zeros (similar to the second word at the last row in
Table 2). For equality encoded bitmaps, a traditional row insertion
for an attribute adds a 1 to the bin for which the new data value
falls into. The remaining bins of the attribute are expanded with a
0. In [6], for an attribute, the idea is to only touch the bin that will
receive a 1 and update the very last word that was synthetically
added, and not to touch the other bins since they already have 0-
fill-pad-words at the end. This technique speeds up the updates on
bitmap indices significantly, however tuple reordering is not taken
into account. As with traditional bitmap encodings, this approach
also appends the new tuples to the end of the indices, therefore
both compression and query execution performance suffer from the
order of insertions.

3. TECHNICAL MOTIVATION
Although the Bitmap GCO algorithm is proven to be effective

for static databases, tuple insertions are not handled by the tech-
nique. Tuple appends to the end of the matrix will not obey the
GCO and therefore, the matrix needs to be reorganized again to
maintain the improved compression and query execution efficiency.
An approach to preserve the GCO in a bitmap index against the tu-
ple insertions might be as follows. When a new tuple arrives find
the GCO rank of the row, assume ri, and insert it in between the tu-
ples whose ranks are ri−1 and ri+1. For instance assume we want
to insert t7 = (1100) to the ordered matrix in Figure 1(b). Natu-
rally, the proper place would be in between t5 and t2, in which case
the total number of runs will still be 14 after the insertion. How-
ever bitmaps are stored and processed in column-wise compressed
forms. Therefore the solution would be inefficient since one needs
to decompress the bitmap first, then shift the bits to make room
for inserting the new tuple in between the existing ones and then
compress it again.

We aim to achieve an architecture-conscious data organization
that effectively utilizes the main memory. We propose a dynamic

Traditional Appends Partition Appends

HEP data set 3,180,845 2,486,141

Table 3: Number of WAH words

bitmap scheme based on a horizontal partitioning of the bitmap ta-
ble such that each partition can be managed within the main mem-
ory without any I/Os. To test its feasibility, we implemented a basic
version of this idea where we uniformly partitioned a small subset
of a data set and appended the remainder of the set, tuple by tuple,
into the closest partition. In this simple approach, the new tuple is
compared against the last rows (tuples) of the partitions, i.e., the
smaller the hamming distance, the closer the two tuples are. We
present the results in Table 3 where the values are the total num-
ber of words after WAH compression2 . Table 3 reveals that even
a simple technique of appending to different partitions instead of
a single data set results in better compression, i.e., the number of
WAH words drops to two third, compared to the brute-force update
approaches where we always append to the end.

3.1 Notation
In order to ease the presentation for the remainder of the paper,

we provide the summary of utilized notation in Table 4.

Symbol Meaning

GN(r) GCO codeword with rank r

LN(r) Lexicographic codeword with rank r

H(x,y) Hamming distance of x and y

B(x,i) ith bit of x

Gk

d
Average hamming distance of d-bit GCO
codewords whose ranks differ by k positions

Lk

d
Average hamming distance of d-bit lexicographic
codewords whose ranks differ by k positions

Table 4: Notation

Next, we provide fundamental results for GCO and lexicographic
order. Proposed scheme is motivated by these theoretical results
that support the claim that GCO achieves better compression than
lexicographic order. In addition, the results quantify the difference
between the two orders.

3.2 Average Distance
We now investigate the tuple spacing for a table that is generated

using the GCO reflection technique. This is basically the average
hamming distance of the codewords whose ranks differ by a fixed
number. The larger the fixed number is, the further apart the tuples
are in the data set, and thus the larger the average hamming distance
is, and this leads to worse compression performances. We derive
the recursive formulation for both GCO and lexicographic code and
prove the properties of these codes using the recursive formulation.

3.2.1 Gray Code Order
Let Gk

d denote the average hamming distance of all the d-bit
Gray codes whose ranks differ by k, which is defined as follows

G
k
d =

1

2d

2
d

X

r=0

H(GN(r), GN((r + k) mod 2d)) (1)

Following theorem shows the recursive formulation of Gk
d . Since

GCO is defined recursively, following expression results in a recur-
sive function.
2Detailed information about the data sets are presented in the experiments section.



THEOREM 3.1. The values of Gk
d can be recursively computed

as follows

G
m
d =

8

<

:

G2k
d−1 : m = 4k

G2k+1

d−1
+ 1 : m = 4k + 2

1

2
Gk

d−1 + 1

2
Gk+1

d−1
+ 1

2
: m = 2k + 1

(2)

PROOF. Let Gk
d,i denote the contribution of bit i, which is for-

mally defined as

G
k
d,i =

1

2d

2d

X

r=0

|B(GN(r), i)−B(GN((r+k) mod 2d), i)| (3)

Using Gk
d,i we can represent Gk

d as follows

G
k
d =

d−1
X

i=0

G
k
d,i =

d−2
X

i=0

G
k
d,i + G

k
d,d−1 (4)

Let T k
d denote

Pd−2

i=0
Gk

d,i in the above summation. T k
d is the aver-

age difference in ranks for GCO excluding the last bit. For the 3-bit
code U = {000, 001, 011, 010, 110, 111, 101, 100}, T k

d excludes
the last bit and considers the code V = {00, 00, 01, 01, 11, 11, 10,

10}. In codes considered for T k
d every codeword is repeated twice.

Using the same notation as Gk
d we have the following properties

for T k
d

T
m
d =



Gk
d−1 : m = 2k

1

2
Gk

d−1 + 1

2
Gk+1

d−1
: m = 2k + 1

(5)

Now let us look at Gk
d,d−1 which is the contribution of the last bit.

We have

G
m
d,d−1 =

8

<

:

0 : m = 4k
1 : m = 4k + 2
1

2
: m = 2k + 1

(6)

Combining results for Gd,d−1 and Td we get

G
m
d =

8

<

:

G2k
d−1 : m = 4k

G2k+1

d−1
+ 1 : m = 4k + 2

1

2
Gk

d−1 + 1

2
Gk+1

d−1
+ 1

2
: m = 2k + 1

(7)

For the base case, G2l
1 = 0 and G2l+1

1 = 1.

3.2.2 Lexicographic Order
Let Lk

d denote the average hamming distance of all the d-bit bi-
nary codes sorted in lexicographic order whose ranks differ by k.
This is formally defined as follows

L
k
d =

1

2d

2
d

X

r=0

H(LN(r), LN((r + k) mod 2d)) (8)

Similar to Gk
d we can derive a recursive formulation for Lk

d . Having
recursive formulations for both of them makes it easier to compare
the values. Following theorem shows how to compute Lk

d .

THEOREM 3.2. The values of Lk
d can be recursively computed

as follows

L
m
d =



Lk
d−1 : m = 2k

1

2
Lk

d−1 + 1

2
Lk+1

d−1
+ 1 : m = 2k + 1

(9)

PROOF. Let Lk
d,i denote the contribution of bit i, which is for-

mally defined as

L
k
d,i =

1

2d

2
d

X

r=0

|B(LN(r, i)−B(LN((r+k) mod 2d), i)| (10)

Using Lk
d,i we can represent Lk

d as follows

L
k
d =

d−1
X

i=0

L
k
d,i =

d−2
X

i=0

L
k
d,i + L

k
d,d−1 (11)

Let Mk
d denote

Pd−2

i=0
Lk

d,i in the above summation. Mk
d is the

average difference in ranks for the lexicographic order excluding
the last bit. For the 3-bit code U = {000, 001, 010, 011, 100,

101, 110, 111}, Mk
d excludes the last bit and considers the code

V = {00, 00, 01, 01, 10, 10, 11, 11}. In codes considered for Mk
d

every codeword is repeated twice. Using the same notation as Lk
d

we have the following properties for Mk
d

M
m
d =



Lk
d−1 : m = 2k

1

2
Lk

d−1 + 1

2
Lk+1

d−1
: m = 2k + 1

(12)

Now lets look at Lk
d,d−1 which is the contribution of the last bit.

We have

L
m
d,d−1 =



0 : m = 2k
1 : m = 2k + 1

(13)

Combining results for Ld,d−1 and Md we get

L
m
d =



Lk
d−1 : m = 2k

1

2
Lk

d−1 + 1

2
Lk+1

d−1
+ 1 : m = 2k + 1

(14)

For the base case, L2l
1 = 0 and L2l+1

1 = 1.

3.2.3 Behavior for large d

In this section, we show that both Gm
d and Lm

d are nondecreas-
ing functions of d, and for very large d GCO is better than lexico-
graphic order for small values of m.

Following theorem shows that for fixed m, when d is increased
Gm

d+1 increases or stays the same.

THEOREM 3.3. ∀m,d ≥ 1, Gm
d+1 ≥ Gm

d

PROOF. By induction

• Base Case: Gm
2 ≥ Gm

1 .

– Case a: m = 4k
Gm

2 = G2k
1 ≥ 0 = Gm

1

– Case b: m = 4k + 2
Gm

2 = G2k+1

1 + 1 ≥ 1 ≥ 0 = Gm
1

– Case c: m = 2k + 1
Gm

2 = 1

2
Gk

1 + 1

2
Gk+1

1 + 1

2
≥ 1 = Gm

1

• Inductive Hypothesis: Assume Gm
d ≥ Gm

d−1

• Inductive Step: Prove Gm
d+1 ≥ Gm

d

– Case a: m = 4k
Gm

d+1 = G2k
d ≥ G2k

d−1 = Gm
d

– Case b: m = 4k + 2
Gm

d+1 = G2k+1

d + 1 ≥ G2k+1

d−1
+ 1 = Gm

d

– Case c: m = 2k + 1
Gm

d+1 = 1

2
Gk

d+ 1

2
Gk+1

d + 1

2
≥ 1

2
Gk

d−1+
1

2
Gk+1

d−1
+ 1

2
=

Gm
d

Following theorem shows that for fixed m, when d is increased
Lm

d+1 increases or stays the same.

THEOREM 3.4. ∀m,d ≥ 1, Lm
d+1 ≥ Lm

d

PROOF. By induction

• Base Case: Lm
2 ≥ Lm

1 .



m 1 2 3 4 5 6 7 8

Lexicographic 2 2 3 2 7

2
3 7

2
2

GCO 1 2 2 2 5

2
3 5

2
2

Table 5: Average Distance in limit

– Case a: m = 2k
Lm

2 = Lk
1 ≥ 0 = Lm

1

– Case b: m = 2k + 1
Lm

2 = 1

2
Lk

1 + 1

2
Lk+1

1 + 1 ≥ 1 = Lm
1

• Inductive Hypothesis: Assume Lm
d ≥ Lm

d−1

• Inductive Step: Prove Lm
d+1 ≥ Lm

d

– Case a: m = 2k
Lm

d+1 = Lk
d ≥ Lk

d−1 = Lm
d

– Case b: m = 2k + 1
Lm

d+1 = 1

2
Lk

d + 1

2
Lk+1

d +1 ≥ 1

2
Lk

d−1 + 1

2
Lk+1

d−1
+1 =

Lm
d

Following theorem summarizes the behavior of average distance
in the limit (for very large d). Similar properties for other values of
m can be derived using the recursive formulation of Gm

d and Lm
d .

THEOREM 3.5. Following properties hold

• m = 1: G1
d = 1 and limd→∞ L1

d = 2

• m = 2n: G2
n

d = 2 and limd→∞ L2
n

d = 2

• m = 3: G3
d = 2 and limd→∞ L3

d = 3

• m = 5: G3
d = 5

2
and limd→∞ L5

d = 7

2

• m = 6: G6
d = 3 and limd→∞ L6

d = 3

• m = 7: G7
d = 5

2
and limd→∞ L7

d = 7

2

Results in the limit are summarized in Table 5. As can be seen
in the table for large d, GCO results in smaller or equal average
distance compared to lexicographic order. A consequence of Theo-
rem 3.5 is that one needs to apply GCO to as large data as possible
since that is when it achieves its best performance gain. In fact, the
best case is the global GCO considering the whole data set with all
the 2d possible number of tuples. A best of worlds method would
preserve the global GCO (achieved by the off-line algorithm), but
would use partitioning and work on local sets of data for efficiency
and scalability. This constitutes the basis of our partitioning based
solution where the boundaries of the partitions are decided consid-
ering the global GCO. The global GCO is achieved using a local
ordering method. The details of the proposed method are described
next.

4. DYNAMIC BITMAP SCHEME
The incremental organization of data is a well-known challenge

in large-scale databases. Without a dynamic data organization, the
data is usually kept in the order tuples are appended. An effec-
tive database solution is to utilize a dense index that dictates the
data order. However, the insertions or updates of arbitrary bits in
bitmaps are expensive enough to be simply avoided. Therefore,
bitmaps are usually tailored for read-only environments. The com-
mon suggestion for bitmap updates is to perform a complete re-
organization, i.e., drop the index, apply the changes and rebuild
the complete index. We want to avoid reconstructing the entire
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Figure 3: Main Framework

bitmap index since it requires reading, reordering and building the
index. At each rebuilding session, as the number of rows increases,
the recreation time also increases. If the data set does not fit into
main memory, one can apply the rebuilding process partially, and
then utilize a merging mechanism, e.g., external sorting [13], to
minimize the sorting cost. However, this does not reduce the com-
plexity of the overall rebuilding process. The proposed technique
is more efficient since it does not require the reorganization of the
entire structure. Data is mapped to the tuned-size partitions and
only local operations are performed. In this section, we first discuss
our proposed framework that serves as a dynamic data organization
scheme for bitmap indices. We then present our GCO Rank Algo-
rithm that operates on a given bitmap tuple. Finally, we present the
additional advantages and uses of the proposed technique.

4.1 Dynamic Structure and Mapping Frame-
work

The Dynamic Bitmaps (DB) framework is illustrated in Figure 3.
On the top left is the queue for the tuple set that will be inserted
into the existing topology. At the center are the Rank and Mapping
Schemes whose main task is to point the new tuples to their cor-
responding partitions. For each partition, we define the following
two parameters: prefix-length (τ ) and prefix. These are shown
within the partitions in Figure 3. For instance, P2 has τ = 3 and
prefix = 011. That means all the tuples in P2 has the prefix 011.
Within the Mapping Scheme, we keep the maximum τ among the
partitions, i.e., τmax = 3 in the figure.

The Rank algorithm in the framework should be tailored to the
given tuple-ordering, which is GCO in our case. In our design,
the rank function needs the number of bits as a parameter. For in-
stance, since τmax = 3 in Figure 3, the function takes only the 3
most significant bits and therefore the range of the mapping func-
tion will be [0, 7]. E.g., the 3-bit GCO rank value of a 5-bit tuple
ti = 01111 is 2, that is Rank(ti, τmax) = 2. Next, the tuple is
mapped to a partition based on its rank. For instance, let M de-
note the Mapping Scheme, the partition for ti would be given by
M [Rank(ti, τmax)], which in this case is P2.

4.1.1 Insertion Algorithm
We present the incremental insertion methodology to our dy-

namic structure in Algorithm 1. Given a tuple ti, first line of the
algorithm follows the mapping framework in Figure 3 and maps
the tuple to the corresponding partition. In our implementation, we
limit the size of the partitions in terms of the number of tuples that
can fit into the memory. Note that there is always room for tuple ti

in a partition [line 2]. This is because a partition is split as soon as
it becomes full [lines 3-12].



Algorithm 1 Insert (ti)
Inserts a given tuple ti to its corresponding partition.
M : Mapping, p: pointer to a partition
1: p←M [Rank(ti, τmax)]
2: Append ti to p
3: if p is full then
4: Obtain a temporary space TS to store all tuples in p
5: τ ← prefix length of p
6: Obtain a new partition p′

7: Set the prefix lengths of p and p′ to τ+1
8: if τ + 1 > τmax then
9: τmax ← τmax + 1

10: Update M
11: for each tuple tq in TS do
12: Insert(tq)

4.1.2 Mapping Scheme Implementation
The task of pointing a given tuple to a partition based on its pre-

fix is achieved by the Mapping Scheme in our framework. Dis-
tinct but related structures in the literature that can be adapted to
our structure are [8, 14, 16]. There are several extensions pro-
vided by the framework for these design choices. Our structure
is not necessarily limited to disk pages as is the case in these tra-
ditional approaches. The actual partitions can be represented by
files. Furthermore, our scheme has the ability to enforce any user-
specified order. In addition, our approach consumes memory lin-
early, as opposed to a contiguously allocated directory whose size
changes exponentially. In order to utilize the memory efficiently,
we consider two options. One solution is to change the order of the
columns, and bring to front the columns that differentiate tuples in
earlier bits. In order to achieve this, we sort the columns in increas-
ing order based on the difference between the number of set bits
(1s) and non-set bits (0s). Thus, the column with highest entropy,
i.e., the column with almost equal number of ones and zeros, will
now be the first column in the order. However, a disadvantage with
this approach is that after a series of insertions, the order of the
columns may need to change since a column can have more set bits
inserted than non-set bits (or vice versa). This is impractical and in
addition, some applications may not allow to change the order of
columns in the current index. As an alternative solution, we adapt
a binary-tree-like structure in our scheme which efficiently utilizes
the memory.

4.1.3 Design Issues
Mapping Scheme can either be based on the most significant bits

of the tuples or on the least significant bits. The challenge for the
latter option is that the tuples that are actually distant in GCO can
map to the same partition and this will affect the compression per-
formance. As τ increases, these tuples need to be moved to differ-
ent partitions, which will be costly. For instance, assuming τmax

= 3 in Figure 3, 5-bit tuples 00000 and 10000 would map to the
same partition (namely P1) since their least-significant-3-bit ranks
are equal (i.e., 0), although their least-significant-5-bit ranks are 0
and 31 respectively (these will be clear in the next section). On
the other hand, it is still possible to follow the least significant bits
option, however that leads to a totally different ordering and the
Mapping Scheme also needs to follow the same ordering. Depend-
ing on the user-specified order, any subset of bits in tuples can be
utilized by the mapping. Without loss of generality, we use the
most significant bits, and from now on rank will simply refer to the
most-significant-bits-rank.

Note that bitmaps are file-resident and each column is stored in-
dividually. A typical DBMS accomplishes more advanced memory
management and uses low level IO functions which are faster since
they directly interact with the disk controllers. In addition, the au-

GCO GCO GCO-rank GCO-rank
Decimal Binary Binary Decimal

0 00000 00000 0
1 00001 00001 1
3 00011 00010 2
2 00010 00011 3
6 00110 00100 4
7 00111 00101 5
5 00101 00110 6

...... ...... ...... ......
21 10101 11001 25
23 10111 11010 26
22 10110 11011 27
18 10010 11100 28
19 10011 11101 29
17 10001 11110 30
16 10000 11111 31

Table 6: GCO Ranks for 5 bits

thors of [17] investigate different design choices for modern com-
puter architectures. In their RIDbit implementation, the sequence
of rows on a table are broken into equal-sized fragments and each
fragment is placed on a single disk page. Similar disk page alloca-
tion techniques can be adapted for our scheme to further enhance
its performance.

4.2 GCO Rank Algorithm
In this section, we discuss our linear GCO rank algorithm. To

motivate the problem, a subset of GCO is presented for 5 bits in
Table 6. The second column is the binary GCO produced by the
reflection method as described in Section 2.2 and the first column
includes the corresponding decimal values. The third and fourth
columns tabulate the ranks both in binary and decimal. The func-
tion of the rank algorithm is to return the rank (fourth column)
given a bit-string (second column). We now present our GCO Rank
Algorithm, which returns the rank in the binary form (i.e., the third
column)3.

Algorithm 2 receives two parameters: a bit-string and the num-
ber of bits utilized to produce the rank. The reason for the second
parameter is as follows. One can feed the algorithm with a long bit-
string and analyze only the rank of a prefix of the string by ignoring
the remaining bits. Note that Algorithm 2 is linear in the number
of bits (b) utilized.

We now provide an example to go through the algorithm. Let’s
take t = (10101) as the input tuple, whose rank we are looking
for will be (11001) (or 25 in decimal) in Table 6. Assume that
we are interested in all 5 bits of the tuple. Therefore, for-loop of
Algorithm 2 will be executed 5 times (line 3). Line 4 will evaluate
to true because hasSeenSetBit is initially false. Line 5 will be
false since the first bit of t is one. Next, line 8 will initialize the
variable rank to 1. Since we concatenated the rank with 1, the
hasSeenSetBit will be true (line 9). This means, in the following
iteration of the loop we will flip the next bit of t. In the second
iteration, line 12 will be executed and the current value of rank will
be 11. Since we concatenated the rank with 1 again, the following
iteration will also flip the next bit. In the third iteration, line 14
will set the current value of rank to 110. At the end of the fourth
iteration, rank will be 1100 (line 6). Finally, the fifth iteration yields
11001 as the value of rank (line 8), which is actually what we were
looking for as the output.

THEOREM 4.1. For a bit-string s and c bits, Algorithm 2 pro-
duces the GCO-rank of s.

3Other implementations that translate decimal values to different GCO Ranks and vice
versa are also publicly available.



Algorithm 2 GCRank (t, b)
Given a bit-string (tuple) t and the number of bits needed b, the
algorithm returns the rank of the tuple in GCO for b bits.
B(t, i) − returns ith bit of t
x • y − returns the concatenation xy

1: rank ← null
2: hasSeenSetBit← false
3: for (i=1; i ≤ b; i++) do
4: if (hasSeenSetBit == false) then
5: if (B(t, i) == 0) then
6: rank = rank • 0
7: else
8: rank = rank • 1
9: hasSeenSetBit← true

10: else
11: if (B(t, i) == 0) then
12: rank = rank • 1
13: else
14: rank = rank • 0
15: hasSeenSetBit← false
16: return rank

PROOF. The proof is based on induction on the number of given
bits. The inductive basis is for c = 1. Observe that for bit-strings 0
and 1 the algorithm produces the correct ranks, i.e., 0 and 1 respec-
tively. Assuming the function produces the right answer for c = k,
let’s examine the correctness for c = k+1. For k+1 bits, we have
2k+1 possible ranks, that is from 0 to 2k+1 − 1. Let’s consider
these values in four equal parts: [0, 2k−1− 1], [2k−1, 2k− 1], [2k,
2k + 2k−1 − 1], [2k + 2k−1, 2k+1 − 1] and name them as part 1,
2, 3, 4 respectively. For the first two parts, the algorithm only adds
a zero as a prefix to the rank variables. Since we assume it works
for c = k, adding a zero to the beginning of a binary number will
not change its decimal value and the ranks will also be right for c
= k+1. For part 3, note that all the bit-strings start with 1, therefore
the algorithm appends 1 to the rank variable and then flips the sec-
ond bit of the input bit-string. This way, part 3 produces the same
binary rank values as part 1 except now the first bits are 1. That
is, the ranks of part 1 are repeated for part 3 by adding 2k to the
ranks of part 1. Similarly, ranks of part 2 are repeated for part 4 by
adding 2k to the ranks of part 2. Since all the bit-strings start with
1, the algorithm keeps 1 and flips the next bit, which are all zeros
for part 4. Therefore, the algorithm produces the binary ranks of
part 4 same as part 2 except that the first bits are 1 instead of 0.

4.3 Additional Uses and Advantages
There are additional uses and advantages of the proposed frame-

work, which we summarize shortly below.

i) Other Orderings: We presented the framework using GCO as
the ordering strategy due to its better compression ratio against lex-
icographic ordering and also its efficient and effective performance
when compared to other TSP heuristics. However, the scheme
works with any user-specified order.

ii) Preserving Optimum Order: Besides keeping a dynamic struc-
ture, our scheme is also capable of achieving the optimum com-
pression ratio. Targeting the overall reordering, the technique pro-
cesses the data in the partitions locally. At any given batch time, by
reorganizing all the partitions similar to the traditional rebuilding,
the performance of the technique reaches the optimum case that
is achieved by reorganizing the entire data globally, with a small
overhead of few runs being split by partitioning.

iii) Prefixes of Partitions: Recall that all the tuples within a parti-
tion have the same prefix. In our framework, the prefixes constitute
a redundancy so that they do not need to be stored. This allows us

Number of Number of Number of WAH words

Rows Columns Original With GCO

Landsat 275,465 600 1,433,908 978,318

Z1 2,010,000 250 8,139,089 2,723,993

UNI 2,100,000 250 12,094,597 5,152,517

HEP 2,173,762 122 3,180,845 562,826

Table 7: Data Set Statistics

to save more space and time during index creation.

iv) Query Execution: Since the prefixes within a partition are
equal and kept by the Mapping Scheme, DB can efficiently answer
the queries that are seeking the bins in a prefix, without retrieving
any actual data. For this reason, frequently queried bins should be
placed early in the column order. Besides the prefixes, we experi-
enced that there are many other bins for which all the tuples within
a partition have the same value. These bins do not need to be stored
and retrieved either, which would further improve the query perfor-
mance. Note that, the conventional bitmap indexes do not allow
partial retrieval of a column. Even though a column is composed
of only a few set-bits, one needs to retrieve and apply the bitwise
operations to the entire column in a traditional approach.

v) Deletions and Updates: For the scenarios where deletions also
occur, instead of deleting every tuple literally, one can just mark a
deleted tuple by utilizing an Existence Bitmap (EB) for each parti-
tion [19]. For the query execution, after the bitwise operations are
applied, the resulting bitmap needs to be ANDed with EB4. Further-
more, we reorganize a partition right after a split occurs, which nat-
urally allows us to make the literal deletions within partitions. This
is much more dynamic and efficient compared to rebuilding the en-
tire bitmap table since the deleted tuples in the latter approach will
still be unnecessarily processed for the queries until the rebuilding
occurs. Besides deletions, the tuple updates can easily be handled
by a deletion plus an insertion.

5. EXPERIMENTAL RESULTS

In this section, we discuss our experimental setup and present the
empirical results. We performed experiments in order to quantify
our scheme based on the number of partitions, prefix lengths, com-
pressed storage size, and query execution time. We also compared
our approach with a baseline technique where the bitmaps are split
into main memory-sized chunks and the tuple ordering (GCO) is
applied to each chunk independently. For a scenario where new in-
sertions occur, we store the new tuples in a new chunk, and apply
GCO to this new chunk once it becomes full. We call this approach
Chunk.

5.1 Experimental Setup
The experiments were performed with four data sets, three of

which contain more than 2 million rows. HEP is a 12 attribute
real bitmap data set generated from High Energy Physics experi-
ments, and each attribute ranges from 2 to 12 bins, for a total of
122 bitmaps. Landsat data set is the SVD transformation of satel-
lite images. UNI and Z1 are synthetically created data sets follow-
ing uniform and zipf (with parameter set to 1) distributions respec-
tively. The details are tabulated in Table 7. The synthetic data sets

4Consider a range query: Select * From X Where 1≤A≤5 AND 6≤B≤10. This
requires 5 ORs for attribute A, 5 ORs for attribute B, and 1 AND accross A and B.
Finally, EB adds one more bitwise AND operation to these 11 operations.
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Figure 4: Maximum Prefix Lengths (τmax) for All the Data Sets
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Figure 5: Number of Partitions as a Function of Partition Limit

have varying number and varying cardinality of attributes but we
only present the 250-dimensional cases in the table. The last two
columns are the compressed sizes of the data sets in terms of the
number of WAH-words (without and with GCO).

The experiments are based on Java implementations which were
run on a Pentium IV 2.26 GHz processor machine with 1 GB of
RAM using Windows XP Pro Operating System.

Recall that Partition Limit is the maximum number of tuples a
partition can have, i.e. a partition splits as soon as it gets full. Query
Execution Time is the time to run a combination of point and range
queries using the appropriate bitmap query execution technique.

5.2 Prefix Length and Number of Partitions
Figure 4 illustrates the maximum prefix length (τmax) as a func-

tion of the partition limit. For all the data sets, τmax decreases as
the partition limit is increased. However, for small partition sizes
note that τmax reaches high values. E.g., for HEP data, τmax =
110 means a doubling mapping structure that is mentioned in Sec-
tion 4.1.2 would require a directory that consists of 2110 pointer
cells, which is clearly infeasible. On the other hand, a binary-tree-
like architecture requires leaf pointers whose total number is linear
in the number of partitions.

Figure 5 shows the number of partitions as the partition limit
increases for all the data sets. Note that the Chunk approach has
lower number of partitions on the average compared to DB. This is
because the chunks (or partitions) for that technique are always full
(except the last one), therefore the partition utilization is maximum.

5.3 Compressed Storage Size
We present the total number of WAH words required as the par-

tition limit is varied in Figure 6 for all the data sets. For this experi-
ment, besides keeping the partitions separate, we also concatenated
the partitions into a single (large) partition and calculated the to-
tal number of words in this merged partition. Chunk_Concat and
DB_Concat in the figure refer to this approach. In terms of to-
tal words, it is important to note that DB_Concat has actually the
optimum performance one can achieve for a given reordering tech-
nique. In other words, it is the same as reordering the entire bitmap
table without applying any partitioning.

Furthermore, the difference between DB and DB_Concat is an

effect of partitioning (this is also valid for Chunk and Chunk_Concat).
That is, the partition borders might end up cutting some border
words (or runs) of the concatenated version into two separate words
in the partitioned version. However, this overhead is minimal. In
addition, Figure 6 shows that our technique, DB, performs very
close to DB_Concat for all the data sets. Besides, DB is much
more efficient than Chunk method, even though Chunk has fewer
number of partitions in general (see Figure 5).

In order to observe the positive effect of tuple reordering in bitmap
indices, it is also important to report the total number of words in
the original bitmap table. Without any reordering and without any
partitioning, for instance HEP data set has 3, 180, 845 words in to-
tal (see Table 7). Both DB and Chunk approaches are much more
efficient than that since they utilize reordering.

At this point it is important to note that the storage performance
comparisons of DB and other techniques is done with the naïve
implementation of DB, with no optimizations and all the bitmaps
explicitly stored. However, the storage performance of DB would
actually be further improved with the optimizations of Section 4.3.

5.4 Query Execution and Insertion Time
Figure 7(a) depicts how the query execution time compares us-

ing Chunk_Concat and DB_Concat approaches for HEP data set.
Times are provided for a combination of 12 dimensional 100 point5

and range queries using the indicated technique. Note that the re-
sults of total-number-of-words in Figure 6 reflect to the query exe-
cution performances in Figure 7(a). DB_Concat technique answers
queries faster than Chunk_Concat since it has fewer words. For
instance, for a partition limit of 10K in Figure 7(a), DB_Concat
provides 37% improvement over Chunk_Concat.

Tuple reordering also has a significant effect on the query ex-
ecution performance. Without applying any reordering and par-
titioning, just by appending the tuples to the end of the indices,
the query execution time is 125.5 msec. Both Chunk_Concat and
DB_Concat enable faster queries than this approach. For instance,
for a partition limit of 10K, Chunk_Concat provides 72% improve-
ment and DB_Concat provides 83% improvement.

5For bitmap indices, note that the point queries are just a special case for the range
queries, i.e., with only AND operations.
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Figure 6: Total Number of WAH Words as a Function of Partition Limit

For a comparison between Chunk and DB techniques, we im-
plemented 0-fill-pad-words approach for both techniques, which is
discussed in Section 2.3. In addition, for DB scheme we also im-
plemented the optimization items iii and iv of Section 4.3.

(a)

(b)

Figure 7: Query Execution Time
Figure 7(b) illustrates the query execution time comparison of

Chunk and DB. For this experiment, our aim was to investigate the
impact of number of attributes in the query. Therefore, we utilized
from 1 to 12 dimensional 100 random6 point queries7, and the re-

6Queries are randomly selected from the data set, therefore the selectivity of the
queries are at least 1 tuple.
7Range queries could also have been used for this experiment. To observe the true
effect in such a case, the range of each attribute in the queries must be equal since
larger ranges take more processing time than smaller ranges in general.

sults are presented as averages. Note that, the larger the number
of attributes in the queries, the more time it takes for the Chunk
approach. This is because larger number of bitwise operations
are used as we increase the number of queried attributes. On the
other hand, the performance of DB is not affected by the number
of queried attributes. The reason is the following. First of all, in-
creasing the number of queried attributes decreases the number of
matching partitions, therefore fewer number of partitions need to
be accessed. In addition, DB approach doesn’t process an entire
bitmap (or column), instead only processes the part that is resident
in a matching partition. Furthermore, thanks to the optimizations
that DB enables, some parts do not need to be accessed, i.e., if all
the rows have the same bit value for a bitmap in a partition.

We also experimented with the insertion time for new tuples. For
this experiment, first we constructed the Chunk and DB structures
using the entire HEP data set except the last 100 rows. Then we
timed the insertion of these last 100 rows to the both structures.
This took about 0.8ms for Chunk and 1.0ms for DB, which are
comparable. We pay a little insertion overhead for DB but gain
a lot from query execution performance.

5.5 Periodic Reorganization
In order to compare the proposed technique with a periodical re-

organization approach, we followed a more feasible scenario than
the procedure described in the beginning of Section 4. To the ad-
vantage of periodical reorganization approach, assume that updates
occur only at certain period of times. We directly append the new
rows to the end of the index while in the update-frequent session,
and then in the infrequent session apply the rebuilding and reorder-
ing only to the newly inserted tuples. Figure 8 presents the re-
sults. For this experiment, we followed two different frequencies
of reorganization. First, we started with 500K number of rows
and built the traditional index with reordering. Then, step by step,
we inserted 100K number of rows until the data set size reaches
1, 000K rows (Figure 8(a)). At that point, we reorganized the in-
serted 500K rows for the traditional approach. Then we repeated
the same process for the second 500K number of rows, and so on.
In Figure 8(b), we repeated the same experiment but this time made
a reorganization every other 300K rows. Figure 8 reveals that DB
performs better than the periodical reorganization approach. For
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Figure 8: Periodic Reorganization

example, for 2 million rows in Figure 8(b), the periodical reorga-
nization produces 582,293 number of WAH-words, whereas DB
produces 548,918 WAH-words.

6. SUMMARY
We studied the problem of tuple appends to the ordered bitmap

indices. For static data sets, it is known that the bitmap compression
greatly improves by data reordering techniques. However, these
data organization methods are not applicable to dynamic and very
large data sets because of their significant overheads. We proposed
a novel dynamic structure and algorithm for organizing bitmap in-
dices to handle the tuple appends effectively. Given a user-specified
order of the data set, our scheme enforces the optimum compres-
sion rate and query processing performance achievable for that or-
der. We used Gray code ordering as the tuple ordering strategy for
our experiments. However, the proposed scheme efficiently works
for any desired ordering strategy. We aimed to keep a user-specified
order of the data on bitmap indices and utilized a partitioning strat-
egy tailored to our purposes. We conducted experiments to show
that both compression and query execution are significantly im-
proved with our technique.
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