
Efficient Query Routing by Improved Peer Description
in P2P Networks

Wai Gen Yee, Linh Thai Nguyen, Dongmei Jia
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616 USA

+1-312-567-5330

{waigen, linhnt, jia}@ir.iit.edu

Ophir Frieder
Department of Computer Science

Georgetown University and IIT
Washington, D.C. 20057 USA

+1-202-687-2165

ophir@cs.georgetown.edu

ABSTRACT
Peer-to-peer file-sharing systems commonly use the set-of-terms
model to describe succinctly a peer’s shared file set: the union of
the terms in the share files. This information is used to guide
query routing decisions. The problem with this model, however,
is that it falsely suggests term co-occurrences that do not exist in
any single file. Consequently, queries get routed erroneously to
peers that have no matching files, wasting network and
computation resources in the process. We reduce the amount of
co-occurrence errors by partitioning each peer’s file set and
representing the peer as several file partitions instead of one.
Experimental evidence demonstrates that it is possible to reduce
the network traffic between neighbors by up to 60% at virtually
no cost.

Keywords
Peer-to-peer, file-sharing, collection description, routing

1. INTRODUCTION
In weakly structured peer-to-peer file-sharing systems (e.g.,
Gnutella), a peer makes query routing decisions by judging the
likelihood that a neighbor’s shared content contains matching
results. The peer compares the query to a locally stored
description of each neighbor’s shared content. If the description
does not preclude the possibility of a match, then the query is
routed to the corresponding neighbor.

A common way of implementing a peer’s description is as a
“term set,” comprised of the union of the terms in each of its
shared files (or filenames in the case that the files are binary [3]).
Queries are matched conjunctively; if a term set contains all
query terms, it is routed to the corresponding peer. A file
matches a query if its filename contains all query terms.

The term set model, however, lacks precision in describing
content and may lead to queries being erroneously routed to
neighbors with no matching results. Such erroneous routing

wastes both network and peer resources. For example, if a peer
shares two files, named “world” and “cup,” respectively, its term
set would be {world, cup}. In this case, the query “world cup”
will be routed to it, even though none of its files are actually
matches. We refer to this phenomenon as the false co-occurrence
problem referring to the fact that the term set falsely suggests that
“world” and “cup” co-occur in some filename.

False co-occurrence is a significant problem in real-world P2P
file-sharing systems. In our experiments with data collected from
the Gnutella network, well over 50% of the queries routed to an
average peer do not match any of that peer’s local files.

To address the false co-occurrence problem, we propose
partitioning the peer’s shared file collection and creating a term
set for each partition – each peer is represented by a collection of
term sets instead of just one. A partitioned term set is a more
precise description of a shared set of files because it leads to
fewer co-occurring errors and ultimately less network traffic.
Returning to the example above, we could create two partitions
for the peer, one for each file, resulting in the descriptor:
{{world}, {cup}}. Because the query “world cup” matches
neither term set in the descriptor, it would not be routed to the
corresponding peer.

Each partition represents a subset of a peer’s file collection; thus
we expect it to be more precise a representation. Our main
contribution explores the allocation of files to the partitions. We
contrast our work to previous work on the representation of
arbitrary collections in networks that partitions files randomly
(e.g., [29]) as well as previous work in meta-search engines that
partitions files semantically [12][30]. Unexpectedly, none of
these techniques work very well in our application so we propose
a novel alternative that improves on these by up to 55%.

Second, we consider the cost in terms of space of maintaining
several data structures to represent a single collection, which may
be a factor particularly in networked environments. We consider
the cost/benefit tradeoffs that are incurred by fixing the size of the
representation – the cost decrease using fixed-size representations
is at most 50% in our experiments. We also propose a technique
that dynamically balances cost and benefit. This dynamic
technique is able to compute a fixed-size representation that
reduces cost to within 8% of manually tuned representations.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3549

2. RELATED WORK
Distributed hash tables (DHTs) (e.g., [17][31]) are an efficient
approach to search in reliable networks. Basic DHTs, however,
only allow search for single keys. Since general information
retrieval systems allow multi-term queries, distributed inverted
lists based on DHTs were devised [5][11][18]. In such systems,
each term is associated with the list of documents identifiers
(doc-ids) containing it. The DHT maps each of these lists to
nodes based on its associated term. n-term user queries retrieve n
doc-id lists, and the intersection of these lists is the set of
identifiers of the documents that contain all of the terms. The
problem addressed here is in reducing the cost of retrieving all
the lists, each of which may be very long.

The work on search with DHTs is distinct from ours for several
reasons. First, the application of DHTs requires some system
stability, which most P2P file-sharing applications do not exhibit
[19]. Second, they assume that the shared data constitute an
integrated collection, whereas in P2P file-sharing systems, each
peer is considered a separate collection, requiring its own search
mechanism. The specific problem they address (i.e., the cost of
retrieving and intersecting several large lists) is distinct from ours
(i.e., representing a single peer’s shared collection).

A more general problem of representing a collection of shared
data has been considered in the information systems community
[5][8][9][20][21][22][23]. These techniques include using hash
sketches, vector space models, language models, and approximate
collection samples, which are then used to guide whether queries
should be issued to the corresponding data sources. However, as
these representations are only approximations, query routing
choices are subject to both false-positive and false-negative
errors. Our goal is to reduce the false-positive routing errors
without introducing any false negative ones. Furthermore, our
solution of partitioning files can be combined with the
aforementioned representation techniques to improve their
precision.

Specific routing techniques have been devised for the P2P
environment [12][24][25][26]. The focus of [12][24] is on index
propagation and update management, but use collection
representations similar to those mentioned in the previous
paragraph. Specifically, because the problem of propagating and
updating indices are largely orthogonal to collection
representation, it is straightforward to apply these techniques to
our collection representation technique. (For example, the
proposed techniques for representing multiple collections as one
to create a collection representation hierarchy can be
straightforwardly applied to our representation techniques.)

[25][26], on the other hand, focus on representing XML
documents and queries either as an adjacency list [25] or as a
matrix [26]. However, these works do not address the problem of
removing the false co-occurrence problem while controlling the
complexity of collection representation, which makes them
orthogonal to our problem. Their solutions are also based largely
on the graph structure of XML documents.

Our work improves the precision of the peer descriptor without
introducing any false-negative routing errors by reducing the
number of false co-occurrences implied by a peer’s descriptor.

3. QUERY PROCESSING AND ROUTING
SPECIFICATION
In P2P file-sharing systems, each peer P shares a collection R of
files. Each file Fj ∈ R is represented by a file descriptor (e.g., a
filename), denoted D(Fj), which is a set of “terms.”

Let T be the union of all terms of all file descriptors of files in R
(i.e., T = ∪Fj∈RD(Fj)). We refer to T as the peer descriptor of P or
the term set of R.

A query Q is also a set of terms. A query Q that is routed to a
peer P is compared with all files in Fj ∈ R. Queries are processed
conjunctively, so Q matches Fj if Q is a subset of the D(Fj) (i.e.,
Q ⊆ D(Fj)) [3]. In the event of a match, D(Fj) and P’s id are
returned to the client who issued Q, which uses this information
to decide on whether to download the associated file.

In practice, a peer only maintains collection information about its
immediate neighbors. This information is updated at regular
periods or whenever a peer joins the network.

Each query Q is initialized with a time-to-live of 3 to 7 and
flooded in the network until the last hop. The last hop routing
decision to P is made by comparing Q to T. T matches Q if T
contains Q (i.e., if Q ⊆ T). This match suggests that R contains a
file Fj that matches Q. A non-match guarantees that no file in R
matches Q.

This last-hop routing design is a reasonable cost/benefit trade-off:
maintaining collection information beyond immediate neighbors
is complex and expensive [12], and, in any case, the majority of
network traffic happens during the last hop.

Because peer descriptors are only used on the last hop, without
loss of generality, our model consist of a single peer P to which
an abstract “neighbor” routes queries based on peer descriptor T
as shown in Figure 1a

a. Basic routing

b. Routing with a 2-partitioned collection.

Figure 1. Basic (a) and partitioned collection (b) routing.

4. PROBLEMS WITH TERM BASED
QUERY ROUTING
A co-occurrence error occurs between Q and P if Q matches T,
but no file Fj ∈ R matches Q:

Q ⊆ T and ¬∃ Fj ∈ R s.t. Q ⊆ D(Fj).

P neighbor

Q T R1

Q ⊆ T? Q ⊆ D(Fj)?

P neighbor

Q
T1 R1

Q ⊆ Tj? T2
Q ⊆ D(Fj)? R2

In this case, Q is erroneously routed to P, wasting network
bandwidth and computation resources at S. We refer to routing
decisions due to co-occurrence errors as a type of false positive
error because Ti falsely suggests that routing Q to Si would result
in at least one positive match. Note that false negatives cannot
occur in the given model.

Co-occurrences errors occur because T generally suggests the
existence of file descriptors for files in R that do not exist. The
number of unique queries that T matches is exponential in |T|. T
theoretically matches 2|T| - 1 unique queries, but there are far
fewer than this number of files in R in practice. Reasonable
values for |T| and |R| are 500 and 100, respectively, which
suggests the potential impact of this problem.

We use the following ratio to measure the degree of false co-
occurrences that exist in a description T of a collection R:

 G(R) = 1 – Nc / (|PPPP(T)| – 1), (1)

where Nc is the total number of non-empty queries that can match
some file in R and PPPP(T) denotes the power set of T (i.e., the set of
all possible queries that can match T). The second term on the
right side of Equation 1 represents the proportion of non-empty
queries that match both P’s descriptor, T, and at least one file in
R. One minus this value is the proportion of queries that
erroneously match T.

Nc can be expressed as the union of power sets of all D(Fj), where
Fj ∈ R:

 Nc = |∪jPPPP(D(Fj))| – 1, where Fj ∈ R.

By definition, |PPPP(D(Fj))| is equal to 2|D(Fj)|, but a closed form
expression for Nc is not possible in general due to the possible
overlaps in PPPP(D(Fj)) for various j.

Our goal is to minimize G(R) by partitioning R. Intuitively,
partitioning R reduces |PPPP(T)|, thereby reducing G(R), which we
explain in more detail below.

5. SOLVING CO-OCCURRENCE ERRORS
BY PARTITIONING THE FILE SET
We reduce the degree of false co-occurrences that occur in T by
K-partitioning collection R into R1, R2, …, RK with corresponding
term sets T1, T2, …, TK. A peer consequently has K term sets T1,
T2, …, TK representing its collection instead of one.

Using partitioned descriptions slightly changes the way that
queries are routed. A neighbor routes Q to P if Q matches Tj for
any 1 ≤ j ≤ K as shown in Figure 1b. Although partitioned
descriptions increase routing decision overhead by a factor K, this
cost is trivial compared with the cost of erroneous routing.
However, if desired, it is straightforward to apply the cost-
reducing techniques covered in [12] to our approach.

By partitioning the collection, the degree of false co-occurrences
for the partitions R1, R2, …, RK becomes

 GK(R1, R2, …, RK) = 1 – Nc / (|∪jPPPP(Tj)| – 1). (2)

In this equation, the denominator on the right side describes the
number of non-empty queries that match at least one of T1, T2, …,
TK. This expression suggests the positive effect that partitioning
R has on the degree of false co-occurrences. Specifically, if we
compare the denominator from Equation 2 to that of Equation 1,
we see that it must be the case that G(R) ≥ GK(R1, R2, …, RK)
because |∪jPPPP(Tj)| ≤ |PPPP(T)|.

The extreme cases where K = 1 or K = |R| are illustrative. When
K = 1, G(R) clearly equals G1(R1). The case where K = |R| is the
case where one partition is created for each file (i.e., Ti =
D(Fi), ∀Fi ∈ R). In this case, the minimum number of queries
matches the peer descriptor of P; equivalently, all matched
queries match at least one file in R. The following two results
formalize the performances of these two extreme cases.

Lemma 1: When all files are in a single partition, the descriptor
matches the maximum number of queries.

Proof: We prove the lemma by contradiction. Assume there is a
solution with K > 1 such that a query Q matches term set Ti of
this solution but does not match term set T of the K = 1 solution.
This is a contradiction because Ti ⊆ T: all queries that match Ti
must also match T. □

Lemma 2: When there is one file per partition, all queries that
match the (partitioned) descriptor of P match at least one file in
R.

Proof: We prove the lemma by contradiction. Assume that there
exists some query Q such that Q matches some Ti but does not
match any file Fj ∈ R. However, because Ti = D(Fj) for some Fj
∈ R, it must be the case that Q matches Fj.□

Correspondingly, the degree of false co-occurrences with the one-
descriptor-per-partition solution is zero:

GK(R1, R2, …, R|R|)

 = 1 – (|∪jPPPP(D(Fj))| – 1) / (|∪jPPPP(Tj)| - 1)

= 1 – (|∪jPPPP(D(Fj))| – 1) / (|∪jPPPP(D(Fj))| – 1)
= 0.

Increasing K to the limit trivially eliminates false co-occurrences,
but is an unscalable solution, considering that some peers share
hundreds or thousands of files. The solution is to allow a user-
tunable K number of partitions. Thus, our goal is to K-partition R
to minimize |∪jPPPP(Tj)| for a given K value. We consider the
framework of effective partitioning techniques irrespective of K
in Section 6 and then consider the determination of practical
values of K in Section 7.

6. EXPERIMENTAL RESULTS
We study the effectiveness of partitioning by applying it to data
we collected from the Gnutella network during the Spring of
2007 using our IR-Wire data logging tool [15]. For our
experiments, we randomly selected 65,000 queries and 50
random peers that share from 100 to 500 files each. We ran the
same experiments with both smaller (50 to 100 files per peers)
and larger (1000 to 5000 files per peer) data sets, which revealed

little relative difference; therefore, the presented results are
representative.

As done in commercial P2P file-sharing systems, we use a Bloom
filter to represent a partition of files [2]. A Bloom filter is a fixed
length bitmap that compactly represents set membership. A
Bloom filter is initially all zeroes when the set is empty. When an
item (i.e., a term of a file descriptor in this case) is put into the
set, the bit (or set of bits) corresponding to that item is set to one
in the Bloom filter. Checking if the item might be in the set using
a Bloom filter requires checking if its corresponding bits are set
to one.

The use of Bloom filters (and hash-mapped bitmaps in general) to
represent a set makes possible collision errors, which lead to a
type of false positive error distinct from those caused by co-
occurrence errors. A collision error is defined as the case where
two items set the same bit(s) in the Bloom filter. If one of these
items is inserted into the set, a search for the other item using the
Bloom filter will return a positive result even if the item is not in
the set. Bloom filters, however, do not allow false negative
errors.

The number of bits used to represent an item sets in a Bloom
filter influences its rate of collision errors (as explained in [2]).
We use a single bit to represent each item because this is done in
practice [1] and results in fewer collision errors as the number of
inserted items increases [2].

Our Bloom filters are created with an MD5–based hash function
as done in previous work (e.g., [12][27]). The size of each
Bloom filter is 64KB, as it is in the Gnutella network [1].

For each server P, we record the following:

• Qf – the number of queries routed to P.

• Qm – the number of queries that match at least one file in R.

• Qc – the number of queries routed to P due to collision
errors with the Bloom filter(s). These queries contain at least
one term not found in T.

• Qd – the number of queries routed to P due to co-occurrence
errors. We define Qd as Qf – Qc – Qm. By this definition, Qd
may be under-reported as it may overlap with Qc. However,
the magnitude of overlap should be small as we do not
anticipate many collisions.

Our main cost metric is Qf. Because the query matching
technique does not admit any false negative errors, the lower the
Qf, the better. We report values averaged over all 50 peers in our
test set.

6.1 Partitioning Technique
We partition R using K-means with random centroids and cosine
similarity as the basis for distance between a file descriptor and a
centroid [4]. This method is well-understood and a common
baseline for partitioning performance in information systems.

To review, K-means initially creates K centroids in space
(randomly in our experiments) that form the centers of disjoint
clusters. It then iteratively assigns each object that is to be
clustered to the centroid to which it is closest (defined by cosine
similarity in our experiments). After all objects have been
assigned, each centroid is recomputed as the average position of

the objects that have been assigned to it. The process of object
assignment and centroid computation is repeated until the
position of all K centroids stabilizes – that is, until they do not
change beyond a user-defined threshold. Equivalently, K-means
repeats until no object changes cluster membership from the
previous iteration.

Cosine distance between term sets D1 and D2 is defined as one
minus the cosine similarity of D1 and D2:

 Lcos(D1, D2) = 1 – V(D1) • V(D2) / (||V(D1)||||V(D2)||).

In this equation, V(Di) is Di’s representation as a term frequency
vector, • is the dot product, and ||V(Di)|| is the length of V(Di). We
also tried more complex distance functions (e.g., the squared
Jensen-Shannon divergence [7]), but without significantly
different results.

In the case of a tie in cosine distance, we use the term set size of
the partition for tie-breaking. A descriptor is assigned to the
partition that has the fewest terms. Tie-breaking is particularly
important during beginning phases of partitioning as this is when
it is most likely that the descriptor has zero cosine similarity with
every partition.

We assign the descriptor to the partition with the minimum term
set size to encourage the creation of partitions that are as small as
possible with as little size variation as possible. We discuss the
motivations behind these design goals in later sections.

6.2 Varying the Number of Partitions
We compare the performance of cosine-based partitioning to
random partition generation with varying K. Recall in Section 1
our mention of how previous work either used semantic or
random partitioning of data when creating collection descriptors.
Our use of cosine-based and random partitioning correspond to
these approaches.

In Figure 2, we show the performance of cosine and random on
cost (Qf) with increasing K. We also include the minimum Qf
(opt), which corresponds to the number of queries that match
some file F ∈ R. We will discuss ∆M in Section 6.2.1.

The minimal cost is 160 queries, whereas the base cost is ~600
queries. This means that approximately 75% of queries are
erroneously routed to peers.

Cosine steadily decreases cost from 608 to 495 queries (~18%) as
K increases from 1 to 5 partitions. Unexpectedly, random
partitioning is more than twice as effective as cosine partitioning
over the same interval, decreasing cost by about 44%.

The poor performance of cosine partitioning is due to the
partition’s physical characteristics, which are caused by the
behavior of cosine distance. Objects in a partition created by
cosine partitioning have maximum similarity with minimal
dissimilarity (as defined by the cosine distance metric). On the
other hand, partitions generated randomly have arbitrary
similarity. Thus, partitions created by cosine partitioning have
less overlap and consequently a lower average size than those of
random partitioning as shown in Figure 3 and Figure 4. Low
overlap is generally a good characteristic of partitions and is good

in our case as well. However, another characteristic of cosine
partitioning makes it worse than random.

The problem with cosine partitioning is that it places all
“semantically similar” descriptors in the same partition without
regard to partition size. Furthermore, larger partitions contain a
larger variety of terms, increasing their similarity to the
remaining, unassigned descriptors. Ultimately, the large
partitions get even larger.

Although cosine distance also measures dissimilarity between a
partition and a descriptor, dissimilarity is unlikely to be a factor
because of the skew in term distributions and the small sizes of
the descriptors. Therefore, regardless of the degree of
dissimilarity, a small amount of similarity is likely to be enough
to determine the assignment of a descriptor to a partition.

Figure 2. Number of queries routed to P (Qf) with various

partitioning techniques over various numbers of partitions.

Figure 3. Average percentage overlap between partitions.

Figure 4. Average number of unique terms per partition. The

black bars indicate standard deviations.

Another consequence of the behavior of cosine partitioning is
that size variance in solutions is high, as shown in Figure 4.
Cosine partitioning tends to create solutions where most
descriptors are assigned to very few partitions.

Large partitions must be avoided when creating partitions for
routing. Consider the case where no partitions overlap. Then,
the number of unique term combinations that match this solution
is approximated by the following expression:

∑
=

K

i

T i

1

|| .2

This expression is minimized when |Ti| is uniform (i.e., |Ti| = |T| /
K, where 1 ≤ i ≤ K) and maximized when |Ti| has high variance
(e.g., when |Ti| = |T| for some i). Variance in |Ti|, therefore,
matches more queries and leads to more routing errors.
Furthermore, as suggested in Lemma 1, large partitions
approximate worst-case performance.

Random partitioning allows partitions to overlap, leading to
larger partitions on average. Randomly generated partitions are
as much as 33% larger than cosine-generated partitions on
average (K = 5 case). However, this does not make up for the fact
that cosine generated partitions have a size variance that is 8
times greater than that of randomly generated partitions.

As the number of descriptors grows, however, so does the
average size of each partition. In time, random partitioning
performance will approach that of cosine partitioning as all terms
will be represented in all random partitions. Partition size
variance will decrease, but average partition size will be
maximized.

The general problem with cosine partitioning is that it considers
descriptor similarity with partitions. Considering the skew in
practical term distributions, this leads to high variance in partition
size. The general problem with random partitioning is that
random partition sizes increase arbitrarily regardless of their
contents. To solve the problems of both of these solutions, we
propose difference-based partitioning.

Difference-based partitioning considers how different a descriptor
is to a partition without considering how similar they are when
making assignment decisions. By avoiding a similarity
comparison, it avoids the problem that cosine partitioning has
with size variance. By considering difference, it avoids the
problem that random partitioning has of uncontrolled growth.

6.2.1 Difference-Based Distance
The number of false co-occurrences created by assigning file F to
Ri can be computed by comparing D(F) with Ti. All of the terms
that are in Ti – D(F) falsely co-occur with all the terms that are in
D(F) – Ti as shown graphically in Figure 5. The falsely co-
occurring term set is computed by the cross product of (Ti – D(F))
and (D(F) – Ti). We define the cardinality of this set as the cost of
assigning F to Ri, which is computed by

 ∆M(D(F), Ti) = |D(F) - Ti| × |Ti – D(F)|. (3)

Figure 5. The false co-occurrences introduced by adding F to

Ri are caused by their non-overlapping term sets.

The design of ∆M encourages the creation of partitions with both
small average size and small size variance. We can see this by
considering its behavior in containment and non-containment
conditions between pairs of term sets (i.e., a descriptor and a
partition). First, if one descriptor properly contains another, then
∆M, but not cosine, implies that combining them has zero cost.
This is the correct behavior as the set of term combinations of the
containing term set subsumes that of the contained set.
Therefore, combining these two term sets into one introduces no
false co-occurrences. This behavior has the tendency to create
smaller partitions on average because it avoids partial-
containment assignments.

If there is only a partial overlap between term sets, then the ∆M
focuses on the difference, whereas cosine focuses on both the
difference and the similarity. This focus on the difference has the
tendency of assigning descriptors to smaller partitions, which, by
expectation, leads to fewer false co-occurrences. This has the
effect of reducing the size variance in the final partitioning
solution.

We re-ran our experiments, replacing cosine distance with ∆M.
Our results, shown in Figure 2 through Figure 4, show that ∆M
outperforms both cosine and random partitioning, reducing Qf by
53% versus 18% and 44% for the other two, respectively. The
reason for this performance improvement is clear from the results
shown in Figure 4: partition sizes are on average smaller than
those of random partitioning and have less variance than those of
cosine partitioning.

7. CONTROLLING COSTS: REDUCED-
SIZE BLOOM FILTERS
The cost of our proposed solution is a function of K. Larger K
values increase routing accuracy but at the expense of more
maintenance and transmission cost. We propose to fix cost by
fixing the number of bits used to encode the K Bloom filters that
represent a peer descriptor; specifically, we fix it at 64KB
regardless of K. In doing this, we introduce a tradeoff.
Increasing K decreases routing errors due to co-occurrence errors
as described in Section 5. However, it also increases the rate of
routing errors due to hash collisions; as each partition is allocated
fewer bits, the rate of collision errors increases. The challenge is
to identify a K that balances these two effects to minimize the
overall number of routing errors.

Let NB be the total number of bits used in the Bloom filter
encoding of the peer descriptor T, and let Nt = |T|. The
probability of a collision in the Bloom filter encoding of T is [2]:

 Bt NNecollision −−= 1)Pr(. (4)

We expect that fixing the size Bloom filter is a reasonable
approach because NB is large compared to Nt in practice.
Therefore, the probability of a collision is low. Let NB

i be the
number of bits available for the Bloom filter encoding of partition
Ti, which contains Nt

i terms. In our data set, a peer’s collection
contains at most 4,000 unique terms, encoded in 64KB worth of
bits. Pr(collision in Ri | NB

i = 64KB / K and Nt = 4,000) is 0.008
when K = 1 and increases at a rate of 0.007 for practical values of
K (i.e., K ≤ 20). This low collision rate gives us the flexibility to
increase K.

Two problems arise that complicate increasing K arbitrarily.
First, Nt

i decrease more slowly than NB
i. (Recall the results from

Figure 3). Due to overlapping term sets, average Nt
i / NB

i
increases with K and therefore so does the collision rate of each
partition.

In addition, the variance in partition sizes increases with K.
(Recall the results from Figure 4.) The increased size variance
and the increased overlap mean that the ability of partitioning to
reduce co-occurrence errors decreases with K. Our goal is to find
an optimal K that minimizes Qf, where the marginal increase in
collision errors Qc is equal to the marginal decrease in co-
occurrence errors Qd.

7.1 Experimental Setup
Since each partition in the optimal solution contains the same
number of unique terms, we assign the same number of bits to
each partition’s Bloom filter: NB

i = NB / K. Therefore, reducing
the range of the hash function H is straightforward:

 H’ = H mod NB
i,

where NB is the number of bits in the original Bloom filter. In
addition, each peer descriptor that is transmitted to a neighbor
also contains its K value so that the neighbor knows how to parse
it for individual Bloom filters.

DD(F) – Ti Ti – D(F)

False co-occurrences by (D(F) – Ti) × (Ti – D(F))

D(F) Ti

7.2 Performance of Reduced-Size Bloom
Filters
In Figure 6, we plot the performance of reduced-size Bloom
filters with different values of K. We break down the
performance of ∆M in terms of Qf, Qc and Qd. As expected, as K
increases, Qc increases and Qd decreases. The rate of decrease in
Qd decreases, however, while the rate of increase in Qc is linear in
our K range, which includes all practical values of K. These
trends result in a net increase in Qf beginning at K = 8.

 Figure 6. Error breakdown using reduced-size Bloom filters.

7.3 Incremental Collection Partitioning
Although setting K to 8 yields the optimal average performance
in our experiments, we cannot generalize the performance of this
K value over all peers and all collections. The optimal K value
for a particular peer may be greater or less than 8 depending on
its term distribution over its file descriptors.

We propose a way of dynamically approximating a local peer’s
optimal K, balancing the slowing decrease in Qd with the increase
in Qc as K increases. Our technique uses the expectations that the
rate of increase in Qc is non-decreasing in K and the rate of
decrease in Qd is non-increasing in K. (Both of these
expectations can be demonstrated analytically.) Given this
behavior, when Qf begins to increase with K, it is guaranteed not
to decrease with increasing K. Therefore, the optimal K is some
smaller value.

We propose to increase incrementally K until the rate of decrease
in Qd is below a given threshold, U. Before this threshold, the
decrease in Qd is expected to compensate for the increase in Qc,
but not after it. We use a fixed threshold because we expect Qc to
be linear for our range of K.

During each iteration of our technique, one partition in the set of
partitions is split in two using ∆M partitioning. If an analysis of
the split reveals that it decreases Qd by a minimum threshold,
then the split is accepted and another split is considered.
Otherwise, the split is undone at the process stops.

There are two criteria for picking the partition to split:

1. The partition that has been involved in the fewest splits is
split first.

2. In the event of a tie, the partition with the most unique terms
is split first.

Criterion 1 effects round-robin partition selection by avoiding
splitting partitions that have either been either split or created
most recently. Because in the optimal solution, Nt

i is equal for all
i, each split should create “sibling” partitions with a similar
number of unique terms, so splitting the same partition twice
consecutively should not be necessary anyway except for
degenerate or boundary conditions. In other words, we expect
Criterion 1 to be less of a factor in determining which partition to
split next than Criterion 2.

Criterion 2 splits the partition with the most terms first because
the potential benefit of splitting these partitions is higher. As
explained in Section 4, large partitions match a disproportionate
number of queries.

When necessary, we denote cases where we generate a reduced-
size peer descriptor incrementally by inserting the term
“incremental” where appropriate. In cases where the peer
descriptor is generated with a pre-set K, we insert the term “fixed-
K” where appropriate.

The stopping condition of the splitting process is ideally based on
a direct measurement of the rate of decrease in Qd. The problem
with using this measure in a stopping condition is that it is not
possible to determine the impact of a split on Qd analytically.

Fortunately, there exists a strong correlation between Qd and the
average Nt

i with increasing K. This correlation, with a correlation
coefficient of 0.99954, is shown in Figure 7. This correlation
conforms to the fact that there exists a direct relationship between
number of terms in a partition and the number of unique queries
it matches. Because average Nt

i is measurable during the
partitioning process, while Qd is not, we use the former in
formulating our stopping condition.

Figure 7. Number of co-occurrence errors and average

number of unique terms in each partition with increasing K.
In these results, full-sized Bloom filters are generated with

fixed-K partitioning.

The stopping condition occurs when a split does not decrease the
average Nt

i by threshold percentage U. Because average Nt
i

approximates Qd, the drop in average Nt
i must be large enough to

offset the expected increase in Qc caused by the split. An
insufficient decrease in average Nt

i means that the split is unable
to reduce Qf. In the event that the stopping condition is reached,
the split is rolled back and the splitting process stops. Formally,
the stopping condition is reached if the following is true when
trying to create a (K + 1)th partition:

U
KNavg

KNavg
i
t

i
t >−+ 1

),(
)1,(

In the expression above, avg(Nt
i, K) refers to the average Nt

i given
K partitions.

Empirically, we found that U = -0.1 yields the best results, so if a
split does not change the average number Nt

i by -10%, we undo
the split and stop the splitting process. In Figure 8, we show the
performance of incremental partitioning with different U values.

Incremental partitioning with the U = -0.1 stopping threshold
results in an average Qf (304) that is on average within 8% of the
average Qf of the case where we manually tune the optimal K
value for each peer (281) – labeled opt-K – and 50% lower the Qf
with the base case of K = 1(608).

To show that this improved performance is consistent among all
peers in our experiment, we also consider the performance of
incremental partitioning on a peer-by-peer basis. In Figure 9, we
show the Qf values for each of the 50 peer collections when:
using a single partition (max); when using opt-K; and when using
incremental partitioning. The consistent closeness of the graphs
for opt-K and inc indicates clearly the fitness of the incremental
partitioning technique and the stopping condition for arbitrary
peer collections.

Figure 8. Average number of routed queries with various

threshold values. (Note that thresholds should actually be)
Max indicates no partitioning.

Figure 9. Number of routed queries per peer with incremental

partitioning, opt-K partitioning and no partitioning (max).

8. OTHER CONSIDERATIONS

8.1 Handling Collection Updates
Over time, users may add or delete files from their collections.
These changes must be reflected in the peer descriptions.
Handling file addition is straightforward, due to the greedy nature
of the ∆M partitioning algorithm. Our experimental results are
based on an arbitrary ordering of file files. We expect that
additional files will be assigned to likewise appropriate partitions.
Updating the corresponding Bloom filters is merely a matter of
modifying the appropriate bits that were previously set to 0.
Transmitting Bloom filter updates to neighbors using partitioned
descriptions may be more efficient, as it is possible to transmit
updates to just the modified partitions.

Handling file deletion requires a little more engineering because
it requires knowing whether the deletion removed with it the last
instance of a particular term from a partition. If so, this term
must be removed from the partition’s term set and corresponding
Bloom filter. This requires maintaining a map between files and
partitions as well as maintaining counts of term frequencies in
each partition. This is the technique used in other work, such as
[12][27][29] and is straightforward to apply to our case.

Under certain conditions, it is also reasonable to handle deletions
by ignoring them. In cases where collections are large, for
example, it is unlikely that ignoring a single deletion will result in
a routing error and therefore ignoring it is worthwhile. Peers that
tend to stay online for long periods of time tend to have large
collections and delete relatively few files. Peers that join and
leave regularly have their descriptions updated when they join.
Finally, ignoring deletions does not introduce any false negative
routing errors, only, possibly, false positives. For all of these
reasons, handling deletions may be relatively unimportant.

Updates to descriptions can be transmitted to neighbors either
periodically (e.g., whenever a user logs into the system), when
neighbors request updates (as done in Gnutella [3]) or after some
change threshold has been reached.

8.1.1 Updates to the incrementally created
partitions
One question is whether the partitions need to be updated due to
inserts or deletes. These operations affect the average Nt

i, either
increasing it (on inserts) or decreasing it (on deletes). If average
Nt

i gets too high, then the rate of collisions increases. If average
Nt

i gets too low, then the partitions are not aggressive enough in
reducing co-occurrence errors.
On an insert, therefore, we attempt to merge two partitions.
Merging partitions reduces the collision rate by increasing the
number of bits available to encode each Bloom filter.
We attempt to merge the smallest partition (in terms of term set
size) with another using ∆M to pick the most appropriate one.
We merge the smallest partition in an attempt to keep the
partition sizes as even as possible. If the attempted merge does
not undo a good split as defined by the stopping condition
mentioned in Section 7.3 (that is, allow the merge if avg(Nt

i, K +
1) > (1 + U) avg(Nt

i, K)), then it is allowed. This process repeats
until some merge violates the stopping condition for merging. A
new Bloom filter is then encoded based on the new partitions.
A similar process occurs when a file is deleted from the
collection. A split is attempted on the largest partition (in terms
of the term set size). If the split does not violate the stopping
condition, then it is allowed. This process repeats until some
split violates the stopping condition.

8.2 Handling Multi-Hop Routing
We have so far ignored multi-hop routing in this work because it
is ignored in practical P2P file-sharing systems. This is the case
because, with flooding, routing cost is concentrated in the last
hop. If we flood with a degree f, the ratio of last hop messages to
the rest of the messages is (f – 1) / f – very close to 1 for practical
values of f, which is on the order of tens.

However, if desired, we provide a rough outline of how to
implement multi-hop routing with our technique. One approach
is to apply the hierarchical indexing discussed in [24]. With
hierarchical routing, each peer transmits to each of its neighbors
the summaries of the collections of its other neighbors, which
could also contain the summaries of its neighbors’ neighbors.

The opportunity that our partitioned collection technique affords
is that the index hierarchies can be more precise, leading to
greater routing accuracy. Instead of treating each peer as a set of
terms, we can treat it as a set of term sets. The specific claim we
are making is that our techniques can be applied to hierarchical
routing to improve its accuracy. The details of this routing
scheme are the subject of ongoing work.

9. CONCLUSION AND FUTURE WORK
Analyses of Gnutella network query logs indicate that over 50%
of queries forwarded to a peer return no matching files, wasting
both network and computational resources. The problem lies in
how peer descriptions are created and used in the query routing
process. Each peer is described by its term set (based on file
descriptors) and queries are routed to the peer by verifying the
existence of query terms in this set. The set of terms, however,
may suggest term combinations in shared files that do not actually
exist, resulting in incorrect routing decisions.

To increase the resolution of a peer description, we partition its
files and create a description for each partition, reducing the
number of erroneous term combinations. Experimental results on
data from the Gnutella network show that our techniques can
reduce the number of incorrectly routed queries by 30% to 60%
at virtually no cost. Furthermore, we can incrementally generate
an appropriate number of partitions for individual peers based on
the distribution of descriptive data in its shared file collection.

Our algorithm for generating partitions is computationally simple
and generates solutions that traditional clustering algorithms do
not admit. Furthermore, the solution, by its greedy nature, is
immediately amenable to file additions while handling file
deletions is a matter of simple engineering.

We are currently considering the use of query log data to further
increase the accuracy of the partitions. This is important as we do
not want to break potential co-occurrences that never actually
occur in queries.

Second, we are applying these techniques to improving the
routing accuracy of Web corpora. So far, our results are
promising.

10. References
[1] C. Rohrs, Query Routing for the Gnutella Network, Limewire

LLC Technical Report, http://rfc-
gnutella.sourceforge.net/src/qrp.html, December 18, 2001.

[2] B. H. Bloom, Space/Time Trade-offs in Hash Coding with
Allowable Errors, ACM CACM, 13(7), July 1970.

[3] T. Klingberg and R. Manfredi, Gnutella Protocol 0.6, Web
Document, 2002, rfc-gnutella.sourceforge.net/src/rfc-0_6-
draft.html.

[4] B. MacQueen. Some Methods for Classification and
Analysis of Multivariate Observations, In Proc. Berkeley
Symp. on Math. Stat. Prob., 1967.

[5] S. Michel, M. Bender, P. Triantafillou, G. Weikum, IQN
Routing: Integrating Quality and Novelty in P2P Querying
and Ranking, In Proc. EDBT, 2006.

[6] The Partition Problem, Wikipedia.org, 2006.
[7] J. Lin. Divergence measures based on the shannon entropy.

IEEE Trans. on Information Theory, 37(1):145—151,
January 1991.

[8] J. Lu and J. Callan. User Modeling for Full-text Federated
Search in Peer-to-peer Networks. In Proc. ACM SIGIR,
2006.

[9] C. Tang, Z. Xu and S. Dwarkadas. Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay
Networks. In Proc. ACM SIGCOMM, 2003.

[10] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, A. Y. Wu. An Efficient k-Means Clustering
Algorithm: Analysis and Implementation. In IEEE Trans.
Pattern Anal. And Mach. Learning, 24(7), July, 2002.

[11] I. Podnar, M. Rajman, T. Luu, F. Klemm, K. Aberer
Scalable Peer-to-Peer Web Retrieval with Highly
Discriminative Keys, In Proc. IEEE Conf. Data Eng., 2007.

[12] G. Koloniari and E. Pitoura, Content-based Routing of Path
Queries in Peer-to-Peer Systems, In Proc. EDBT, 2004.

[13] A. Frieze, M. Jerrum. Improved Approximation Algorithms
for MAX-k-CUT and MAX BISECTION. Algorithmica,
18:61-77, 1997.

[14] I. Giotis, and V. Guruswami, Correlation Clustering with a
Fixed Number of Clusters, In Proc. ACM-SIAM Symposium
on Discrete Algorithms, 2006.

[15] L. T. Nguyen, W. G. Yee, D. Jia, and O. Frieder. A Tool for
Information Retrieval research in Peer-to-Peer File Sharing
Systems. In Proc. IEEE ICDE, Turkey, Apr. 2007.

[16] L. T. Nguyen, D. Jia, W. G. Yee, and O. Frieder. An
Analysis of Query Logs in Gnutella Peer-to-Peer Network.
In Proc. ACM SIGIR Conf., Amsterdam, July 2007.

[17] I. Stoica, et al. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. ACM SIGCOMM,
San Diego, Aug. 2001.

[18] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, K. Aberer.
Web Text Retrieval with a P2P Query-driven Index. In
Proc. ACM SIGIR, 2007.

[19] S. Saroiu, P. K. Gummadi, S. D. Gribble: A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proc.
Multimedia Comp. and Networking (MMCN) 2002.

[20] J. Callan, Z. Lu, and B. Croft. Searching Distributed
Collections with Inference Networks. In Proc. ACM SIGIR,
1995.

[21] L.Gravano, C. Chang, and H. Garcia-Molia. GlOSS: Text-
Source Discovery over the Internet. ACM Trans. Database
Sys. 24(2), 1999.

[22] L. Si, R. Jin, J. Callan, and P. Ogilvie. A Language
Modeling Framework for Resource Selection and Results
Merging. In Proc. ACM CIKM, 2002.

[23] M. Shokouhi, M. Baille, and L. Azzopardi. Updating
Collection Representations for Federated Search. In Proc.
ACM SIGIR, 2007.

[24] A. Crespo, H. Garcia-Molina. Routing Indices for Peer-to-
Peer Systems. In Proc. IEEE ICDCS, 2002.

[25] B. Yang and H. Garcia-Molina. Efficient search in peer-to-
peer networks. In Proc. IEEE ICDCS, 2002.

[26] Q. Wang, M. T. Ozsu, An Efficient Eigenvalue-based P2P
XML Routing Framework. In Proc. IEEE P2P, 2007.

[27] L. Fan, P. Cao, J. Almeida, A. Z. Broder. Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Trans. Networking, 8(3), June, 2000. pp. 281-
293.

[28] W. G. Yee, L. T. Nguyen, O. Frieder, A View of the Data on
P2P File-sharing Systems. In Proc. Wkshp. Large Scale
Dist. Inf. Sys. Inf. Retr., 2007.

[29] D. Guo, J. Wu, H. Chen, X. Luo. The Dynamic Bloom
Filters. In Proc. IEEE Infocom. 2006.

[30] M. Shokouhi, M. Baillie and L. Azzopardi. Updating
Collection Representations for Federated Search. In Proc.
ACM SIGIR. 2007.

[31] L. R. Monnerat and Cláudio L. Amorim. D1HT: a
distributed one hop hash table. In Proc. IEEE IPDPS, 2006

