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ABSTRACT 
Peer-to-peer file-sharing systems commonly use the set-of-terms 
model to describe succinctly a peer’s shared file set:  the union of 
the terms in the share files. This information is used to guide 
query routing decisions. The problem with this model, however, 
is that it falsely suggests term co-occurrences that do not exist in 
any single file.  Consequently, queries get routed erroneously to 
peers that have no matching files, wasting network and 
computation resources in the process.  We reduce the amount of 
co-occurrence errors by partitioning each peer’s file set and 
representing the peer as several file partitions instead of one.  
Experimental evidence demonstrates that it is possible to reduce 
the network traffic between neighbors by up to 60% at virtually 
no cost. 
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1. INTRODUCTION 
In weakly structured peer-to-peer file-sharing systems (e.g., 
Gnutella), a peer makes query routing decisions by judging the 
likelihood that a neighbor’s shared content contains matching 
results.  The peer compares the query to a locally stored 
description of each neighbor’s shared content.  If the description 
does not preclude the possibility of a match, then the query is 
routed to the corresponding neighbor. 

A common way of implementing a peer’s description is as a 
“term set,” comprised of the union of the terms in each of its 
shared files (or filenames in the case that the files are binary [3]).  
Queries are matched conjunctively; if a term set contains all 
query terms, it is routed to the corresponding peer.  A file 
matches a query if its filename contains all query terms. 

The term set model, however, lacks precision in describing 
content and may lead to queries being erroneously routed to 
neighbors with no matching results.  Such erroneous routing 

wastes both network and peer resources.  For example, if a peer 
shares two files, named “world” and “cup,” respectively, its term 
set would be {world, cup}.  In this case, the query “world cup” 
will be routed to it, even though none of its files are actually 
matches.  We refer to this phenomenon as the false co-occurrence 
problem referring to the fact that the term set falsely suggests that 
“world” and “cup” co-occur in some filename. 

False co-occurrence is a significant problem in real-world P2P 
file-sharing systems.  In our experiments with data collected from 
the Gnutella network, well over 50% of the queries routed to an 
average peer do not match any of that peer’s local files. 

To address the false co-occurrence problem, we propose 
partitioning the peer’s shared file collection and creating a term 
set for each partition – each peer is represented by a collection of 
term sets instead of just one.  A partitioned term set is a more 
precise description of a shared set of files because it leads to 
fewer co-occurring errors and ultimately less network traffic.  
Returning to the example above, we could create two partitions 
for the peer, one for each file, resulting in the descriptor: 
{{world}, {cup}}. Because the query “world cup” matches 
neither term set in the descriptor, it would not be routed to the 
corresponding peer. 

Each partition represents a subset of a peer’s file collection; thus 
we expect it to be more precise a representation.  Our main 
contribution explores the allocation of files to the partitions.  We 
contrast our work to previous work on the representation of 
arbitrary collections in networks that partitions files randomly 
(e.g., [29]) as well as previous work in meta-search engines that 
partitions files semantically [12][30].  Unexpectedly, none of 
these techniques work very well in our application so we propose 
a novel alternative that improves on these by up to 55%. 

Second, we consider the cost in terms of space of maintaining 
several data structures to represent a single collection, which may 
be a factor particularly in networked environments.  We consider 
the cost/benefit tradeoffs that are incurred by fixing the size of the 
representation – the cost decrease using fixed-size representations 
is at most 50% in our experiments.  We also propose a technique 
that dynamically balances cost and benefit.  This dynamic 
technique is able to compute a fixed-size representation that 
reduces cost to within 8% of manually tuned representations.   
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2. RELATED WORK 
Distributed hash tables (DHTs) (e.g., [17][31]) are an efficient 
approach to search in reliable networks.  Basic DHTs, however, 
only allow search for single keys.  Since general information 
retrieval systems allow multi-term queries, distributed inverted 
lists based on DHTs were devised [5][11][18].  In such systems, 
each term is associated with the list of documents identifiers 
(doc-ids) containing it.  The DHT maps each of these lists to 
nodes based on its associated term.  n-term user queries retrieve n 
doc-id lists, and the intersection of these lists is the set of 
identifiers of the documents that contain all of the terms.  The 
problem addressed here is in reducing the cost of retrieving all 
the lists, each of which may be very long. 

The work on search with DHTs is distinct from ours for several 
reasons.  First, the application of DHTs requires some system 
stability, which most P2P file-sharing applications do not exhibit 
[19].  Second, they assume that the shared data constitute an 
integrated collection, whereas in P2P file-sharing systems, each 
peer is considered a separate collection, requiring its own search 
mechanism.  The specific problem they address (i.e., the cost of 
retrieving and intersecting several large lists) is distinct from ours 
(i.e., representing a single peer’s shared collection). 

A more general problem of representing a collection of shared 
data has been considered in the information systems community 
[5][8][9][20][21][22][23].  These techniques include using hash 
sketches, vector space models, language models, and approximate 
collection samples, which are then used to guide whether queries 
should be issued to the corresponding data sources.  However, as 
these representations are only approximations, query routing 
choices are subject to both false-positive and false-negative 
errors.  Our goal is to reduce the false-positive routing errors 
without introducing any false negative ones.  Furthermore, our 
solution of partitioning files can be combined with the 
aforementioned representation techniques to improve their 
precision. 

Specific routing techniques have been devised for the P2P 
environment [12][24][25][26].  The focus of [12][24] is on index 
propagation and update management, but use collection 
representations similar to those mentioned in the previous 
paragraph.  Specifically, because the problem of propagating and 
updating indices are largely orthogonal to collection 
representation, it is straightforward to apply these techniques to 
our collection representation technique.  (For example, the 
proposed techniques for representing multiple collections as one 
to create a collection representation hierarchy can be 
straightforwardly applied to our representation techniques.) 

[25][26], on the other hand, focus on representing XML 
documents and queries either as an adjacency list [25] or as a 
matrix [26].  However, these works do not address the problem of 
removing the false co-occurrence problem while controlling the 
complexity of collection representation, which makes them 
orthogonal to our problem.  Their solutions are also based largely 
on the graph structure of XML documents. 

Our work improves the precision of the peer descriptor without 
introducing any false-negative routing errors by reducing the 
number of false co-occurrences implied by a peer’s descriptor. 

3. QUERY PROCESSING AND ROUTING 
SPECIFICATION 
In P2P file-sharing systems, each peer P shares a collection R of 
files. Each file Fj ∈ R is represented by a file descriptor (e.g., a 
filename), denoted D(Fj), which is a set of “terms.” 

Let T be the union of all terms of all file descriptors of files in R 
(i.e., T = ∪Fj∈RD(Fj)).  We refer to T as the peer descriptor of P or 
the term set of R. 

A query Q is also a set of terms.  A query Q that is routed to a 
peer P is compared with all files in Fj ∈ R.  Queries are processed 
conjunctively, so Q matches Fj if Q is a subset of the D(Fj) (i.e., 
Q ⊆ D(Fj)) [3].  In the event of a match, D(Fj) and P’s id are 
returned to the client who issued Q, which uses this information 
to decide on whether to download the associated file. 

In practice, a peer only maintains collection information about its 
immediate neighbors.  This information is updated at regular 
periods or whenever a peer joins the network. 

Each query Q is initialized with a time-to-live of 3 to 7 and 
flooded in the network until the last hop.  The last hop routing 
decision to P is made by comparing Q to T.  T matches Q if T 
contains Q (i.e., if Q ⊆ T).  This match suggests that R contains a 
file Fj that matches Q.  A non-match guarantees that no file in R 
matches Q. 

This last-hop routing design is a reasonable cost/benefit trade-off:  
maintaining collection information beyond immediate neighbors 
is complex and expensive [12], and, in any case, the majority of 
network traffic happens during the last hop. 

Because peer descriptors are only used on the last hop, without 
loss of generality, our model consist of a single peer P to which 
an abstract “neighbor” routes queries based on peer descriptor T 
as shown in Figure 1a 

 

 
a. Basic routing 

 
b. Routing with a 2-partitioned collection. 

Figure 1. Basic (a) and partitioned collection (b) routing. 

4. PROBLEMS WITH TERM BASED 
QUERY ROUTING 
A co-occurrence error occurs between Q and P if Q matches T, 
but no file Fj ∈ R matches Q: 

Q ⊆ T and ¬∃ Fj ∈ R s.t. Q ⊆ D(Fj). 

P neighbor 

Q T R1 

Q ⊆ T? Q ⊆ D(Fj)? 

P neighbor 

Q 
T1 R1 

Q ⊆ Tj? T2 
Q ⊆ D(Fj)? R2 



In this case, Q is erroneously routed to P, wasting network 
bandwidth and computation resources at S.  We refer to routing 
decisions due to co-occurrence errors as a type of false positive 
error because Ti falsely suggests that routing Q to Si would result 
in at least one positive match.  Note that false negatives cannot 
occur in the given model. 

Co-occurrences errors occur because T generally suggests the 
existence of file descriptors for files in R that do not exist.  The 
number of unique queries that T matches is exponential in |T|.  T 
theoretically matches 2|T| - 1 unique queries, but there are far 
fewer than this number of files in R in practice.  Reasonable 
values for |T| and |R| are 500 and 100, respectively, which 
suggests the potential impact of this problem. 

We use the following ratio to measure the degree of false co-
occurrences that exist in a description T of a collection R: 

 G(R) = 1 – Nc / (|PPPP(T)| – 1), (1) 

where Nc is the total number of non-empty queries that can match 
some file in R and PPPP(T) denotes the power set of T (i.e., the set of 
all possible queries that can match T). The second term on the 
right side of Equation 1 represents the proportion of non-empty 
queries that match both P’s descriptor, T, and at least one file in 
R.  One minus this value is the proportion of queries that 
erroneously match T. 

Nc can be expressed as the union of power sets of all D(Fj), where 
Fj ∈ R: 

 Nc = |∪jPPPP(D(Fj))| – 1, where Fj ∈ R. 

By definition, |PPPP(D(Fj))| is equal to 2|D(Fj)|, but a closed form 
expression for Nc is not possible in general due to the possible 
overlaps in PPPP(D(Fj)) for various j.  

Our goal is to minimize G(R) by partitioning R. Intuitively, 
partitioning R reduces |PPPP(T)|, thereby reducing G(R), which we 
explain in more detail below. 

5. SOLVING CO-OCCURRENCE ERRORS 
BY PARTITIONING THE FILE SET 
We reduce the degree of false co-occurrences that occur in T by 
K-partitioning collection R into R1, R2, …, RK with corresponding 
term sets T1, T2, …, TK.  A peer consequently has K term sets T1, 
T2, …, TK representing its collection instead of one. 

Using partitioned descriptions slightly changes the way that 
queries are routed.  A neighbor routes Q to P if Q matches Tj for 
any 1 ≤ j ≤ K as shown in Figure 1b.  Although partitioned 
descriptions increase routing decision overhead by a factor K, this 
cost is trivial compared with the cost of erroneous routing.  
However, if desired, it is straightforward to apply the cost-
reducing techniques covered in [12] to our approach. 

By partitioning the collection, the degree of false co-occurrences 
for the partitions R1, R2, …, RK becomes 

 GK(R1, R2, …, RK) = 1 – Nc / (|∪jPPPP(Tj)| – 1). (2) 

In this equation, the denominator on the right side describes the 
number of non-empty queries that match at least one of T1, T2, …, 
TK.  This expression suggests the positive effect that partitioning 
R has on the degree of false co-occurrences.  Specifically, if we 
compare the denominator from Equation 2 to that of Equation 1, 
we see that it must be the case that G(R) ≥ GK(R1, R2, …, RK) 
because |∪jPPPP(Tj)| ≤ |PPPP(T)|. 

The extreme cases where K = 1 or K = |R| are illustrative.  When 
K = 1, G(R) clearly equals G1(R1).  The case where K = |R| is the 
case where one partition is created for each file (i.e., Ti = 
D(Fi), ∀Fi ∈ R).  In this case, the minimum number of queries 
matches the peer descriptor of P; equivalently, all matched 
queries match at least one file in R.  The following two results 
formalize the performances of these two extreme cases. 

Lemma 1:  When all files are in a single partition, the descriptor 
matches the maximum number of queries. 

Proof:  We prove the lemma by contradiction.  Assume there is a 
solution with K > 1 such that a query Q matches term set Ti of 
this solution but does not match term set T of the K = 1 solution.  
This is a contradiction because Ti ⊆ T: all queries that match Ti 
must also match T. □ 

Lemma 2:  When there is one file per partition, all queries that 
match the (partitioned) descriptor of P match at least one file in 
R. 

Proof:  We prove the lemma by contradiction.  Assume that there 
exists some query Q such that Q matches some Ti but does not 
match any file Fj ∈ R.  However, because Ti = D(Fj) for some Fj 
∈ R, it must be the case that Q matches Fj.□ 

Correspondingly, the degree of false co-occurrences with the one-
descriptor-per-partition solution is zero: 

 

GK(R1, R2, …, R|R|)  

  = 1 – (|∪jPPPP(D(Fj))| – 1) / (|∪jPPPP(Tj)| - 1) 

= 1 – (|∪jPPPP(D(Fj))| – 1) / (|∪jPPPP(D(Fj))|  – 1) 
= 0. 

 
Increasing K to the limit trivially eliminates false co-occurrences, 
but is an unscalable solution, considering that some peers share 
hundreds or thousands of files. The solution is to allow a user-
tunable K number of partitions. Thus, our goal is to K-partition R 
to minimize |∪jPPPP(Tj)| for a given K value.  We consider the 
framework of effective partitioning techniques irrespective of K 
in Section 6 and then consider the determination of practical 
values of K in Section 7. 

6. EXPERIMENTAL RESULTS 
We study the effectiveness of partitioning by applying it to data 
we collected from the Gnutella network during the Spring of 
2007 using our IR-Wire data logging tool [15]. For our 
experiments, we randomly selected 65,000 queries and 50 
random peers that share from 100 to 500 files each. We ran the 
same experiments with both smaller (50 to 100 files per peers) 
and larger (1000 to 5000 files per peer) data sets, which revealed 



little relative difference; therefore, the presented results are 
representative.  

As done in commercial P2P file-sharing systems, we use a Bloom 
filter to represent a partition of files [2].  A Bloom filter is a fixed 
length bitmap that compactly represents set membership.  A 
Bloom filter is initially all zeroes when the set is empty.  When an 
item (i.e., a term of a file descriptor in this case) is put into the 
set, the bit (or set of bits) corresponding to that item is set to one 
in the Bloom filter.  Checking if the item might be in the set using 
a Bloom filter requires checking if its corresponding bits are set 
to one.   

The use of Bloom filters (and hash-mapped bitmaps in general) to 
represent a set makes possible collision errors, which lead to a 
type of false positive error distinct from those caused by co-
occurrence errors.  A collision error is defined as the case where 
two items set the same bit(s) in the Bloom filter.  If one of these 
items is inserted into the set, a search for the other item using the 
Bloom filter will return a positive result even if the item is not in 
the set.  Bloom filters, however, do not allow false negative 
errors. 

The number of bits used to represent an item sets in a Bloom 
filter influences its rate of collision errors (as explained in [2]).  
We use a single bit to represent each item because this is done in 
practice [1] and results in fewer collision errors as the number of 
inserted items increases [2]. 

Our Bloom filters are created with an MD5–based hash function 
as done in previous work (e.g., [12][27]).  The size of each 
Bloom filter is 64KB, as it is in the Gnutella network [1].  

For each server P, we record the following: 

• Qf – the number of queries routed to P. 

• Qm – the number of queries that match at least one file in R. 

• Qc – the number of queries routed to P due to collision 
errors with the Bloom filter(s). These queries contain at least 
one term not found in T. 

• Qd – the number of queries routed to P due to co-occurrence 
errors.  We define Qd as Qf – Qc – Qm.  By this definition, Qd 
may be under-reported as it may overlap with Qc.  However, 
the magnitude of overlap should be small as we do not 
anticipate many collisions. 

Our main cost metric is Qf.  Because the query matching 
technique does not admit any false negative errors, the lower the 
Qf, the better.  We report values averaged over all 50 peers in our 
test set. 

6.1 Partitioning Technique 
We partition R using K-means with random centroids and cosine 
similarity as the basis for distance between a file descriptor and a 
centroid [4].  This method is well-understood and a common 
baseline for partitioning performance in information systems. 

To review, K-means initially creates K centroids in space 
(randomly in our experiments) that form the centers of disjoint 
clusters.  It then iteratively assigns each object that is to be 
clustered to the centroid to which it is closest (defined by cosine 
similarity in our experiments).  After all objects have been 
assigned, each centroid is recomputed as the average position of 

the objects that have been assigned to it.  The process of object 
assignment and centroid computation is repeated until the 
position of all K centroids stabilizes – that is, until they do not 
change beyond a user-defined threshold.  Equivalently, K-means 
repeats until no object changes cluster membership from the 
previous iteration. 

Cosine distance between term sets D1 and D2 is defined as one 
minus the cosine similarity of D1 and D2: 

 Lcos(D1, D2) = 1 – V(D1) • V(D2) / (||V(D1)||||V(D2)||). 

In this equation, V(Di) is Di’s representation as a term frequency 
vector, • is the dot product, and ||V(Di)|| is the length of V(Di). We 
also tried more complex distance functions (e.g., the squared 
Jensen-Shannon divergence [7]), but without significantly 
different results. 

In the case of a tie in cosine distance, we use the term set size of 
the partition for tie-breaking.  A descriptor is assigned to the 
partition that has the fewest terms.  Tie-breaking is particularly 
important during beginning phases of partitioning as this is when 
it is most likely that the descriptor has zero cosine similarity with 
every partition. 

We assign the descriptor to the partition with the minimum term 
set size to encourage the creation of partitions that are as small as 
possible with as little size variation as possible.  We discuss the 
motivations behind these design goals in later sections.  

6.2 Varying the Number of Partitions 
We compare the performance of cosine-based partitioning to 
random partition generation with varying K.  Recall in Section 1 
our mention of how previous work either used semantic or 
random partitioning of data when creating collection descriptors.  
Our use of cosine-based and random partitioning correspond to 
these approaches. 

In Figure 2, we show the performance of cosine and random on 
cost (Qf) with increasing K.  We also include the minimum Qf 
(opt), which corresponds to the number of queries that match 
some file F ∈ R.  We will discuss ∆M in Section 6.2.1. 

The minimal cost is 160 queries, whereas the base cost is ~600 
queries.  This means that approximately 75% of queries are 
erroneously routed to peers. 

Cosine steadily decreases cost from 608 to 495 queries (~18%) as 
K increases from 1 to 5 partitions.  Unexpectedly, random 
partitioning is more than twice as effective as cosine partitioning 
over the same interval, decreasing cost by about 44%. 

The poor performance of cosine partitioning is due to the 
partition’s physical characteristics, which are caused by the 
behavior of cosine distance.  Objects in a partition created by 
cosine partitioning have maximum similarity with minimal 
dissimilarity (as defined by the cosine distance metric).  On the 
other hand, partitions generated randomly have arbitrary 
similarity.  Thus, partitions created by cosine partitioning have 
less overlap and consequently a lower average size than those of 
random partitioning as shown in Figure 3 and Figure 4.  Low 
overlap is generally a good characteristic of partitions and is good 



in our case as well.  However, another characteristic of cosine 
partitioning makes it worse than random. 

The problem with cosine partitioning is that it places all 
“semantically similar” descriptors in the same partition without 
regard to partition size.  Furthermore, larger partitions contain a 
larger variety of terms, increasing their similarity to the 
remaining, unassigned descriptors.  Ultimately, the large 
partitions get even larger. 

Although cosine distance also measures dissimilarity between a 
partition and a descriptor, dissimilarity is unlikely to be a factor 
because of the skew in term distributions and the small sizes of 
the descriptors.  Therefore, regardless of the degree of 
dissimilarity, a small amount of similarity is likely to be enough 
to determine the assignment of a descriptor to a partition. 

 

 
Figure 2. Number of queries routed to P (Qf) with various 

partitioning techniques over various numbers of partitions. 

 

 
Figure 3. Average percentage overlap between partitions. 

 
Figure 4. Average number of unique terms per partition.  The 

black bars indicate standard deviations. 

 

Another consequence of the behavior of cosine partitioning is 
that size variance in solutions is high, as shown in Figure 4.  
Cosine partitioning tends to create solutions where most 
descriptors are assigned to very few partitions. 

Large partitions must be avoided when creating partitions for 
routing.  Consider the case where no partitions overlap.  Then, 
the number of unique term combinations that match this solution 
is approximated by the following expression: 

∑
=

K

i

T i

1

|| .2  

This expression is minimized when |Ti| is uniform (i.e., |Ti| = |T| / 
K, where 1 ≤ i ≤ K) and maximized when |Ti| has high variance 
(e.g., when |Ti| = |T| for some i).  Variance in |Ti|, therefore, 
matches more queries and leads to more routing errors.  
Furthermore, as suggested in Lemma 1, large partitions 
approximate worst-case performance. 

Random partitioning allows partitions to overlap, leading to 
larger partitions on average.  Randomly generated partitions are 
as much as 33% larger than cosine-generated partitions on 
average (K = 5 case).  However, this does not make up for the fact 
that cosine generated partitions have a size variance that is 8 
times greater than that of randomly generated partitions.   

As the number of descriptors grows, however, so does the 
average size of each partition.  In time, random partitioning 
performance will approach that of cosine partitioning as all terms 
will be represented in all random partitions.  Partition size 
variance will decrease, but average partition size will be 
maximized. 

The general problem with cosine partitioning is that it considers 
descriptor similarity with partitions.  Considering the skew in 
practical term distributions, this leads to high variance in partition 
size.  The general problem with random partitioning is that 
random partition sizes increase arbitrarily regardless of their 
contents.  To solve the problems of both of these solutions, we 
propose difference-based partitioning. 



Difference-based partitioning considers how different a descriptor 
is to a partition without considering how similar they are when 
making assignment decisions.  By avoiding a similarity 
comparison, it avoids the problem that cosine partitioning has 
with size variance.  By considering difference, it avoids the 
problem that random partitioning has of uncontrolled growth. 

6.2.1 Difference-Based Distance 
The number of false co-occurrences created by assigning file F to 
Ri can be computed by comparing D(F) with Ti.  All of the terms 
that are in Ti – D(F) falsely co-occur with all the terms that are in 
D(F) – Ti as shown graphically in Figure 5. The falsely co-
occurring term set is computed by the cross product of (Ti – D(F)) 
and (D(F) – Ti). We define the cardinality of this set as the cost of 
assigning F to Ri, which is computed by 

 ∆M(D(F), Ti) = |D(F) - Ti| × |Ti – D(F)|. (3) 

 
Figure 5. The false co-occurrences introduced by adding F to 

Ri are caused by their non-overlapping term sets. 

 

The design of ∆M encourages the creation of partitions with both 
small average size and small size variance.  We can see this by 
considering its behavior in containment and non-containment 
conditions between pairs of term sets (i.e., a descriptor and a 
partition).  First, if one descriptor properly contains another, then 
∆M, but not cosine, implies that combining them has zero cost.  
This is the correct behavior as the set of term combinations of the 
containing term set subsumes that of the contained set.  
Therefore, combining these two term sets into one introduces no 
false co-occurrences.  This behavior has the tendency to create 
smaller partitions on average because it avoids partial-
containment assignments. 

If there is only a partial overlap between term sets, then the ∆M 
focuses on the difference, whereas cosine focuses on both the 
difference and the similarity.  This focus on the difference has the 
tendency of assigning descriptors to smaller partitions, which, by 
expectation, leads to fewer false co-occurrences. This has the 
effect of reducing the size variance in the final partitioning 
solution. 

We re-ran our experiments, replacing cosine distance with ∆M.  
Our results, shown in Figure 2 through Figure 4, show that ∆M 
outperforms both cosine and random partitioning, reducing Qf by 
53% versus 18% and 44% for the other two, respectively.  The 
reason for this performance improvement is clear from the results 
shown in Figure 4:  partition sizes are on average smaller than 
those of random partitioning and have less variance than those of 
cosine partitioning. 

7. CONTROLLING COSTS: REDUCED-
SIZE BLOOM FILTERS 
The cost of our proposed solution is a function of K.  Larger K 
values increase routing accuracy but at the expense of more 
maintenance and transmission cost.  We propose to fix cost by 
fixing the number of bits used to encode the K Bloom filters that 
represent a peer descriptor; specifically, we fix it at 64KB 
regardless of K.  In doing this, we introduce a tradeoff.   
Increasing K decreases routing errors due to co-occurrence errors 
as described in Section 5.  However, it also increases the rate of 
routing errors due to hash collisions; as each partition is allocated 
fewer bits, the rate of collision errors increases.  The challenge is 
to identify a K that balances these two effects to minimize the 
overall number of routing errors. 

Let NB be the total number of bits used in the Bloom filter 
encoding of the peer descriptor T, and let Nt = |T|.  The 
probability of a collision in the Bloom filter encoding of T is [2]: 

 Bt NNecollision −−= 1)Pr( . (4) 

We expect that fixing the size Bloom filter is a reasonable 
approach because NB is large compared to Nt in practice.  
Therefore, the probability of a collision is low.  Let NB

i be the 
number of bits available for the Bloom filter encoding of partition 
Ti, which contains Nt

i terms.  In our data set, a peer’s collection 
contains at most 4,000 unique terms, encoded in 64KB worth of 
bits.  Pr(collision in Ri | NB

i = 64KB / K and Nt = 4,000) is 0.008 
when K = 1 and increases at a rate of 0.007 for practical values of 
K (i.e., K ≤ 20).  This low collision rate gives us the flexibility to 
increase K. 

Two problems arise that complicate increasing K arbitrarily.  
First, Nt

i decrease more slowly than NB
i.  (Recall the results from 

Figure 3).  Due to overlapping term sets, average Nt
i / NB

i 
increases with K and therefore so does the collision rate of each 
partition. 

In addition, the variance in partition sizes increases with K.  
(Recall the results from Figure 4.)  The increased size variance 
and the increased overlap mean that the ability of partitioning to 
reduce co-occurrence errors decreases with K.  Our goal is to find 
an optimal K that minimizes Qf, where the marginal increase in 
collision errors Qc is equal to the marginal decrease in co-
occurrence errors Qd. 

7.1 Experimental Setup 
Since each partition in the optimal solution contains the same 
number of unique terms, we assign the same number of bits to 
each partition’s Bloom filter:  NB

i = NB / K.  Therefore, reducing 
the range of the hash function H is straightforward: 

 H’ = H mod NB
i, 

where NB is the number of bits in the original Bloom filter.  In 
addition, each peer descriptor that is transmitted to a neighbor 
also contains its K value so that the neighbor knows how to parse 
it for individual Bloom filters. 

DD(F) – Ti             Ti – D(F) 

False co-occurrences by (D(F) – Ti) × (Ti – D(F)) 

D(F) Ti 



7.2 Performance of Reduced-Size Bloom 
Filters 
In Figure 6, we plot the performance of reduced-size Bloom 
filters with different values of K.  We break down the 
performance of ∆M in terms of Qf, Qc and Qd.  As expected, as K 
increases, Qc increases and Qd decreases.  The rate of decrease in 
Qd decreases, however, while the rate of increase in Qc is linear in 
our K range, which includes all practical values of K.  These 
trends result in a net increase in Qf beginning at K = 8.   

 

 
 Figure 6. Error breakdown using reduced-size Bloom filters. 

 

7.3 Incremental Collection Partitioning 
Although setting K to 8 yields the optimal average performance 
in our experiments, we cannot generalize the performance of this 
K value over all peers and all collections.  The optimal K value 
for a particular peer may be greater or less than 8 depending on 
its term distribution over its file descriptors. 

We propose a way of dynamically approximating a local peer’s 
optimal K, balancing the slowing decrease in Qd with the increase 
in Qc as K increases.  Our technique uses the expectations that the 
rate of increase in Qc is non-decreasing in K and the rate of 
decrease in Qd is non-increasing in K.  (Both of these 
expectations can be demonstrated analytically.)  Given this 
behavior, when Qf begins to increase with K, it is guaranteed not 
to decrease with increasing K.  Therefore, the optimal K is some 
smaller value. 

We propose to increase incrementally K until the rate of decrease 
in Qd is below a given threshold, U.  Before this threshold, the 
decrease in Qd is expected to compensate for the increase in Qc, 
but not after it.  We use a fixed threshold because we expect Qc to 
be linear for our range of K. 

During each iteration of our technique, one partition in the set of 
partitions is split in two using ∆M partitioning.  If an analysis of 
the split reveals that it decreases Qd by a minimum threshold, 
then the split is accepted and another split is considered.  
Otherwise, the split is undone at the process stops. 

There are two criteria for picking the partition to split: 

1. The partition that has been involved in the fewest splits is 
split first. 

2. In the event of a tie, the partition with the most unique terms 
is split first. 

Criterion 1 effects round-robin partition selection by avoiding 
splitting partitions that have either been either split or created 
most recently.  Because in the optimal solution, Nt

i is equal for all 
i, each split should create “sibling” partitions with a similar 
number of unique terms, so splitting the same partition twice 
consecutively should not be necessary anyway except for 
degenerate or boundary conditions.  In other words, we expect 
Criterion 1 to be less of a factor in determining which partition to 
split next than Criterion 2. 

Criterion 2 splits the partition with the most terms first because 
the potential benefit of splitting these partitions is higher.  As 
explained in Section 4, large partitions match a disproportionate 
number of queries. 

When necessary, we denote cases where we generate a reduced-
size peer descriptor incrementally by inserting the term 
“incremental” where appropriate.  In cases where the peer 
descriptor is generated with a pre-set K, we insert the term “fixed-
K” where appropriate. 

The stopping condition of the splitting process is ideally based on 
a direct measurement of the rate of decrease in Qd.  The problem 
with using this measure in a stopping condition is that it is not 
possible to determine the impact of a split on Qd analytically. 

Fortunately, there exists a strong correlation between Qd and the 
average Nt

i with increasing K.  This correlation, with a correlation 
coefficient of 0.99954, is shown in Figure 7.  This correlation 
conforms to the fact that there exists a direct relationship between 
number of terms in a partition and the number of unique queries 
it matches.  Because average Nt

i is measurable during the 
partitioning process, while Qd is not, we use the former in 
formulating our stopping condition. 

 

 
Figure 7. Number of co-occurrence errors and average 

number of unique terms in each partition with increasing K.  
In these results, full-sized Bloom filters are generated with 

fixed-K partitioning. 

 



The stopping condition occurs when a split does not decrease the 
average Nt

i by threshold percentage U.  Because average Nt
i 

approximates Qd, the drop in average Nt
i must be large enough to 

offset the expected increase in Qc caused by the split.  An 
insufficient decrease in average Nt

i means that the split is unable 
to reduce Qf.  In the event that the stopping condition is reached, 
the split is rolled back and the splitting process stops.  Formally, 
the stopping condition is reached if the following is true when 
trying to create a (K + 1)th partition: 

U
KNavg

KNavg
i
t

i
t >−+ 1

),(
)1,(  

In the expression above, avg(Nt
i, K) refers to the average Nt

i given 
K partitions. 

Empirically, we found that U = -0.1 yields the best results, so if a 
split does not change the average number Nt

i by -10%, we undo 
the split and stop the splitting process.  In Figure 8, we show the 
performance of incremental partitioning with different U values. 

Incremental partitioning with the U = -0.1 stopping threshold 
results in an average Qf (304) that is on average within 8% of the  
average Qf of the case where we manually tune the optimal K 
value for each peer (281) – labeled opt-K – and 50% lower the Qf 
with the base case of K = 1(608).   

To show that this improved performance is consistent among all 
peers in our experiment, we also consider the performance of 
incremental partitioning on a peer-by-peer basis.  In Figure 9, we 
show the Qf values for each of the 50 peer collections when: 
using a single partition (max); when using opt-K; and when using 
incremental partitioning.  The consistent closeness of the graphs 
for opt-K and inc indicates clearly the fitness of the incremental 
partitioning technique and the stopping condition for arbitrary 
peer collections. 

 

 
Figure 8. Average number of routed queries with various 

threshold values.  (Note that thresholds should actually be)  
Max indicates no partitioning. 

 

 
Figure 9. Number of routed queries per peer with incremental 

partitioning, opt-K partitioning and no partitioning (max). 

 

8. OTHER CONSIDERATIONS 

8.1 Handling Collection Updates 
Over time, users may add or delete files from their collections.  
These changes must be reflected in the peer descriptions.  
Handling file addition is straightforward, due to the greedy nature 
of the ∆M partitioning algorithm.  Our experimental results are 
based on an arbitrary ordering of file files.  We expect that 
additional files will be assigned to likewise appropriate partitions.  
Updating the corresponding Bloom filters is merely a matter of 
modifying the appropriate bits that were previously set to 0.  
Transmitting Bloom filter updates to neighbors using partitioned 
descriptions may be more efficient, as it is possible to transmit 
updates to just the modified partitions. 

Handling file deletion requires a little more engineering because 
it requires knowing whether the deletion removed with it the last 
instance of a particular term from a partition.  If so, this term 
must be removed from the partition’s term set and corresponding 
Bloom filter.  This requires maintaining a map between files and 
partitions as well as maintaining counts of term frequencies in 
each partition.  This is the technique used in other work, such as 
[12][27][29] and is straightforward to apply to our case. 

Under certain conditions, it is also reasonable to handle deletions 
by ignoring them.  In cases where collections are large, for 
example, it is unlikely that ignoring a single deletion will result in 
a routing error and therefore ignoring it is worthwhile.  Peers that 
tend to stay online for long periods of time tend to have large 
collections and delete relatively few files.  Peers that join and 
leave regularly have their descriptions updated when they join.  
Finally, ignoring deletions does not introduce any false negative 
routing errors, only, possibly, false positives.  For all of these 
reasons, handling deletions may be relatively unimportant.   

Updates to descriptions can be transmitted to neighbors either 
periodically (e.g., whenever a user logs into the system), when 
neighbors request updates (as done in Gnutella [3]) or after some 
change threshold has been reached. 



8.1.1 Updates to the incrementally created 
partitions 
One question is whether the partitions need to be updated due to 
inserts or deletes.  These operations affect the average Nt

i, either 
increasing it (on inserts) or decreasing it (on deletes).  If average 
Nt

i gets too high, then the rate of collisions increases.  If average 
Nt

i gets too low, then the partitions are not aggressive enough in 
reducing co-occurrence errors. 
On an insert, therefore, we attempt to merge two partitions.  
Merging partitions reduces the collision rate by increasing the 
number of bits available to encode each Bloom filter.   
We attempt to merge the smallest partition (in terms of term set 
size) with another using ∆M to pick the most appropriate one.  
We merge the smallest partition in an attempt to keep the 
partition sizes as even as possible.  If the attempted merge does 
not undo a good split as defined by the stopping condition 
mentioned in Section 7.3 (that is, allow the merge if avg(Nt

i, K + 
1) > (1 + U) avg(Nt

i, K)), then it is allowed.  This process repeats 
until some merge violates the stopping condition for merging.  A 
new Bloom filter is then encoded based on the new partitions. 
A similar process occurs when a file is deleted from the 
collection.  A split is attempted on the largest partition (in terms 
of the term set size).  If the split does not violate the stopping 
condition, then it is allowed.  This process repeats until some 
split violates the stopping condition. 

8.2 Handling Multi-Hop Routing 
We have so far ignored multi-hop routing in this work because it 
is ignored in practical P2P file-sharing systems.  This is the case 
because, with flooding, routing cost is concentrated in the last 
hop.  If we flood with a degree f, the ratio of last hop messages to 
the rest of the messages is (f – 1) / f – very close to 1 for practical 
values of f, which is on the order of tens. 

However, if desired, we provide a rough outline of how to 
implement multi-hop routing with our technique.  One approach 
is to apply the hierarchical indexing discussed in [24].  With 
hierarchical routing, each peer transmits to each of its neighbors 
the summaries of the collections of its other neighbors, which 
could also contain the summaries of its neighbors’ neighbors. 

The opportunity that our partitioned collection technique affords 
is that the index hierarchies can be more precise, leading to 
greater routing accuracy.  Instead of treating each peer as a set of 
terms, we can treat it as a set of term sets.  The specific claim we 
are making is that our techniques can be applied to hierarchical 
routing to improve its accuracy.  The details of this routing 
scheme are the subject of ongoing work. 

9. CONCLUSION AND FUTURE WORK 
Analyses of Gnutella network query logs indicate that over 50% 
of queries forwarded to a peer return no matching files, wasting 
both network and computational resources.  The problem lies in 
how peer descriptions are created and used in the query routing 
process.  Each peer is described by its term set (based on file 
descriptors) and queries are routed to the peer by verifying the 
existence of query terms in this set.  The set of terms, however, 
may suggest term combinations in shared files that do not actually 
exist, resulting in incorrect routing decisions. 

To increase the resolution of a peer description, we partition its 
files and create a description for each partition, reducing the 
number of erroneous term combinations.  Experimental results on 
data from the Gnutella network show that our techniques can 
reduce the number of incorrectly routed queries by 30% to 60% 
at virtually no cost. Furthermore, we can incrementally generate 
an appropriate number of partitions for individual peers based on 
the distribution of descriptive data in its shared file collection. 

Our algorithm for generating partitions is computationally simple 
and generates solutions that traditional clustering algorithms do 
not admit.  Furthermore, the solution, by its greedy nature, is 
immediately amenable to file additions while handling file 
deletions is a matter of simple engineering. 

We are currently considering the use of query log data to further 
increase the accuracy of the partitions.  This is important as we do 
not want to break potential co-occurrences that never actually 
occur in queries. 

Second, we are applying these techniques to improving the 
routing accuracy of Web corpora.  So far, our results are 
promising. 
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