
Scalable Architecture for Web Service Discovery

Brahmananda Sapkota, Sanaullah Nazir,
Manfred Hauswirth

DERI Galway, NUI Galway
Galway, Ireland

firstname.lastname@deri.org

Tomas Vitvar
STI Innsbruck

University of Innsbruck
Innsbruck, Austria

firstname.lastname@sti2.at

ABSTRACT
Web services offer an enabling step towards enterprise in-
tegration over the Internet. Service discovery is the fun-
damental task of finding and assembling services to meet
a request. In this paper a scalable service discovery archi-
tecture is proposed. The scalability is mainly achieved by
employing the shared semantic space for discovery and coor-
dination of resources distributed over the shared spaces. The
shared spaces are virtual spaces which can be hosted at any
node or server on the Internet. The system self-organizes
into virtual groups that empower the capability of discovery
mechanism.

Keywords
Semantic Web, Semantic Web Service, Scalable Web Service
Discovery, Semantic Shared Space, Tuple Space

1. INTRODUCTION
Web services offer an enabling step towards distributed

computing. Web Service Definition Language (WSDL), Uni-
versal Description, Discovery and Integration (UDDI) and
Simple Object Access Protocol (SOAP) are the building
blocks of current Web services. Web services are built and
deployed independently. UDDI is used for indexing service
descriptions encoded in WSDL. One can manually obtain
required service description from a UDDI registry and in-
voke them. However, the result of such discovery is only
the specifications of the Web services but not necessarily
the one user is looking for. The state of any particular Web
service is unknown. The increasing number of Web services
also indicates that service descriptions will not remain in a
single repository nor can be indexed using a single registry.
These systems will have difficulty in supporting scalability,
automating and discovering services from heterogeneous en-
vironments. Thus, we realize that a mechanism is required
for efficiently locating and utilizing the required Web ser-
vice. Through the use of ontologies, Semantic Web technol-
ogy makes service descriptions machine-readable. Provid-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ing a shared memory space, Tuplespaces support persistent
publication and strong decoupling between applications in
terms of reference, time and space, ensuring scalable commu-
nication. A combination of them could potentially improve
service discovery.

The UDDI based approaches, for example, for publish-
ing Web service description greatly restrict the query recall
and thus affects the precision of the results. The dynamism
envisioned in Semantic Web cannot be achieved in UDDI
as it restricts the use of data in a closed environment. To
cover a larger user base and to encourage the potential use
of Semantic Web services, it is vital to incorporate open and
close environments in a discovery system. This leads to the
need of a mechanism which can ensure the discovery of ap-
propriate services, if available. In order to ensure this, Web
service descriptions need to be discovered from repositories
distributed over the network. Thus, the discovery architec-
ture should incorporate the functionality of collecting, dis-
tributing, and disseminating Web service descriptions in the
network.

This document describes a distributed Semantic service
discovery mechanism that is designed to be highly distributed,
robust, reliable and scalable. The primary focus of this pa-
per is on service discovery coupled with Semantic Web [1]
and shared space [2] principles. We propose to create vir-
tual groups of related Web services in order to accelerate the
query process and to improve the quality of results. This im-
plies that the descriptions of similar Web services are kept
in one virtual group. The similarities between two Web ser-
vices can be evaluated based on the services they provide
and their usage constraints. This is achieved by employing
a self-organization algorithm which ensures that a service de-
scription is published to the right virtual group. The virtual
groups are maintained and made available through the Se-
mantic shared spaces. The use of shared space, in addition,
allows persistent publication and execution of service de-
scriptions. Further, it decouples the service providers from
their users enabling them to focus on their own business
logic.

1.1 Application Scenario
To depict the applicability of our architecture for web

service discovery, we present a scenario which has services
providers belonging to various domains e.g transportation,
postal and health etc. Users interested in services which pro-
vide flight reservation would be interested in getting quick
response from service providers providing relevant services.
A user would interact with the broker and send his request
to it. The broker will look for the services by sending re-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3536

quest to service providers which belong to the domain of
interest of the user request. Figure 1, portrays the applica-
tion scenario. It shows service providers belonging to dif-
ferent domains are registering and publishing their services
with the broker. The users interact with the broker in order
to retrieve services from the service provider. The broker
matches users requests with the published services of the
service providers.

Figure 1: Application Scenario

In Section 2, Semantic Web services and shared-space
computing paradigm are introduced. The usual Web ser-
vice discovery approaches are described in Section 3. The
Semantic shared space is described in 4. Section 5 takes this
further with a proposal for distributed discovery architecture
and Section 6 presents a distribution algorithm employed in
this architecture. The usability of the proposed architecture
and algorithm are illustrated with the help of a running ex-
ample in Section 7. The proposed architecture is evaluated
and results are presented in Section 8. Relevant existing
works are discussed in Section 9 and this paper is concluded
in Section 10 highlighting the direction for future works.

2. BACKGROUND
The background technologies such as Semantic Web ser-

vices, shared tuple space, used in this paper are briefly de-
scribed in the following subsections.

2.1 Semantic Web
Web services [3] are proposing a uniform and standard-

ized way to access services over the Web. They address
stringent business problems like integration and automation
of business processes. Their fundamentals rely on standards
like SOAP, WSDL and UDDI. However, all of these stan-
dards operate at a syntactic level and, therefore, a scalable
solution for business problems cannot be achieved without
human support. Realizing such a solution will require richer
descriptions that can be processed by machine in a mean-
ingful way, thus enabling the automation of service related
tasks such as service discovery, composition and execution.

With current research around Semantic Web [1], Seman-
tic Web services aim at describing the various aspects of a
Web service using explicit, machine-understandable seman-
tics, enabling the automatic location, combination and use
of Web services [4, 5]. The main principle of Semantic Web

services [6–8] rests on publishing service ontologies, dynamic
discovery of those ontologies, mediation between them, when
needed, to respond to a requester’s goal. A web service is
defined in term of its capability and conditions. A dynamic
discovery involves automatically and dynamically locating
Web services that can fulfill user requirements. If the user
requirements cannot be fulfilled by a single Web service,
multiple Web services may need to be used to fulfill the re-
quirements. Mediation involves mediating between the Web
services or between a Web service and user requirements, if
there is some difference on the protocol or data level.

2.2 Tuple Space
The shared space concepts have been used to explore ap-

plications on distributed systems [2,9–11] The shared-space
based systems are loosely coupled because applications com-
municate via shared virtual spaces. The features offered by
shared-space architecture are robustness, scalability, persis-
tence and adaptability. Each Web service and space may
exist on its own anywhere on the Internet.

A well explored shared-space concept is publish-subscribe
interaction mechanism whose functionality is centered around
the concept of an event [10]. Information is communicated
by publishing an event or topic and subscribing for a partic-
ular event. All published events are propagated to their sub-
scribers. It has been widely recognized as a promising com-
munication infrastructure in distributed environment [9].

The concept of shared-space was first introduced in Linda
[2] as tuple space. In tuple space, information is communi-
cated by writing and reading an ordered set of typed fields
called tuples. When tuples are no longer needed they can
be deleted. Since it decouples communication with respect
to time, location and space it has been adopted in different
systems [12,13]. A tuple space, however, operates on simple
data model and thus does not support semantic augmen-
tation of information. The compelling three dimensional
decoupling features, however, attracted the interest of re-
search communities and motivated them to opt for semantic
tuple spaces namely triple space [9]. The visible advantages
of using this in Web service paradigm are threefold. Firstly,
the Web service paradigm advances to the Web paradigm,
i.e., the persistent publication of information. Secondly, the
communication is asynchronous [14]. Thirdly, shared space
provides middleware support hiding from internal applica-
tion complexities.

3. WEB SERVICE DISCOVERY
Web service discovery is the process of locating web ser-

vices which can possibly fulfill the user requirements. Tradi-
tionally the protocol for discovery in syntactic world is UDDI
which is primarily based on keyword search on a global Web
service registry. There are many disadvantages of the syn-
tactic or keyword-based discovery approach. It lacks dy-
namic discovery i.e. when a single service is not able to
fulfill a goal, it is not possible to predict, without human
intervention, if the goal can be fulfilled. The search on a
global service registry may introduce scalability issues.

In semantic world, approaches like WSMO [6], OWL-S [7],
METEOR-S [8] etc. have tried to address this problem
by describing the services in a way that makes them ma-
chine readable. Efforts include development of expressive
languages based on artificial intelligence technology includ-
ing RDF [15], RDF-S [16] and most recently OWL [17] and

WSML [18]. Similarly complex reasoners have been devel-
oped to automate the process of web service discovery and
composition.

In this approach, service provider creates a WSDL de-
scribing the service it is offering. This WSDL is published
to some registry (e.g. UDDI or ebXML). The requester of
the service finds this WSDL by browsing the registry. Hav-
ing found this description, the requester then invokes the
service using SOAP protocol.

In tuple spaces, the description of an offered services is
described in the form of tuple containing an ordered set of
elements. These elements describe capability, interfaces, and
conditions for invoking this service. The requester needs to
formulate a template describing the needed functionality.
This template is sent to tuple space and matching service is
discovered.

4. SEMANTIC SHARED SPACE
The Semantic shared-space is created in order to coordi-

nate the communication between distributed applications.
This space balances the load between participating appli-
cations. In the following subsections the Semantic shared-
space is introduced and its relation with Web services is
illustrated.

4.1 Semantic Shared Space
The Semantic shared space is a virtual space which is

created through the network of distributed shared spaces.
These shared spaces are uniquely identified by URL and
can be hosted in any node or server in the Internet. These
shared-spaces are connected with each other in such a way
that the nodes having similar information form a group
(SemSet). Two services are considered to have similar in-
terest if they share similar interfaces, domain ontology and
input-output relations. Actual algorithm for defining these
similarities is an implementation issue and is not discussed
in this section.

The basic principles behind this grouping is to partition
the global space into sub spaces of related information but
it is also possible to have overlapping interests. This means
that a node can take part in different interest groups. This
overlap between interests is utilized for creating a virtual co-
ordination space (CoSpace) which is used for coordination
between different interests groups. Therefore, every node is
reachable from any node in the network. The coordination
space is also utilized for active replication of data which is
required to prevent unpredictable losses from system fail-
ures. This means that the Semantic shared space is failure
resilient. It also keeps history of all flow of messages and
requests to and from the shared spaces. The grouping prin-
ciple is further discussed in Section 6.1.

The internal data model used in this network is named
graph [19]. The Semantic shared space allows persistent
publication of data in general and tuple based shared space
in particular. The promise of such shared space is to decou-
ple applications in three prevailing dimensions: time, loca-
tion, and access reference. Three main system parts exist
in a Semantic shared space. One major system part is user
application which can be a reader or writer. Another sys-
tem part is the space provider which can host a number of
shared spaces and the third system part is the protocol used
for communication. The protocol used for communication
between shared spaces is based on HTTP standard.

The Semantic shared space mentioned here is similar to
that in [20]. However, the architecture presented in [20] is
minimal i.e. a client has to connect to many different shared
space servers. We extend the present minimal triple space
architecture to accommodate interaction between the triple
space servers possible by connecting them in a hybrid Peer-
to-Peer network (P2P). In the P2P architecture two hosts
can communicate with each other through the same HTTP
protocol. According to this protocol the possible syntax for
reading and writing operations are:� �

1 http://URL/namedGraph
2 http://URL/URI� �
Listing 1: Semantic shared space basic operations

where URI is a unique identifier of a named graph Ng. The
first operation is the write operation where the URL ofNg to
be written is provided followed by the named graph itself.
The second operation is the read operation that provides
the URL of the Semantic shared space and the URI of the
named graph to be read.

4.2 Semantic Service Space
The location for publishing and accessing data is known

as Semantic shared space which is based on the philosophy
that a Web service can be published and read independently.
Named graphs are written and read with this URL as a stor-
age location. The query language used for reading named
graphs is based on SPARQL protocol [21].

The notable advantages of Semantic shared space as men-
tioned before has major role to play in the (Semantic) Web
services (SWS) world such as a global semantic repository,
persistent and semantic communication infrastructure. En-
abling asynchronous communication and using semantically
enriched resources, much of the process can be automated
achieving scalability significantly and managing communica-
tion complexity. That is, the writing or reading applications
will always be notified in the event of unsuccessful execution
of the requests. Thus, information will never be lost in case
of system failure. In addition, the history of operations over
the shared space can be used for reusing already available
Web services. Due to its internal data model, it is easy to
maintain provenance information. It can ensure that the
information arrived from the said source cannot be denied.
Finally, the shared space plays a middleware role for discov-
ering required services in SWS paradigm.

5. DISCOVERY ARCHITECTURE
The distributed architecture presented in this paper con-

sists of loosely coupled components and is based on SOA
design principles. The architecture of the Semantic shared
space is not included in detail due to brevity. Therefore, the
focus here is on the discovery architecture as shown in Figure
2. The basic required components of this architecture are:
Access Interface, Communication Manager, Parser, Result
Aggregator, Monitor, Space Invoker, Result Filter and Load
Distributor. It provides a HTTP based access interface.

This architecture allows its users to create a new virtual
shared space, or use an existing one if available. Messages
can be written to or read from the space. Any user (either
a service provider or a requester) can have access to the in-
formation available on the space (subject to local security
policy). Thus, when looking for a Web service, a request is

Figure 2: Distributed Discovery architecture

sent to the virtual shared space instead of sending to individ-
ual Web service description repositories. The components of
this architecture are described in next section.

5.1 Component Description
The system components are loosely coupled and are plug-

gable. This allows replacement of existing implementations
over time with alternative or more expressive implementa-
tions as well as new components. The functionalities of these
components are described below.

Communication Manager
The Communication Manager separates the scope of access
interface from that of internal functionalities of the system.
Its major responsibility is to deal with sending and receiving
requests and results to and from the discovery system. Its
external behaviour is accessed through the Write and Read
interfaces. The requests are encoded using a goal template
TG, where a goal represents both the write and the read
operations.

Parser
The main functionality of a Parser is to obtain the goal
template TG from the communication manager via the load
distributor, parse it and store the obtained data in the lo-
cal repository for future use. A TG can consist of a simple
or a complex goal. The parser needs to decompose these
complex goals because of various reasons such as: the in-
formation required to evaluate the TG is distributed; TG

consists of multiple sub-goals; it requires mutually exclu-
sive graph composition; and the TG can be executed only
partially. Thus based on the named graphs ∪Ng defining
TG, it is decomposed into sub-goals {Tg} such that ∪n

i T i
g ≡

TG as described in [22]. Following simple algorithm is used
for such decomposition:� �

1 {Tg} = NULL
2 for each Ng of TG

3 Tg ∪ extract Ng

4 return {Tg}� �
Listing 2: Sub goal template generation Algorithm

Result Aggregator
This component is responsible for aggregating the result sub-
graphs received from Space Invoker and to complete a result
template or a result graphs. The various possible complete
result graphs are sent to the Filter component for further
actions.

Monitor
Observes and oversees the overall resource consumed locally
while executing requests. A monitor periodically checks the
status of discovery servers by probing them with a particular
kind of message and expecting a reply from them not later
than a configured response time. Based on the response, it
takes appropriate action. If a response does not come the
server is marked as DEAD and the next probe is sent after
the configured down time. The response message contains
the status of a server i.e. CPU and memory usage, of the
discovery servers and the status will be marked as RUN-
NING. The monitor maintains all this information in the
form of a status table. The status table will be used by the
load balancer to distribute the requests accordingly.

Space Invoker
The Space Invoker receives sub goal templates

∑n
i T

i
g ≡ TG

from the parser. For each
∑n

i T
i

g ≡ TG it calls the semantic
shared space to read and write service description. For each
result found for a particular

∑n
i T

i
g ≡ TG , it forms a (sub)

result template or (sub)graph and passes it to the Result
Aggregator.

Result Filter
This component filters out irrelevant results provided by Re-
sult Aggregator. It matches the result graphs with the goal
graphs and the results are prioritized according to the level
of match between them.

Semantic Shared Space
This component acts as a registry for the shared spaces and
maintains a mapping between the shared spaces, their IP
Addresse(s)(if mirroring is done for that server) and the
status of the shared spaces. It provides an interface which
accepts a

∑n
i T

i
g ≡ TG , looks into virtual space and returns

the result (sub)graph fulfilling the (sub)goal.

Load Distributor
It works closely with Monitor component and redirects the
incoming requests to other discovery systems in the network.
Here we have used the Hardware Load Balancing 1 strat-
egy. The advantages of hardware load balancing are server
affinity and high availability. The load distributor acts as a
virtual server (also referred to as vserver or VIP) which, in
turn, consists of an IP address and port. This virtual server
is bound to a number of physical services running on the
physical servers in the Semantic shared space. These phys-
ical services contain the physical server’s IP address and
port.

5.2 Component Interaction
In this section, we describe the working of the whole sys-

tem right from receiving goal template TG from the client

1http://www.onjava.com/pub/a/onjava/2001/09/26/
load.html/page=2

to providing the final results. Through the Access interface
a client provides goal template TG to the Communication
Manager which validates the goal template TG and if no
problems are found the goal template TG is passed to the
Load Distributor. If validation fails then an error is raised.
The Load Distributor queries the Monitor to look for the
availability of a discovery engine. If a discovery engine is
available to take a request, Load Distributor passes the goal
template TG to that engine, else the goal template TG is
queued with the Load Distributor.

Once the goal template TG is received by the discovery
engine, it is parsed by the Parser and broken down into
sub goal templates

∑n
i T

i
g ≡ TG , if possible. These sub-

goal templates are passed to the Space Invoker, for each sub
goal the semantic shared space is queried. The semantic
shared space looks up into the virtual space and if it finds an
appropriate match, returns it in the form of result template
or (sub)graph Tr. These result graphs Tr for each sub goal
Tg are passed to the Result Aggregator which aggregates the
result graphs Tr into various possible result graphs {TR}.
This set is given to the Filter component, which employs
graph matching algorithm on each member of result graph
set {TR} with the template goal TG and prioritises them
according to the matching result.

6. SPACE DISTRIBUTION
The space distribution is an essential aspect of this dis-

covery mechanism. It is needed for creating virtual network
of related service descriptions. That is a space contains de-
scriptions of related services. In addition, the distribution
mechanism should be capable of distributing queries to the
right space in a scalable manner.

6.1 General Space Distribution
The semantic shared space evolves dynamically as service

descriptions are stored and removed from it. A new ser-
vice description is stored in a shared space where similar
descriptions are already stored. The similarity is evaluated
based on the ontology used to describe functionalities of a
Web service. In this state, we use namespace together with
ontology matching presented in 6.2, for the purpose of iden-
tifying similarity between service descriptions.

For the distribution of spaces, multiple mechanism exist.
However, to support scalability requirements peer-to-peer
mechanisms are deemed suitable for this purpose. By ex-
ploiting the fairness algorithm [23] service descriptions are
distributed over the network so as to balance the network
load. A sub-goal Tg is stored in the shared space that already
has service descriptions defined using the same Ontology as
in a sub-goal Tg.

6.2 Similarity function
The similarity function, F(vi, vj), implements an algo-

rithm that computes the semantic similarity of any two on-
tologies. These ontologies are the conceptualization of the
data sets related with any two peers of the network, being
represented as hierarchies of concepts. In a concept hier-
archy one non-leaf concept is a generalization of any of its
child nodes. As we move deeper in the concept hierarchy
the concepts become more specialized.

Two ontologies are considered similar if their structure
and concepts are similar. The process for evaluating similar-
ity between ontology starts with syntactic matching followed

by semantic matching matching. In the syntactic matching
process, if two concepts (C1 and C2) are not same, WordNet
is used to try a match between their synonyms. The algo-
rithm, as defined below, checks the matching of leaf concepts
from O2 against every concept from O1 recursively starting
from the leaf concepts. It mainly goes through the following
three steps:

a. Initially, the match between the leaf concepts of both
the ontologies are checked.

b. If the concept from O2 does not match with the leaf
concept of O1 then, move to the concept at higher
level in O1 and compare with the concept of O2, until
a either a match is found or the root of O1 has been
reached.

c. If the concept of O2 does not match with any of the
concepts in O1, then a concept at a higher level is se-
lected from O2, and compared with the leaf of O1, and
then repeat step b until the match is found between
the concepts or the root is reached.

If at any point in the hierarchy the similarity is found,
it is important to consider the semantics of the do-
main, whether the two concepts belong to the same
domain of interest. To achieve this, the parents of the
concept are matched. If the parents match then it is
said that the two concepts have similarity, Otherwise
it can be said that these concept belong to different
domains and hence have no similarity. This is useful
in the situation where there might be similar concept
names used in more domains.

In order to make semantic matching reliable it is impor-
tant to get a feed back from the user. The matched con-
cepts are returned to the user to verify whether this match
is acceptable, i.e they are semantically similar. On user’s
acceptance a concept similarity factor is computed for each
pair of concepts (C1, C2), where C1 ∈ O1 and C2 ∈ O2 which
is calculated as follows:

sim(C1, C2) =


w1 ∗ w2, if C1 and C2 represent the same

concept;

0.0, otherwise.

Where w1, and w2 are the weights of concept C1 and C2
respectively.

Weights are assigned during the matching process, de-
pending on the level where the match for the concept is
found. The leaf concepts being the most specialized are as-
signed with a weight value 1. Once the match between two
concepts is found the weight calculation takes place and it is
assigned to the leaf concept for which the similarity was to
be found. As we move up in the hierarchy, the concept nodes
get a decreased weight computed by the following formula:
W(C) = 1

Dt
∗ DC , where Dt is the depth of the hierarchy

and DC is distance from the root to the concept C in the
ontology hierarchy.

Once the similarity factor for all the leave concepts are
computed for O2, the overall similarity of the two ontologies
is computed as follows:

similarity(O1,O2) =

∑n
i=1 sim(Ci)

n

The objective of using this similarity function is not to
provide fine grain ontology matching of concept of the on-
tologies but to identify the domain they address. The evalu-
ation of algorithm using the Ontology matching evaluation 2,
showed very satisfactory results. For brevity the evaluation
test were similar to the one performed in Ontology matching
evaluation, using ontologies from different domains. Simi-
larity value showed high results for ontology belonging to
similar domains whereas ontology irrelevant gave a very low
similarity value. Hence possible to identify the threshold
value after performing the evaluation.

7. RUNNING EXAMPLE
For the purpose of illustrating the functionality and usage

scenario of the proposed architecture the following informa-
tion encoded by named graph syntax is used.

Using the application scenario presented in the introduc-
tion section. Our application acts as a broker. The request
is forwarded for discovery to the closest matching domain.
Using this scenario there are transportation, postal service,
vehicle sale and book seller service providers. Each of the
service provider is grouped into based on the domain they
support.� �

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema> .
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 @prefix dc: <http://purl.org/dc/elements/1.1/> .
5 @prefix ex: <http://www.deri.org/vocabulary#> .
6 @prefix : <http://www.deri.org/institute/> .
7

8 :G1 {
9 :AERLINGUS ex:hasName ”aerlingus”̂ ˆxsd:string.

10 :AERLINGUS ex:homepage <http://www.aerlingus.com>.
11 :AERLINGUS ex:hasService :IRETOASIA.
12 :AERLINGUS ex:hasService :CARGO.
13 :AERLINGUS ex:hasService :EUTOASIA.
14 }
15 :G2{
16 :IRETOASIA ex:hasName ”Ireland to Asia reserve ticket service”̂ ˆ

xsd:string.
17 :IRETOASIA ex:from :Ireland.
18 :IRETOASIA ex:to :ASIA.
19 }
20 :G3{
21 :CARGO ex:hasName ”EU to US cargo service”̂ ˆxsd:string.
22 :CARGO ex:from :EU.
23 :CARGO ex:to :USA.
24 }
25 :G4{
26 :EUTOASIA ex:hasName ”EU to Asia reserve ticket service”̂ ˆxsd:

string.
27 :EUTOASIA ex:from :EU.
28 :EUTOASIA ex:to :ASIA.
29 }
30 :G5{
31 :Ireland ex:hasName ”Ireland”̂ ˆxsd:string.
32 :Ireland ex:city ”Shannon”̂ ˆxsd:string.
33 :Ireland ex:city ”Dublin”̂ ˆxsd:string.
34 :Ireland ex:city ”Galway”̂ ˆxsd:string.
35 }
36 :G6{
37 :ASIA ex:hasName ”Asia”̂ ˆxsd:string.
38 :ASIA ex:city ”Katmandu”̂ ˆxsd:string.
39 :ASIA ex:city ”Jakarta”̂ ˆxsd:string.
40 :ASIA ex:city ”Lahore”̂ ˆxsd:string.
41 }
42 :G7{
43 :EU ex:hasName ”EU”̂ ˆxsd:string.
44 :EU ex:city ”Galway”̂ ˆxsd:string.
45 :EU ex:city ”Berlin”̂ ˆxsd:string.
46 :EU ex:city ”Oslo”̂ ˆxsd:string.
47 :EU ex:city ”Stockholm”̂ ˆxsd:string.

2http://www.ontologymatching.org/

48 }
49 :G8{
50 :UK ex:hasName ”UK”̂ ˆxsd:string.
51 :UK ex:city ”London”̂ ˆxsd:string.
52 :UK ex:city ”Liverpool”̂ ˆxsd:string.
53 :UK ex:city ”Glasgow”̂ ˆxsd:string.
54 }
55 :G9{
56 :AFRICA ex:hasName ”Africa”̂ ˆxsd:string.
57 :AFRICA ex:city ”Cairo”̂ ˆxsd:string.
58 :AFRICA ex:city ”Durban”̂ ˆxsd:string.
59 :AFRICA ex:city ”Harare”̂ ˆxsd:string.
60 }
61 :G10{
62 :USA ex:hasName ”USA”̂ ˆxsd:string.
63 :USA ex:city ”New York”̂ ˆxsd:string.
64 :USA ex:city ”Chicago”̂ ˆxsd:string.
65 :USA ex:city ”Boston”̂ ˆxsd:string.
66 :USA ex:city ”Florida”̂ ˆxsd:string.
67 }
68 :G11 {
69 :CITYLINK ex:hasName ”CityLink”̂ ˆxsd:string.
70 :CITYLINK ex:homepage <http://www.citylink.ie>.
71 :CITYLINK ex:hasService :IRETOASIA.
72 :CITYLINK ex:hasService :CARGO.
73 }
74 :G12{
75 :IRETOUK ex:hasName ”Ireland to UK reserve ticket service”̂ ˆxsd:

string.
76 :IRETOUK ex:from :Ireland.
77 :IRETOUK ex:to :UK.
78 }
79 :G13{
80 :ASIATOAFRICA ex:hasName ”ASIA to AFRICA reserve ticket

service”̂ ˆxsd:string.
81 :ASIATOAFRICA ex:from :ASIA.
82 :ASIATOAFRICA ex:to :AFRICA.
83 }
84 :G14 {
85 :AMAZON ex:hasName ”Amazon”̂ ˆxsd:string.
86 :AMAZON ex:homepage <www.amazon.com>.
87 :AMAZON ex:hasService :SONYDIGICAM.
88 :AMAZON ex:hasService :PANASONICDIGICAM.
89 :AMAZON ex:hasService :WILEYPUB.
90 }
91 :G15{
92 :HERZ ex:hasName ”HERZ”̂ ˆxsd:string.
93 :HERZ ex:homepage <www2.hertz.co.uk>
94 :HERZ ex:hasService :TOYOTACAR.
95 }
96 :G16{
97 :SONYDIGICAM ex:hasName ”SONY Digital Camera”̂ ˆxsd:string.
98 :SONYDIGICAM ex:resolution ”7.5”̂ ˆxsd:decimal.
99 }

100 :G17{
101 :PANASONICDIGICAM ex:hasName ”PANASONIC Digital Camera

”̂ ˆxsd:string.
102 :PANASONICDIGICAM ex:resolution ”8.5”̂ ˆxsd:decimal.
103 }
104 :G18{
105 :WILEYPUB ex:hasName ”WILEY PUBLISHERS”̂ ˆxsd:string.
106 }
107 :G19{
108 :TOYOTACAR ex:hasName ”TOYOTA CAR”̂ ˆxsd:string.
109 }� �

Listing 3: Information in Named Graph

In this example, several named graphs are used to encode
information regarding company, services offered, geograph-
ical locations and products sold by the companies. Let us
illustrate its publication and retrieval in our distributed dis-
covery system.

Publishing or Writing - Initially, this document is pre-
sented to the Communication Manager through the Access
Manager. As the syntax is correct it is given to the Load
Distributor which after consulting Monitor, passes it to a
distributed system in the network. The received document
is then parsed by Parser to get 19 different sub graphs (:G1

(a) Grouped vs Ungrouped

to :G19). The sub graphs :G1, :G11, :G14 and :G15 being
similar are stored in one shared space, where as :G2, :G4,
:G12 and :G13 are stored in another shared space. Another
shared space containing sub graphs :G5, :G6, :G7, :G8, :G9
and :G10 is created. The sub graphs :G16 an :G17 are also
placed in the same shared space. The sub graphs :G3, :G18
and :G19 are stored in three different shared spaces. The
storage is performed through the Space Invoker component.
These shared spaces are connected following the Semantic
shared space principle as mentioned in Section 4.

Retrieving or Reading - In the event of information re-
trieval the SPARQL protocol is used for defining the query
as shown below. In this example, a user intends to find name
and homepage of the companies providing travel service be-
tween Europe and Asia.� �

1 PREFIX ex: <http://www.deri.org/vocabulary#> .
2

3 SELECT ?hasName ?homepage WHERE
4 { GRAPH ?anygraph { ?graph
5 ex:hasService ex: EUTOASIA }� �

Listing 4: Query in SPARQL

This request is passed to the Space Invoker after its exe-
cution through Communication Manager, Parser, Monitor,
and Load Distributor. The Space Invoker invokes Seman-
tic shared space and obtains all the graphs that have in-
formation regarding the companies providing travel service
between Europe and Asia. This result is sent to the Result
Aggregator which then aggregates information from related
sub-graphs thereby generating a set of possible result graphs.
Finally, this set is passed to the Filter which discards the in-
formation that do not match the original query. The filtered
result is then sent to the user.

8. EXPERIMENTS AND EVALUATIONS
A prototype of the proposed architecture is implemented

and some experiments are conducted. This prototype is im-
plemented on top of JXTA 3 peer-to-peer infrastructure to
enable space distribution. This evaluation was carried out
against both the real and synthetic data sets. In total,
around 125 Web service descriptions from seven different
domains were used. In the experiment, processing time per
node as well as process time over the network is noted. In
general the semantic similarity, recall, reachability as well as
query expressivity is evaluated. The results are shown in the
following figures. As seen in Figure 3(a), the processing time
of discovering services in case of semantic grouping is signif-
icantly lower than that in the ungrouped case. The graph

3https://jxta.dev.java.net/

(b) Response Time

(c) Reachability

Figure 3: Evaluation Results
shows six groups. First evaluation shows the processing on
one group in which no similarity algorithm is performed.
Next groups were created and processing for discovery is
performed. It is clear from the graph that there is a signifi-
cant improvement in processing time. In one group discovery
is performed on all the services, when grouped query is only
routed to respective group and search space is reduced hence
the processing time. This evaluation has been performed on
a single node. Next the evaluation is performed on the peer-
to-peer network of discovery modules. The result of this
evaluation is as shown in Figure 3(b). It shows that the re-
sponse time decreases significantly with the increase in num-
ber of nodes. Using the similarity algorithm the services are
distributed between the nodes and results in the decrease in
overall response time. Services are distributed amongst the
nodes belonging to the same group. Initially discovery eval-
uation was performed on only one node. While increasing
the nodes and resulting semantic groups load of discovery is
distributed, thus taking less time for the nodes to respond.
Figure 3(c) provides an analysis of query expressivity and
node reachability. It gives the indication as the expressivity
is increased the precision also increases. In our experimen-
tation, the expressivity of the query varies from one logical
to three logical expressions along with the number of nodes
varying from 5 to 25 nodes. It is clear from the graph that
increasing the expressivity of the query, increases the accu-
racy of the result. While increasing the nodes the number
of responses also increases, which proves the reachability of
the architecture.

9. RELATED WORKS
There are several approaches proposed in the literature

for efficient location of required services. The combination
of semantic Web and tuple spaces is proposed in [24–27].

This list however is not exclusive.
Linda-like coordination mechanism for discovery in mo-

bile environment is proposed in [24]. It exploits a flat data
structure and extends Linda interfaces with a location pa-
rameter λ, expressed in terms of agents or host identifier.
Unlike in our approach, it does not incorporate semantics
in its data model. In [25], a document discovery mechanism
is presented. It realises a forest of trees composed of nodes
and documents. These trees in the forest are coordinated
by each peer. Its basic access primitive execute requires the
FD and FN functions to filter the operated set of documents
and nodes. Compared to this system, our approach ensures
better recall and result precision.

In [26], support for publishing and discovering WSDL files
is provided. It enables discovery of these files and their re-
trieval from remote machines. Using the Discovery Doc-
ument Format (which is also an XML grammar), one can
send a discovery document to a remote server and, if any
SOAP enabled services exist, receive back WSDL descrip-
tion of the services provided. Unlike in our approach, there
is a tight coupling between service provider and requester
applications. By exploiting tuple space principle we support
loose coupling and reference autonomy.

The discovery mechanism presented in [27] shares a com-
mon idea with our architecture. It provides a shared object
space on top of a Peer-to-Peer network. When a service is
advertised a virtual shared space is created. The advertised
descriptions are securely encrypted. This framework, how-
ever, does not provide semantic support. Semantic support
is the main strength of our architectural solution. Service
requesters have to obtain security key from the provider to
view the service description which is an undesirable feature
of the distributed system. In addition it adds an extra com-
munication overhead.

A P2P web service discovery approach is presented in
[28]. They provide web service discovery approach using an
enhanced skip graph for semantic description lookup using
WSDL-S for describing web services. Although they utilize
semantic description for web services and create keywords,
but they only use keyword matching for routing and leaving
the matchmaking for the second level using Vector Space
Model.

10. CONCLUSION
In this paper a distributed semantic service discovery ar-

chitecture is presented. This architecture is based on seman-
tic shared space principle where spaces are distributed over
the Internet. One of the key feature of this architecture
is that the spaces are self organized. It allows interaction
between distributed applications supporting scalability and
fault tolerance. Through evaluation it is seen that grouping
semantically similar services reduces both execution as well
as response time. With the increase in the number of peers
in the network, the recall as well as precision is improved in
comparison to that in single repository. In the next phase
of this work, it will be extended to support communication
between mobile and resource limited devices.

Acknowledgment
The work presented in this paper was supported (in part) by
the Ĺıon project supported by Science Foundation Ireland
under Grant No. SFI/02/CE1/I131 and (in part) by the EU

projects TripCom No. IST-4-027324-STP, SemanticGov No.
FP6- IST-4-027517

11. REFERENCES
[1] Berners-Lee, T., Hendler, J., Lassila, O.: The

Semantic Web. Scientific American (2001)

[2] Gelernter, D.: Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systems 7(1) (1985) 80–112

[3] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web
Services. Springer-Verlag, Berlin, Heidelberg (2004)

[4] McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web
Services. IEEE Intelligent Systems. Special Issue on
the Semantic Web 16(2) (2001) 46–53

[5] Fensel, D., Bussler, C.: The Web Service Modeling
Framework WSMF. Electronic Commerce Research
and Applications 1(2) (2002) 113–137

[6] Roman, D., Lausen, H., Keller, U., eds.: Web Service
Modelling Ontoloty (WSMO). WSMO Deliverable,
version 1.2 (2005)

[7] Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,
McDermott, D., McGuinness, D., Parsia, B., Payne,
T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing Semantics to Web Services: The OWL-S
Approach. In: Proc. First International Workshop on
Semantic Web Services and Web Process Composition,
San Diego, California, USA (2004) 26–42

[8] Oundhakar, S., Verma, K., Sivashanmugam, K.,
Sheth, A., Miller, J.: Discovery of Web Services in a
Multi-Ontology and Federated Registry Environment.
International Journal of Web Services Research 2(3)
(2005) 1–32

[9] Fensel, D.: Triple Space Computing. DERI Technical
Report 2004-05-31 (2004) available at:
http://www.deri.org/TR/2004-05-31.

[10] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec,
A.M.: The Many Faces of Publish/Subscribe. ACM
Computing Surveys 35(2) (2003) 114–131

[11] Leymann, F.: A Practioners Approach to Database
Federation. In: Proc. 4th Workshop on Federated
Databases, Berlin, Germany (1999)

[12] Microsystems, S.: JavaSpace Specification (1998)

[13] Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: T
Spaces. IBM Systems Journal 37(3) (1998) 454–474

[14] Sapkota, B., Kilgarriff, E., Bussler, C.: Role of Triple
Space Computing in Semantic Web Services. In: Proc.
APWEB 2006, Harbin, China (2006) 714–719

[15] Klyne, G., Carroll, J., eds.: Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation (2004)

[16] Hayes, P., ed.: RDF Semantics. W3C
Recommendation (2004)

[17] McGuinness, D.L., van Harmelen, F., eds.: OWL Web
Ontology Language. W3C Recommendation (2004)

[18] de Bruijn, J., ed.: Web Service Modelling Language
(WSML). WSML Deliverable, version 16.1 (2005)

[19] Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named
graphs. Journal of Web Semantics 3(4) (2005) 247–267

[20] Bussler, C.: A Minimal Triple Space Computing
Architecture. In: Proc. 2nd WSMO Implementation
Workshop, Innsbruck, Austria (2005)

[21] Prud’hommeaux, E., Seaborne, A., eds.: SPARQL
Query Language for RDF. W3C Candidate
Recommendation (2006)

[22] Sapkota, B., Vasiliu, L., Toma, I., Roman, D., Bussler,
C.: Peer-to-Peer Technology usage in Web Service
discovery and Matchmaking. In: Proc. WISE 05, New
York, USA (2005) 418–425

[23] Jain, R., Chiu, D., Hawe, W.: A Quantitative Measure
Of Fairness And Discrimination For Resource
Allocation In Shared Computer Systems. (DEC
Technical Report TR-301)

[24] Picco, G.P., Murphy, A., Roman, G.: LIME: Linda
Meets Mobility. In: International Conference on
Software Engineering, Los Angeles, USA (1999)
368–377

[25] Cugola, G., Picco, G.: PeerWare: Core Middleware
Support for Peer-To-Peer and Mobile Systems.
Technical report, politecnico di milano (2001)

[26] Tomasic, A., Raschid, L., Valduriez, P.: Scaling
Heterogeneous Distributed Databases and the Design
of DISCO. IEEE Transactions on Knowledge and
Data Engineering archive 10(5) (1998) 808–823

[27] Hsiao, H.C., King, C.T.: Neuron - A Wide-Area
Service Discovery Infrastructure. In: International
Conference on Parallel Processing (ICPP’02),
Vancouver, Canada (2002) 455–462

[28] Zhou, G., Jianjun, Y., Chen, R., Zhang, H.: Scalable
Web Service Discovery on P2P Overlay Network. In:
International Conference on Services Computing
(SCC’07), Salt Lake City, Utah, USA (2007) 122–129

