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ABSTRACT
We present a framework for generalized range search on
trie-structured P2P networks, such as P-Grid. Our tech-
niques exploit hitherto unknown properties of randomized
tries. We prove that a P-Grid like network has routing di-
ameter O(log n) with high probability, as well as O(log n)
congestion, regardless of the shape of the underlying trie.
Based on these properties, we propose GRaSP, a simple
scheme for handling arbitrary range search problems, with
search and update hop latency O(log n) with high probabil-
ity. We then apply GRaSP on two range search problems:
multidimensional range search over points and rectangles,
and three-sided search. Our empirical results show that
GRaSP delivers excellent search performance and exhibits
very good scalability under heavy load. With respect to
three-sided search, our proposed scheme is distinguished in
that it attempts to improve load balancing by introducing
redundancy via the choice of search space.

1. INTRODUCTION
Driven by the need for scalable, decentralized data man-

agement in advanced applications, support for range search
in P2P networks is currently under intensive study. Much
of the relevant literature focuses on application specific tech-
niques, including single-attribute range queries, spatial range
queries, nearest-neighbor search, multi-attribute queries over
application-specific data. There are relatively fewer propos-
als for techniques that can generalize to arbitrary search
problems. The main difficulty in generalizing application-
specific techniques is that the features of particular search
problems (dimensionality, skew, data and query distribu-
tion) are often exploited to improve performance and scala-
bility.

Of particular interest in the literature is the problem of
adapting hierarchical data structures and indexing schemes
of low height, such as search trees, in the P2P domain.
Adapting hierarchical structures to P2P networks is chal-
lenging: if done naively, the peers corresponding to the root
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of the hierarchy can easily become overloaded. To overcome
this difficulty, two families of techniques have been proposed.
The first family includes techniques which attempt to repli-
cate the points of entry to the hierarchy; many of these tech-
niques are adaptations of randomized data structures, such
as skip lists, and most works focus on single-attribute range
search [6, 23, 10, 16, 14]. The second family of techniques,
exeplified by VBI-tree [21], avoids visiting the higher lev-
els of the hierarchy, by performing some sort of “sideways”
search. A common theme in both families of techniques is
that they attempt to keep the search hierarchy relatively
shallow, of height typically logarithmic to the size of the
network.

Another approach is taken by techniques based on space
partitioning. These techniques often combine a Distributed
Hash Table (DHT) with an appropriate mapping of the
search space to the space of hash keys. Such mappings
are typically derived starting with an order-preserving hash
function, suitable for single-attribute search, and handling
multi-dimensional data by employing space-filling curves. A
challenge in these techniques is to balance the data evenly
among peers; some application-specific assumptions on the
distribution of data are needed, in order to select the map-
pings appropriately.

Aberer and his collaborators proposed and studied P-
Grid (e.g., [2, 11, 3, 1]), a DHT whose underlying structure
can be described in terms of a binary trie. The distinguish-
ing feature of P-Grid is that routing tables are constructed
in a randomized, highly dynamic manner, with peers con-
stantly exchanging neighbor information with other peers.
The elegance and simplicity of P-Grid’s protocols is one of
its strongest points, for pragmatic reasons.

The trie-like structure of P-Grid offers the tantalising pos-
sibility of combining the DHT with hierarchical space parti-
tioning schemes, avoiding order-preserving hashing and space-
filling curves. Yet, previous work on range search over P-
Grid has not explored this possibility. In fact, the properties
of the underlying trie have not been studied analytically,
with the exception of [1]; in that work, it is shown that the
expected number of hops between two peers is logarithmic to
the size of the network. This result is interesting, because it
holds for tries of any shape, even for those degenerate shapes
where every non-leaf node has a leaf child.

This paper presents new analytical performance results
for trie-structured networks, which are applied to GRaSP,
Generalized Range Search over P-Grid. On the analytical
side, we extend the result of [1] by proving that the routing
diameter (the length of the longest route) of any trie-based
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P2P network is O(log n) with high probability (w.h.p.), re-
gardless of the shape underlying trie. We complement this
result with a O(log n) bound on congestion: when each peer
routes a message to some other, randomly selected peer, we
show that the expected number of messages going through
any peer is O(log n), for any trie and regardless of the posi-
tion of the peer in the trie.

Our analytical results are significant in themselves, in that
they quantify the performance of PGrid as a DHT. But they
also have a profound impact on the development of pro-
tocols for complex search over trie-structured networks, as
they decouple routing concerns from the shape of the trie.
We explore the case of gereralized range seach, introducing
GRaSP, a P2P framework which can be extended to par-
ticular range search problems with little effort, simply by
providing a hierarchical space-partitioning function which
maps binary strings to space ranges. In many ways, GRaSP
can be likened to Generalized Search Trees (GiST) [17], an
index structure for generalized range search in databases.

To validate our techniques, we study experimentally two
applications of GRaSP; multidimensional range search, and
3-sided search. The latter is a special case of 2-d range
search, where the queries consist of rectangles open in one
direction. In this problem, we attempt to balance load by
introducing data redundancy among the peers, through the
chosen space partition. The experiments validate our claim
that GRaSP can be used to construct scalable networks for
a broad range of applications.

2. RELATED WORK
Research in indexing on P2P networks started with the

introduction of Distributed Hash Tables (DHTs) [27, 31,
29, 25], but soon extended to complex problems, such as
multi-attribute indexing, e.g. [7, 18], nearest-neighbor and
similarity indexing, e.g. [22, 15, 32], and range search in one
dimension, e.g. [20, 6, 11, 23, 10] or in multiple dimensions,
e.g. [21, 9, 12, 4, 33].

Peer-to-peer range search in one dimension can be done
by modifying DHTs to use an order-preserving hash func-
tion [11, 23]. Most relevant to our work is the work of Datta
et al. [11], which also employs P-Grid; their so-called shower

protocol is similar to the Search protocol of GRaSP, de-
scribed in §3.4. That paper also presents experiments with
an implementation on PlanetLab.

Multidimensioal search over DHTs can be done by map-
ping the multidimensional space on the hash space, e.g. us-
ing space-filling curves. Ganesan et al. [12] propose two
structures, SCRAP, based on space-filling curves over a skip
graph-like network, and MURK, a CAN-derived network
which partitions space in a manner similar to k-d trees.
They evaluate their techniques experimentally, but do not
consider congestion.

Other proposals are based on fault-tolerant, distributed
variants of skip lists. Many of these works prove analytical
guarantees for latency, congestion, update time, etc., but
are not complemented by experimental evaluation. Also,
the techniques are presented as distributed data structures,
i.e., the complexity results are expressed with respect to
the number N of data items stored in the network, not the
number n of peers in the network, which can complicate
matters when N ≫ n. Protocols are also described at the
level of data items, not the peers storing them. Yet, even
with these practical limitations, these structures can pro-

vide strong performance guarantees. For one-dimensional
search, Aspnes and Shah [6] propose skip graphs, and Har-
vey et al. [16] propose SkipNet. These structures exhibit
query and update hop latency O(log N) w.h.p. and conges-
tion O(log N). [Congestion is the maximum, over all nodes,
of the expected number of queries visiting any node, when
n uniformly distributed queries are executed; thus, for con-
gestion c, the fraction of queries visiting a node is c/n].
Goodrich et al. [14] introduce rainbow skip graphs, provid-
ing essentially the same performance guarantees, but with
additional guarantees for fault tolerance. For multidimen-
sional queries, Arge et al. [4] propose SkipWebs, a struc-
ture that can handle a family of multidimensional prob-
lems (when some technical restrictions are satisfied), with
expected O(log N/ log log N) messages per query or update,
and O(log N) congestion.

Another line of work, attempts to adapt tree-based data
structures to P2P networks. In [20], Jagadish et al. de-
scribe BATON, a binary-tree like P2P network for 1-d range
search, with O(log n) query cost (here, n is the number of
peers) and amortized O(log n) update cost. They general-
ize this approach in BATON* [19], introducing a k-ary tree
with O(logk n) search cost, but an increased update cost
of O(k + log n). BATON* is also able to cope with multi-
attribute queries. In a subsequent paper, they generalize
these ideas to VBI-tree, a binary-tree like network that can
cope with general search problems, with a search latency of
O(log n). They validate their work on an adapted version of
the M-tree and nearest-neighbor queries.

3. TRIE-STRUCTURED NETWORKS
The goal in this section is to develop the necessary defini-

tions needed in the description of GRaSP protocols, and in
the analytical results of the next section.

3.1 Notation
We shall use the following notation: a binary string x has

length |x|, and ǫ denotes the empty string. We write x ⊑ y
to denote that x is a prefix of y. The longest common prefix
of x and y is denoted by x ↑ y and their concatenation by
x·y. Finally, x[i], 0 ≤ i < |x| is the i-th symbol of x (starting
with 0), x[: j] is the prefix of size j, x[i :] is the suffix of size
|x| − i and x[i : j] = x[i :][: j − i].

A prefix code is a finite set P of (finite) binary strings,
with the following property: for every infinitely long binary
string x, there is a unique y ∈ P such that y ⊑ x.

The i-th complement of x is x[: i] · x[i] (for i < |x|).

3.2 Binary tries
A binary trie is a full binary tree, i.e., a binary tree where

each non-leaf node has exactly two children. Each node n of
the trie can be associated with a binary string I(n), called
the node ID, by the following rule: the node ID of the root is
the empty string, and for every other node u, with parent v,
if it is a left child of v then I(u) = I(v)·0, else I(u) = I(v)·1.
A binary trie can be fully described by the set of node IDs
of its leaves, which constitute a prefix code.

In the context of PGrid, any trie of n leaves gives rise to a
network of n peers, where each peer is associated with a dis-
tinct leaf. Thus, we describe the shape of a trie-structured
network by a prefix code P . For simplicity, we often identify
a peer with the node ID of the corresponding leaf (its peer



ID), that is, the elements of P (which are binary strings)
will be referred to as peers.

Let us fix a trie P . For p, q ∈ P , let

p ⊲ q = |p| − |p ↑ q|

be called the gap from p to q. Note that 0 ≤ p ⊲ q ≤ |p|.
Informally, p⊲q can be described in terms of the trie: starting
from p, one must ascend p⊲q nodes in the trie, before it can
descend towards q. Thus, p ⊲ q is, in a sense, a distance
function; note however that it is not symmetric. The most
useful law regarding gaps is:

Theorem 1 (Routing rule)

p ⊲ q < p ⊲ r ⇔ q ⊲ p < q ⊲ r ⇔ r ⊲ p = r ⊲ q

The proof is easy from the definition. Fig. 1 depicts this law
graphically.
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Figure 1: Sketch of a trie and three leaves, p, q, r,
depicting the routing rule. Thick wavy lines denote
trie paths from the root to the three leaves. Gaps
are shown as trie path lengths.

3.3 Basic routing
In order to route messages among the peers, each peer

maintains a set of pointers to other peers. For peer p ∈ P ,
define a (|p| + 1)-partition of the set of peers P as follows:

Np
i =

˘

q ∈ P
˛

˛ p ⊲ q = i
¯

for 0 ≤ i ≤ |p|.

Alternatively, each set Ni consists of the leaves of the subtree
(of the trie) rooted at the trie node with node ID equal to

p[: |p| − i] · p[|p| − i]

(the (|p| − i)-th complement of p).
The routing table of p is constructed by selecting uni-

formly at random one peer from each Np
i . Let Lp

i ∈ Np
i

denote the selected peer.
In order to route a message from p to q, the message is

forwarded from p to r = Lp
p⊲q. From r it is recursively

forwarded to Lr
r⊲q, and so on, until it reaches q. To see

that this will happen, note that p ⊲ r = p ⊲ q, and by the
routing rule, q ⊲ p > q ⊲ r: with each hop, the gap from the
destination q to the current node decreases, down to 0.

3.4 Range search
Let U be an arbitrary set, called the search space. The

elements of U are called points. A key space K is a family
of non-empty subsets of U , whose elements are called keys.
A range space R is also a family of non-empty subsets of
U , whose elements are called spaces. A dataset K ⊆ K is a
finite subset of the key space. Given a range R ∈ R, and
a dataset K, the answer AK(R) to R over K is the set of
elements of K which intersect R:

AK(R) = {x ∈ K|x ∩ R 6= ∅}.

A hierarchical binary space partition is a function S from
binary strings to subsets of U , such that S(ǫ) = U , and for
each string u, {S(u · 0), S(u · 1)} is a partition of S(u), i.e.,
S(u · 0) ∩ S(u · 1) = ∅ and S(u · 0) ∪ S(u · 1) = S(u).

For a given space partition S, assign S(p) ⊆ U to be the
peer range of p. Since the peer IDs form a prefix code, it is
easily seen that the peer ranges partition the search space.

Given a dataset K, each peer p stores AK(S(p)). Note
that this storage scheme implies redundancy; keys may be
stored in multiple peers.

To answer a range query for range R, starting from some
initial peer q, all that is needed is to forward the search
to those peers whose range intersects R. These peers will
collectively report the full answer to the range query.

The following protocol can be used to locate the relevant
peers:

Search(peer p, range R, int l) {
if( R ∩ S(p) 6= ∅ ) answerLocally(R);
for(int i = l; i < |p|; i++)

if( S(p[: i] · p[i]) ∩ R 6= ∅ ) Search(Lp
|p|−i

, R, i + 1);

}

where the search is initiated by a call to Search(q,R,0). In
terms of a P2P network, Search(p,R,l) is a message sent
to p. Parameter l is used to restrict the scope of search. It
denotes that p should only forward the search to the part of
the network corresponding to a subtree of the trie, rooted
at the trie node with nodeID p[: l]. This subtree includes
every peer q with q ⊑ p[: l]. Peer p fulfills this request by
forwarding further to each network subset Np

|p|−i, for l ≤ i <

|p|. However, the search is pruned for those i where there
will be no answer from the corresponding subtree. Routine
answerLocally(R) poses range query R to the set of keys
stored at peer p, and reports AK(S(p))∩AK(R) to the user.

4. ANALYSIS OF TRIE-STRUCTURED NET-
WORKS

We now turn our attention to the cost of searching over
tries. We are interested in two metrics: hop latency and
congestion. Hop latency is the maximum distance (in terms
of hops) from the initial peer to any peer reached during the
search. The congestion at peer p is the number of messages
forwarded via p, when every peer in the network routes a
search to some other, randomly chosen peer.

4.1 Latency
Let us consider a fixed trie with n leaves. Let H(p, q) be

the number of hops in which a message is routed from p to



q. This quantity can be defined recursively as follows:

H(p, q) =

(

0 if p = q

H(Lp
p⊲q, q) + 1 if p 6= q

(1)

For each p, q, H(p, q) is a random variable, whose value de-
pends on the random choices of Lr

i (the contents of the rout-
ing tables) of peers in the network.

To characterize H(p, q) statistically, We will need the fol-
lowing simple lemma:

Lemma 1 For p 6= q,

Np
p⊲q =

q⊲p−1
[

i=0

Nq
i

Proof.

r ∈ Np
p⊲q ⇔ p ⊲ q = p ⊲ r ⇔ q ⊲ r < q ⊲ p ⇔ r ∈

q⊲p−1
[

i=0

Nq
i

Theorem 2 For any p, q,

E[H(p, q)] ≤ H|N
p
p⊲q|

,

where Hk is the harmonic sequence.

Proof. Let k = q ⊲ p. Define ni = |Nq
i | for 0 ≤ i < k,

and let si =
P

0≤j<i ni. Notably, n0 = 1 and s0 = 0. From

Lemma 1, it is clear that |Np
p⊲q | = sk, thus we must show

that E[H(p, q)] = Hsk
.

Now,

E[H(p, q)] =
X

r∈N
p
p⊲q

(E[H(r, q)] + 1) Pr[Lp
p⊲q = r]

=
k−1
X

i=0

X

r∈N
q
i

(E[H(r, q)] + 1) Pr[Lp
p⊲q = r]

=
k−1
X

i=0

X

r∈N
q
i

(E[H(r, q)] + 1)
1

sk

It is easy to show from the above formula (by induction on
k) that E[H(p, q)] is the same for all peers p with q ⊲ p = k.
In particular, define di to be equal to E[H(r, q)] for any peer
r ∈ Nq

i . Then,

dk =

k−1
X

i=0

ni

sk
(di + 1) = 1 +

k−1
X

i=0

ni

sk
di.

To solve this recurrence, rewrite it as

sk(dk − 1) =

k−1
X

i=0

nidi.

Then, for k ≥ 2,

sk(dk − 1) =

k−1
X

i=0

nidi

= nk−1dk−1 +
k−2
X

i=0

nidi

= nk−1dk−1 + sk−1(dk−1 − 1)

= skdk−1 − sk−1

By rearranging, we get

dk = dk−1 + nk−1/sk

for k ≥ 2. Note also that d1 = 1 = n0/s1, thus,

dk =
k−1
X

i=0

ni

si+1

=
k−1
X

i=0

ni
X

j=1

1

si+1

≤
k−1
X

i=0

ni
X

j=1

1

si + j
= Hsk

.

The above theorem has already been shown in [1]. How-
ever, it does not allow us to claim that a range search has
logarithmic cost, even on average; a range search may branch
out to multiple destination peers, and the search cost is
the maximum length along all routes. Thus, to claim av-
erage logarithmic search cost we would need to show that
the expected routing diameter of the network is logarithmic.
However, we can prove something stronger; that the routing
diameter is O(log n), with high probability.

Theorem 3 For any trie P of n leaves, and any a > 0,

Pr[ max
p,q∈P

H(p, q) > (a + 3) log n + 2] ≤ 1/na

Proof. First, we will show that H(p, q) is O(log n) w.h.p.
for fixed p, q. Then we will generalize over all pairs p, q.

For fixed p, q, let k = q ⊲ p. We number sequentially the
peers in Np

p⊲q =
S

0≤i<k Nq
i , starting from 0, in such a way

that if χ(r) denotes the numbering of peer r, then

q ⊲ r1 < q ⊲ r2 ⇒ χ(r1) < χ(r2),

that is, the peers are numbered in an order consistent with
their gap from q. Also, let χ(p) = |Np

p⊲q |.
Now, let us write a probabilistic recurrence for H(p, q), us-

ing our numbering to rewrite Eq. 1. Let T (x) = H(χ−1(x), q).
From the recursive form of H(p, q), we have

T (x) = T (L̂(x)) + 1 (2)

where function L̂(x) is defined as follows: if x = χ(r), then

L̂(x) = χ(Lr
r⊲q).

The crucial observation is that E[L̂(x)] < x/2. To see

this, observe that (for r = χ−1(x)) |Nr
r⊲q| < x and L̂(x) is

uniformly distributed over [0 : |Nr
r⊲q |).

Probabilistic recurrences like Eq. 2 are studied in [24],
where it is shown that

Pr
ˆ

T (x) ≥ ⌊log x⌋ + w + 1
˜

≤ (1/2)w−1 (3)

for all positive real x and positive integers w.
Now, fix any a > 0, and let n be the number of peers in

the network. Setting

w =
˚

(a + 3) log n − ⌊log n⌋
ˇ

,

Eq. 3 becomes (after manipulations)

Pr
ˆ

H(p, q) ≥ (a + 3) log n + 2
˜

≤ 1/na+2



Having obtained a tail bound on H(p, q) for any p, q, we
now have

Pr
ˆ

max
p,q∈P

H(p, q) ≥ (a + 3) log n + 2
˜

= Pr
ˆ

_

p,q∈P

H(p, q) ≥ (a + 3) log n + 2
˜

≤
X

p,q∈P

Pr
ˆ

H(p, q) ≥ (a + 3) log n + 2
˜

≤ n2 1

na+2
= 1/na.

which concludes the proof.

The above result implies that, for any trie, regardless of
the space partition, the latency of our Search protocol is a
small multiple of log n, with high probability.

4.2 Congestion
Regarding network congestion at peers due to concurrent

searches, it does not seem feasible to prove as general a
result as for latency; congestion depends on the choice of
space partition and the distribution of arriving queries. For
any space partition, if queries are skewed enough, hitting
heavily on just a few peers, then, as the rate of arriving
queries increases, these peers will soon become overloaded,
reducing performance.

However, it is instructive to examine the case where searches
access peers in a more or less uniform manner. Such an ana-
ysis would reveal whether there are any hotspots due to the
shape of the trie, or to a bad (but likely) choice of routing
tables.

We use a standard definition of congestion found in the lit-
erature. We consider the following communication pattern:
each peer p selects uniformly at random another peer C(p)
from the network and routes a message to C(p). Given that
each of the n peers starts a process that will create Θ(log n)
messages w.h.p., the total number of messages is Θ(n log n).
We will prove that, for any trie and any peer p, the expected
number of messages through p is O(log n).

To formalize the problem, define a set of indicator random
variables R(q, p, p′), where R(q, p, p′) is 1 if the route from p
to p′ passes through q, and 0 otherwise. A first observation
on the properties of R(q, p, p′) comes from routing:

Lemma 2 For p 6= q, R(q, p, p′) = 0 unless q ⊲ p > q ⊲ p′

Proof. If q ⊲p = q ⊲p′ then from the routing rule p′ ⊲p <
p′ ⊲ q. Also, if q ⊲ p < q ⊲ p′, then from the routing rule
p′ ⊲ q = p′ ⊲ p.

But, for any peer r 6= p on the route from p to p′, it must
be p′ ⊲ r < p′ ⊲ p ≤ p′ ⊲ q. Thus, r 6= q.

Now, we can show the following:

Lemma 3 For any q, p, p′, such that q ⊲ p > q ⊲ p′,

E[R(q, p, p′)] =
1

Pq⊲p′

i=0

˛

˛Nq
i

˛

˛

Proof. As in the proof of Theorem 2, define ni = |Nq
i |

and let si =
P

0≤j<i ni. We need to show that

E[R(q, p, p′)] = 1/sq⊲p′+1.

We have

E[R(q, p, p′)]

= Pr
ˆ

R(q, p, p′) = 1
˜

=
X

r∈N
p

p⊲p′

Pr[R(q, r, p′) = 1|Lp
p⊲p′ = r] · Pr[Lp

p⊲p′ = r]

=

q⊲p−1
X

i=0

X

r∈N
q
i

Pr[R(q, r, p′) = 1|Lp
p⊲p′ = r] · Pr[Lp

p⊲p′ = r]

=

q⊲p−1
X

i=0

X

r∈N
q
i

1

sq⊲p
Pr[R(q, r, p′) = 1|Lp

p⊲p′ = r]

However, for 0 < q⊲r <= q⊲p′, Lemma 2 implies R(q, r, p′) =
0, thus, in the last sum above, the terms for 0 < i ≤ q ⊲ p′

are all zero. The term for i = 0 is 1/sq⊲p (the probability
that Lp

p⊲p′ = q). Thus, the sum becomes

E[R(q, p, p′)] =

1

sq⊲p
+

X

q⊲p′<i<q⊲p

X

r∈N
q
i

1

sq⊲p
Pr[R(q, r, p′) = 1|Lp

p⊲p′ = r]

Now we can proceed by induction. Letting k = q ⊲ p and
l = q ⊲ p′ < k, the above sum must be shown equal to
1/sl+1. For the base case k = l + 1, the above formula
becomes 1/sk = 1/sl+1. For the inductive step,

1

sk
+

X

l<i<k

1

sk

X

r∈N
q
i

Pr[R(q, r, p′) = 1|Lp
p⊲p′ = r]

=
1

sk
+

X

l<i<k

1

sk

ni

sl+1

=
sl+1 +

P

l<i<k ni

sksl+1

=
sk

sksl+1

=
1

sl+1

.

completing the proof.

Now, consider the total traffic F (q) going through peer q
when each peer p forwards a message to C(p) 6= p. Since a
peer is never visited twice for the same search,

F (q) =
X

p∈P

R(q, p,C(p)).

Theorem 4 In a trie of n leaves, for any peer q,

E[F (q)] ≤ Hn−1 + 1.

Proof. From the definition of F (q),

E[F (q)] = 1 +
X

q 6=p

Pr[R(q, p, C(p)) = 1]

= 1 +
X

q 6=p6=p′

Pr[R(q, p, C(p)) = 1|C(p) = p′] ·

Pr[C(p) = p′]

= 1 +
1

n − 1

X

q 6=p6=p′

E[R(q, p, p′)]

Applying Lemma 2, we get

E[F (q)] = 1 +
X

p6=q

q⊲p−1
X

l=0

X

p′∈N
q
l

E[R(q, p, p′)]



Let us define ni = |Nq
i | and si =

P

0≤j<i ni as before. For

p′ ∈ Nq
l , from Lemma 3,

E[R(q, p, p′)] = 1/sl+1.

Letting k = q ⊲ p, we have

k−1
X

l=0

X

p′∈N
q

l

E[R(q, p, p′)]

=

k−1
X

l=0

nl

sl+1

≤ Hsk

where the last inequality was already shown in the proof of
Theorem 2.

Thus,

E[F (q)] ≤ 1 +
1

n − 1

X

p6=q

H|N
p
p⊲q|

≤ 1 +
1

n − 1

X

p6=q

Hn−1

= 1 + Hn−1

concluding the proof.

5. NETWORK MAINTAINANCE
So far we have concentrated on describing and analyzing

the performance of range search over a static P2P network.
In most applications, P2P networks are in a continuous state
of flux, as peers join and leave, often by failing. Also, new
data arrives constantly and must be inserted into the net-
work.

One of the most appealing features of GRaSP is that, as
a straightforward extension of P-Grid, it inherits many of
its protocols from it. P-Grid has been extensively studied
in previous work, both by simulation and by implementa-
tion, and its performance is well documented. So, we shall
only discuss those issues where GRaSP differentiates from
P-Grid. These issues are, insertion and deletion of keys,
and peer joins. Other issues, including the handling of fail-
ing peers, peers leaving the network gracefully, updating of
routing tables etc. are handled identically to P-Grid.

5.1 Data updates
To insert a new key into the network, one can use the

Search procedure of §3.4, where now in place of a search
range we pass the actual key to be inserted. This key may
be replicated to multiple peers. Deletions can be handled
in a similar manner. For bulk updates, e.g., when a newly
arriving peer wishes to index multiple keys, the same basic
procedure applies, except that the set of indexed keys should
be distributed at each forwarding step, in order to minimize
the amount of data transferred over the network. Note that
the hop latency of all these procedures is still O(log n) w.h.p.

5.2 Peer joins
A new peer p who wishes to join the network, must contact

some existing peer whose network address is known to it,
called the bootstrap peer. Then, it must select a mate, that
is, an existing peer q (which can be the bootstrap itself),
whose region it will split, taking its place in the trie as a
sibling of q. We now discuss the problem of mate selection.

It is desirable to select mates in a manner that tends to
equalize load distribution among peers. However, what con-
stitutes “load” may depend on the particular application;
in fact, peers in the same P2P network may have differing
concepts of load. Several works in the literature propose
schemes that distribute the stored data evenly. Yet, many
peers may consider storage a cheap resource to contribute,
and may be more interested in reducing the network band-
width contributed to the P2P network. By this reasoning,
a general policy for mate selection may be hard to devise.
Therefore, we discuss a few possible heuristics.

Volume-balanced selection: The goal here is to equal-
ize the volumes of peer regions, by selecting mates
with probability proportional the volume of their area.
This can be done by selecting a point x ∈ U from the
search space, uniformly at random, The peer q whose
region contains x is designated as mate. This protocol
requires O(log n) routing messages, in order to route
from the bootstrap to the mate.

Data-balanced selection: If an estimate of the distribu-
tion of indexed data is available, it may be used to
equalize the number of keys stored by peers. A method
similar to volume-balanced selection can be used: choose
some point x ∈ U according to the estimated data dis-
tribution, and locate the corresponding peer in O(log n)
messages.

Uniform selection: Random walks in a P2P network can
be used to sample peers roughly uniformly [13]. In
general, a walk of O(log n) hops is sufficient. In our
network, each peer can have a rough estimate of log n
in the following way: each message routed through
the network, carries a counter with the number of
hops from the originating peer. Each peer observes
the counter of messages routed through it, and main-
tains the maximum value of these counters, which is
O(log n) w.h.p. When a peer is asked to bootstrap
the join of a new peer, it performs a random walk of
length equal to its estimate of log n. One of the peers
visited during the walk is selected as mate, according
to some criterion (e.g., randomly, most loaded, etc.).
This protocol needs O(log n) messages.

6. APPLICATIONS OF GRASP
We now turn our attention to specific range-search ap-

plications of GRaSP, which we study experimentally in the
next section.

6.1 Multidimensional Range Search
In d-dimensional range search, the search space is [0, 1]d,

keys are either d-dimensional points or rectangles, and ranges
are d-dimensional rectangles. This type of search arises in
numerous applications, and has recently received significant
attention in the context of P2P networks [33, 9, 12, 28, 15,
4, 30].

For this type of problem, a natural choice for space parti-
tioning is based on the idea of k-d trees. We can view a trie
as a k-d tree, and split the space along one dimension each
time, cycling through dimensions as we descend. If the ex-
pected data and query distributions are known, splits may
not be even (similar to MURK [12]); typically, splits are



even. Note that, in contrast to k-d trees in main memory,
we are not concerned with keeping the trie balanced.

6.2 Three-sided Range Search
A 3-sided query is a special case of 2-d range query, where

the keys are planar points and a range is a rectangle bounded
from 3 sides only; a range is determined by parameters
(a, b, c), and reports all keys (x, y) with a ≤ x < b and
y < c. Three-sided search arises in a large number of ap-
plications, and has been studied extensively. Optimal data
structures are known both on main memory [26] and on disk
[5].

To our knowledge, 3-sided search has not been studied be-
fore on P2P networks. In principle, it could be handled as
a special case of 2-d range search, e.g., by the techniques of
the previous section. In practice, such an approach would
not be scalable, because of increased congestion. The prob-
lem lies in the shape of the queries: points with a low y-
coordinate are much more likely to be returned than points
with higher y-coordinates, even for uniformly distributed
data and queries, inducing undue load on the peers that
store them. The imbalance in access frequencies is not detri-
mental for data structures—rather, it can be exploited, via
caching, to improve performance. In a P2P setting though,
accesses to data stored in the network should be relatively
balanced, to avoid hotspots.

We now present a solution that ameliorates this prob-
lem by employing the versatility of GRaSP, to reduce con-
tention by mapping the search problem within the setting of
GRaSP such that accesses are more evenly distributed. The
salient feature of our solution is that it attempts to introduce
storage redundancy in such a way, that frequently accessed
points (those with low y-coordinates) are stored in multi-
ple peers, so that accesses to these keys can be distributed
among the copies.

6.2.1 Space-partitioning for 3-sided queries
In order to introduce redundancy within the model of

GRaSP, we adopt a different but equivalent definition. The
search space considered is the unit square [0, 1]2. Keys are
defined as vertical segments, originating at some point (x, y)
and extending upwards to point (x, 1). Thus, point (x, y)
fully determines each segment. Query ranges are defined
by horizontal segments, with endpoints (a, c) and (b, c), for
a ≤ b. Observe that this formulation is equivalent to the
definition of 3-sided search given in the beginning of this
section, and is also fully compatible with the GRaSP model
of §3.4.

Designing a good space partition in GRaSP entails some
broad assumptions on the distribution of data and queries
to be served. For the problem at hand, our main assumption
is with regard to queries. We assume that query height (the
c parameter) is uniformly distributed in [0, 1], and that the
width of a query (b− a) is inversely related to query height.
This assumption implies that we should handle queries of
different aspect rations, from “tall-and-narrow” to “short-
and-wide” ones. These assumptions hold for many real 3-
sided workloads.

We now define a space partitioning function S that caters
to our assumptions. Our function is parameterized by a
fixed parameter 0 < λ < 1. Given the range S(u) for some
binary string u, we construct S(u · 0) and S(u · 1) by the
following rules:

1. If u is a binary string which does not contain any 1s,
then we split S(u) by a horizontal line, so that the
heights of the resulting parts are fixed fractions, λ and
1 − λ respectively, of the initial height. We assign the
lower part to S(u · 0), and the upper part to S(u · 1).

2. Else, if u contains some (non-zero) number of 1s, we
split S(u) by a vertical line, into two equal regions.
The left region is assigned to S(u · 0) and the right
region to S(u · 1).

A possible space partition obtained by the above rules is
seen in Fig. 2. It corresponds to a hypothetical network

Figure 2: A 3-sided space partition for seven peers,
marked by peer IDs.

of seven peers. This example also depicts four data points,
marked 1 to 4, and three queries, marked a to c. Point 1 is
relatively low, and is accessed by all three queries. However,
point 1 is also replicated; it stored in peers 00, 010 and 101.
Although all three queries shown will indeed return point 1,
each query will access a different copy. For example, query
a will access the copy in peer 00, whereas query c will access
the copy in 101.

Our space partitioning scheme attempts to distribute the
load rather than the data, by assigning peers into horizon-
tal zones, so that each query will be answered by peers in
the same zone. Peers in higher zones are assigned taller
and narrower regions, whereas peers in lower zones are as-
signed shorter, wider regions. Thus, as long as query width
decreases for taller queries, the number of peers accessed
by each query will be relatively small. As this scheme re-
dundancy, the total storage occupied in all peers may grow
large, depending on the distribution of data and parameter
λ. Fortunately, the redundancy is at most proportional to
the number of zones, which should not grow too large, as
the height of zones decreases exponentially. Also, if data is
uniformly distrubuted, then the overall storage redundancy
is constant, for any number of zones.

7. EXPERIMENTAL EVALUATION
In order to evaluate our techniques empirically, we per-

formed extensive simulation of GRaSP, for the problems
of §6. The results presented below validate our analytical
claims. For brevity, we refer to the technique of §6.1 as
2DRS and to the technique of §6.2 as 3SIDED.

7.1 Performance metrics
We evaluated our networks by three performance met-

rics. Latency is the maximum number of hops, starting
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Figure 3: Performance of GRaSP for 2-d range search, over network size.

from the initial peer, needed to reach any peer during the
search. Message traffic M is the expected number of mes-
sages per query. Maximum throughput was proposed in [8],
to quantify the resilience of a P2P network to contention
by concurrent searches. Succinctly, assume that a workload
of Q queries is executed on a network. For each peer p,
let mp be the number of messages received by p due to the
Q queries. Assume further, that each peer can process at
most one message per unit of time. Now, if queries from
the workload arrive (stochastically) at a rate of Λ queries
per unit of time, each query with equal probability, then
messages to peer p shall arrive at a rate of

mp

Q
Λ messages

per unit of time. Assuming that peer p is not overloaded
(messages do not arrive faster than it can process them), we
have Λ < Q

mp
. Now, maximum throughput Λmax is defined

as the maximum value of Λ such that no peer is overloaded:

Λmax =
Q

maxp mp

Also, let M be the message traffic (defined above). Then,
Λmax ≤ n/M , with equality holding in the ideal case where
all traffic is distributed equally. Then, the ratio of traffic of

the most loaded peer, over the average peer traffic, is n/M
Λmax

.

7.2 Test workloads
In our experiments we used three datasets of 2-d points,

of one million points each.

Uniform: This dataset consists of points distributed uin-
formly in the search space.

Clusters: This dataset contains 10 equal-size clusters, with
centers uniformly located in the seach space. Each
cluster comprises a set of points distributed normally
around its center.

Greece: This dataset was constructed from real geographic
data; it contains random points along the road network
of Greece.

For each of the above datasets, we constructed queries
synthetically. All queries return an answer of 50 to 60 keys.

For 2DRS, a query is square, centered around a randomly
chosen point from the dataset. The queries constructed thus,
are distributed in the search space similarly to the dataset.

For 3SIDED, queries are constructed by selecting the mid-
point of the corresponding horizontal segment uniformly at
random. Thus, the position of these queries does not fol-
low the distribution of data; however, as query size is kept
bounded, the width of each query is related to data distri-
bution (queries of the same height are narrower, if located
in regions with a lot of data).

7.3 Methodology
We constructed the simulated networks by allowing peers

to join the network one by one, until the desired number
of peers was reached. Mate selection policies were chosen
to match the indexed workload: for 2DRS networks, mate
selection is data-balanced, while for 2SIDED networks, mate
selection is volume-balanced.

For each type of network, we scaled the network size from
1K to 100K peers. For each network configuration (proto-
col, workload, size) we ran 10 simulations and averaged the
results.

7.4 Results for 2DRS
The results for 2DRS are depicted in Fig. 3.
Fig. 3(a) shows that expected latency is bounded by Hn =

ln n + O(1) (ln n is also plotted for reference), as Thm. 2
predicts.

The per-query message traffic M , shown in Fig. 3(b), is
quite low, but grows with latency and also linearly with
network size. This is only natural, since for smaller net-
works, the average number of keys per peer is high, and ide-
ally queries can be convered by a single peer. However, for
our largest network, a query requires, on average, at least 6
peers, to be covered. For the network of 100k peers, adding
the expected latency to 6 gives a minimum of 16 messages,
which is very close the value of Fig. 3(b).

For max. throughput, we note that the network scales well
for all workloads, up to a value of ≈ 1400. To put this value
in context, observe that if network traffic was distributed
equally among all peers, then we would have a Λmax = n

M
(where M is the average per-query number of messages).
For n = 100k, the ideal Lmax would be 5000. Thus, the
most loaded peer has no more than 3.5 times the average
load.
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Figure 4: Performance of GRaSP for 3-sided range search, over network size.

7.5 Results for 3SIDED
The 3-sided workloads were used to evaluate both the

3SIDED protocol and the 2DRS protocol. All 3SIDED net-
works were constructed with a topology parameterized by
λ = 5/6 (defined in §6.2).

Based on our analysis, we expect that the 2DRS protocol
will exhibit good latency, but will suffer in terms of message
traffic per query, and in terms of max. throughput, while the
3SIDED protocol would exploit redundancy to scale better.
The results can be seen in Fig. 4.

Latency (Fig. 4(a)) is again bounded by Hn, although
3SIDED performs up to 3 hops less on average.

Message traffic (Fig. 4(b)) varies greatly between 3SIDED
and 2DRS. In the worst case (2DRS over the Uniform dataset),
message traffic grows roughly with

√
n; the space partition-

ing of 2DRS is not well-matched to tall-and-narrow 3-sided
ranges. By contrast, the message traffic for 3SIDED is much
lower. In fact, for the Uniform dataset, message traffic is
close to the optimal value of about 15 (as discussed in the
previous section).

As predicted, Fig. 4(c) depicts huge variance in maximum
throughput (note the log-scale), where 2DRS networks fail
to grow above a value of 5. This is indicative of great imbal-
ance in load distribution: even admitting a value of ≈ 300
messages per search, the ideal max. throught is ≈ 300.
Thus, the most loaded 2DRS peer has more than 60 times
the average load. For 3SIDED networks, there are mixed
results. For the Uniform dataset, the number of messages
is low and scalability is excellent. For the skewed datasets,
the 3SIDED space partitioning is not as effective, although
it is better than 2DRS by almost an order of magnitude.

We also measured storage redundancy (average number of
replicas per key) incurred by the 3SIDED space partitions.
Fig. 5 shows that redundancy remains bounded between 4
and 6, with the Uniform dataset obaining the worst value of
6 = 1

1−λ
. Lower values of λ would incur lower redundancy,

but would also decrease maximum throughput.
The overall conclusion drawn from these results is that

GRaSP exhibits excellent latency, under all circumstances.
However, scalability under high throughput is less robust,
decreasing significantly as the mismatch between the adopted
space partition and the distribution of incoming searches

grows. However, choosing the space partition carefully, in-
troducing redundancy by reformulating the problem appro-
priately, can improve scalability significantly, without addi-
tional measures.

Figure 5: Storage redundancy for 3SIDED net-
works.

8. CONCLUSIONS
We have presented a framework for generalized range search

over trie-structured P2P networks, which is motivated by
new analytical results on the properties of randomized trie-
based networks, such as P-Grid. We have shown that trie-
based networks have logarithmic routing diameter almost
always, and do not suffer from endogenous congestion, re-
gardless of the shape or height of the underlying trie. Based
on these discoveries, we developed a framework which can
handle general range search problems, customized only via
a space partitioning function. The salient feature of our
framework is that it decouples routing concerns from the
range search problem. We have evaluated our protocols on
two fundamental range search problems, and we have vali-
dated our theoretical results. In particular, with our study
of 3-sided range search, we have introduced a novel strategy
to balance load in skewed search problems, by introducing
redundancy via the appropriate choice of search space.

Our ultimate vision is towards a robust, well-engineered



peer implementation, with a focus on efficient, versatile net-
work routing, which can be used as a black box (with min-
imum customization) in a number of diverse range search
applications. Significant open problems remain towards our
vision. A better understanding of the relationship between
trie shape and load balancing is required. Also, mate selec-
tion protocols which exploit dynamically the load distribu-
tion should be considered. General dynamic load balancing
(and its relationship to trie structure) is also a promising
direction. Last, but certainly not least, evaluation of a real
implementation is needed, as it is likely to reveal hitherto
unforseen problems and opportunities.
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