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ABSTRACT
A way to reduce the computing pressure in a distributed
IR system is to use document partitioning and to perform
collection selection. With suitable training and/or model-
ing, the collection selection function can choose the most
promising collections for each query, with high confidence.
Unfortunately, if the collections need to be updated, we need
to retrain the selection function, update its statistics or face
the loss of some result quality. This paper introduces a sim-
ple, but very effective, technique to add new documents to
collections in a system that uses collection selection. We
show that we can update the individual collections, while
guaranteeing the same selection performance, with no need
to update or retrain the selection function.
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1. CAPTATIO BENEVOLENTIÆ
The Web has now become the place where million people
look, daily, for entertainment, information, shopping oppor-
tunities, social interaction. About 1.1 billion people have
access to the Internet, and Web browsing is, by far, the
most popular activity. The Web is getting richer and richer
and is storing a vast part of the information available world-
wide: it is becoming, to many users in the world, a tool for
augmenting their knowledge, supporting their theses, com-
paring their ideas with reputable sources.

Moreover, the Web is changing faster and faster. Experi-
enced users have come to expect very fresh content on their
preferred blogs, and to expect search engines to react fast
to changes in their most loved Web sites. Successful search
engines have to crawl, index and search quickly billions of
pages, for millions of users every day. They also need to
update their document base with rapidity, so that the latest
content can be easily found by queries.

A modern Web search engine is implemented using a large
pool of computing servers, which share the engine’s large in-
dex. When each server holds the part of the index relative to
a disjoint sub-collection of documents, we have a document-
partitioned index organization, while when the whole index

∗This study was completed while the author was working
as a researcher at ISTI-CNR (Pisa, Italy). The author
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is split so that different partitions refer to a subset of the
distinct terms contained in all the documents, we have a
term-partitioned index organization. Each organization of
the index requires a specific process to evaluate queries, and
involves different costs for computing and I/O, and network
traffic patterns.

Document partitioning is the strategy chosen by the most
popular Web search engines. In the document-partition-
ed organization, the broker may choose among two possible
strategies for scheduling a query. A simple, yet very com-
mon, way of scheduling queries is to broadcast each of them
to all the underlying IR cores. This method has the ad-
vantage of enabling a good, yet not perfect, load balancing
among the servers [Badue et al. 2007]. On the other hand,
it has the major drawback of utilizing every server for each
query submitted, this way causing a higher overall comput-
ing load.

The other possible way of scheduling is to choose, for each
query, the most authoritative server(s). By doing so, we
reduce the number of queried collections. The relevance of
each server to a given query is computed by means of a se-
lection function that can be built upon statistics computed
over each sub-collection. This process, called collection se-
lection, is considered to be an effective technique to enhance
the capacity of distributed IR systems [Baeza-Yates et al.
2007].

In [Puppin et al. 2006, Puppin and Silvestri 2006], we pre-
sented a novel architecture for a distributed search engine,
based on collection selection. We exploit the knowledge
about the past use of the search engine to drive the as-
signment of documents to sub-collections, and to choose the
most promising sub-collections for each query. Our architec-
ture relies on effective strategies for load balancing and re-
sult caching, and aims at returning very high-quality results
by using only a small and tunable fraction of the computing
load of a traditional document-partitioned search engine.

In this paper, we show how to update the document base
without affecting the performance of our collection selection
algorithm. A feature of our PCAP architecture is that it is
trained with data from the query log, and new documents
need to be carefully placed among collection so that they
can be easily found by our selection algorithm. Our simple
algorithm allows us to select where to position a new docu-
ment so that sub-collections are still consistent and of high
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quality. Its modest computing cost makes it suitable for a
fast and continuous utilization, while offering a performance
similar to that reached by reassigning all documents from
start.

The paper is organized as follows. In the next section, we
summarize the main features of our PCAP architecture.
Then, we discuss previous results on index updating. We
introduce our technique in Section 4, which is followed by a
summary of our experimental results. Finally, we part from
our reader with some final comments and plans for future
work.

2. THE PCAP ARCHITECTURE
2.1 The QV Document Model
In the QV (query-vector) model, documents are represented
by the weighted list of queries (out of a training set) that
recall them: the QV representation of document d is a vec-
tor where each dimension is the score that d gets for each
query in the query set. The set of the QVs of all the docu-
ments in a collection can be used to build a query-document
matrix, which can be normalized and considered as an em-
pirical joint distribution of queries and documents in the
collection. This allows us to co-cluster queries and docu-
ments, so to identify queries recalling similar documents,
and groups of documents related to similar queries. The al-
gorithm we adopt is described in [Dhillon et al. 2003], and is
based on a model exploiting the empirical joint probability
of picking up a given couple (q, d), where q is a given query
and d is a given document. The results of the co-clustering
algorithm are then used to perform collection selection.

A reference search engine is used in the building phase: for
every query in the training set, the system stores the first
N results along with their rank. Figure 1 gives an example.
The first query q1 recalls, in order, d3 with rank 0.8, d2 with
rank 0.5 and so on. Query q2 recalls d1 with rank 0.3, d3
with rank 0.2 and so on. We may have empty columns, when
a document is never recalled by any query (in this example
d5). Also, we can have empty rows when a query returns no
results (q3).

Formally, let Q be a query log containing queries q1, q2 . . . qm.
Let di1, di2, . . . , dini be the list of documents returned, by a
reference search engine, as results to query qi. Furthermore,
let rij be the score that document dj gets as result of query
qi (0 if the document is not a match).

A document dj is represented as an m-dimensional query-

vector dj = [rij ]
T , where rij ∈ [0, 1] is the normalized value

of rij :

rij =
rijP

i∈Q

P
j∈D

rij

The QV model will be simply built out of the results recalled
by the engine using a given query log. Our system can also
identify silent documents, i.e. documents never recalled by
any query from the query log Q. Silent documents are repre-
sented by null query-vectors. The ability of identifying silent
documents is a very important feature of our model because
it allows us to determine a set of documents that can safely
be moved to a supplemental index.

Query/Doc d1 d2 d3 d4 d5 d6 ... dn
q1 - 0.5 0.8 0.4 - 0.1 ... -
q2 0.3 - 0.2 - - - ... 0.1
q3 - - - - - - ... -
q4 - 0.4 - 0.2 - 0.5 ... 0.3
... ... ... ... ... ... ... ... ...
qm 0.1 0.5 0.8 - - - ... -

Figure 1: In the query-vector model, every doc-
ument is represented by the query it matches
(weighted with the rank).

Co-clustering considers both documents and queries. We
thus have two different sets of results: (i) groups made of
documents answering to similar queries, and (ii) groups of
queries with similar results. The first datum is used to build
our document partitions, while the second is the key to our
collection selection strategy (see below).

The result of co-clustering is a matrix bP defined as:

bP (qca, dcb) =
X

i∈qcb

X
j∈dca

rij

In other words, each entry bP (qca, dcb) sums the contribu-
tions of rij for the queries in the query cluster a and the
documents in document cluster b. We call this matrix sim-
ply PCAP, from the LATEX command \cap{P} needed to
typeset it.1 The values of PCAP are important because
they measure the relevance of a document cluster to a given
query cluster. This induces naturally a simple but effective
collection selection algorithm.

2.2 PCAP Selection Algorithm
The queries belonging to each query cluster are chained
together into query dictionary files. Each dictionary file
stores the text of each query belonging to a cluster, as a
single text file. For instance, if the four queries hotel in
Texas, resort, accommodation in Dallas and hotel downtown
Dallas Texas are clustered together as the first query clus-
ter, the first query dictionary will simply be qc1=“hotel in
Texas resort accommodation in Dallas hotel downtown Dal-
las Texas”. The second query dictionary file could be, for
instance qc2 =“car dealer Texas buy used cars in Dallas au-
tomobile retailer Dallas TX”. A third query cluster could
be qc3 =“restaurant chinese restaurant eating chinese Cam-
bridge”.

When a new query q is submitted to the IR system, the
BM25 metric [Robertson and Walker 1994] is used to find
which query clusters are the best matches: each dictionary
file is considered as a document, which is indexed using the
vector-space model, and then queried with the usual BM25
technique. This way, each query cluster qci receives a score
relative to the query q, say rq(qci). In our example, if a user
asks the query “used Ford retailers in Dallas”, rq(qc2) will
be higher than rq(qc1) and rq(qc3) .

1The correct LATEX command for bP is actually \widehat{P},
but we initially thought it was \cap{P}, which incorrectly
gives ∩P . Hats, caps... whatever.



PCAP dc1 dc2 dc3 dc4 dc5 rq(qci)
qc1 0.5 0.8 0.1 0.2
qc2 0.3 0.2 0.1 0.8
qc3 0.1 0.5 0.8 0

rq(dc1) = 0 + 0.3 × 0.8 + 0 = 0.24
rq(dc2) = 0.5 × 0.2 + 0 + 0 = 0.10
rq(dc3) = 0.8 × 0.2 + 0.2 × 0.8 + 0 = 0.32
rq(dc4) = 0.1 × 0.2 + 0 + 0 = 0.02
rq(dc5) = 0 + 0.1 × 0.8 + 0 = 0.08

Figure 2: Example of PCAP to perform collection
selection. We have three query clusters: qc1=“hotel
in Texas resort accommodation in Dallas hotel down-
town Dallas Texas”, qc2 =“car dealer Texas buy used
cars in Dallas automobile retailer Dallas TX” and
qc3 =“restaurant chinese restaurant eating chinese
Cambridge”. The second cluster is the best match
for the query “used Ford retailers in Dallas”. The
third document cluster is expected to have the best
answers.

This is used to weight the contribution of PCAP bP (i, j) for
the document cluster dcj , as follows:

rq(dcj) =
X

i

rq(qci) · bP (i, j)

Figure 2 gives an example. The top table shows the PCAP
matrix for three query clusters and five document clusters.
Suppose BM25 ranks the query-clusters respectively 0.2, 0.8
and 0, for a given query q. We compute the vector rq(dci) by
multiplying the matrix PCAP by rq(qci), and we will choose
the collection dc3, dc1, dc2, dc5, dc4 in this order.

The QV model and the PCAP selection function together
are able to create very robust document partitions. In ad-
dition, they allow the search engine to identify, with great
confidence, what the most authoritative servers are for any
query. Experimental results are available in [Puppin et al.
2006, Puppin and Silvestri 2006].

In [Puppin et al. 2007] we introduce load-driven routing and
incremental caching, two techniques able to address differ-
ences in query pressure on individual servers. While these
two algorithms are not central to the topic of this paper,
they are an important feature of the reference architecture,
fundamental to reach a good load balance across servers.

3. STANDING ON THE SHOULDERS
OF GIANTS

The algorithms to keep the index of an IR system up to
date are very complex, and have been the interest of several
works in the scientific literature.

In [Arasu et al. 2001], the opening article on the first issue
of ACM TOIT (2001), the authors comment on the open
problems of Web search engines, and clearly identify the
update of the index as a critical point. They suggest to
rebuild the index after every crawl, because most techniques
for incremental index update do not perform very well when
they have to deal with the huge changes (in term of the

number of documents added, removed and changed) that are
commonly observed between successive crawls of the Web.
The paper [Melink et al. 2001] (cited in [Arasu et al. 2001])
gives a measure of the phenomenon, and emphasizes the
need to perform research in this area. The opportunity of a
batch update of the index (rather than incremental) is also
supported by a previous work [Frieder et al. 2000], which
show that the result precision is not affected by a delayed
update of the index.

The problem is made more complex in distributed system.
In a term-partitioned system, when a document is added,
changed or removed, we need to update the index in all
servers holding at least one term from the document. While
this update can be fast because the update is executed in
parallel in several locations of the index (several different
posting lists), the communication costs are very high, and
they make this approach unfeasible. On a document-par-
titioned system, instead, all the changes are local to the
IR server to which the document is assigned: when a doc-
ument is assigned to one server, only the local index of
that server needs to be changed. This is another reason
why document-partitioned systems are preferred to term-
partitioned systems in commercial installations [Brin and
Page 1998, Baeza-Yates et al. 2007].

One of the first papers to address the incremental update
of an index is [Tomasic and Garcia-Molina 1993], which, in
1993, presented a a dual-structure index to keep the inverted
lists up to date. The proposed structure dynamically sepa-
rated long and short inverted lists and optimized retrieval,
update, and storage of each type of list. The authors show
an interesting trade-off between optimizing update time and
optimizing query performance. The result is a starting point
for later papers, which explicitly address a very high rate of
change.

In [Lim et al. 2003], the authors acknowledge that, while re-
sults in incremental crawling have enabled the indexed doc-
ument collection of a search engine to be more synchronized
with the changing World Wide Web, the new data are not
immediately searchable, because rebuilding the index is very
time-consuming. The authors explicitly study how to up-
date the index for changed documents. Their method uses
the idea of landmarks, i.e. marking some important spots in
the inverted lists, together with the diff algorithm, to signif-
icantly reduce the number of postings in the inverted index
that needs to be updated.

Another important result was presented in [Lester et al.
2004]. The authors dicuss the three main alternative strate-
gies for index update: in-place update, index merging, and
complete re-build. The experiments showed that re-merge
is, for large numbers of updates, the fastest approach, but
in-place update is suitable when the rate of update is low
or buffer size is limited. The availability of algorithms tar-
geted to different speed of change is important because, in
a document-partitioned system, different collections could
change at a different speed.

A very different approach to update is analyzed in [Shieh
and Chung 2005]. Following previous literature, the authors
suggest to book some sparing free space in an inverted file, so



to allow for incremental updates. They propose a run-time
statistics-based approach to allocate the spare space. This
approach estimates the space requirements in an inverted file
using only some recent statistical data on space usage and
document update request rate. Clearly, there is a trade-off
between the cost of an update and the extra storage needed
by the free space. They show that the technique can greatly
reduce the update cost, without affecting the access speed
to the index.

This paper tackles a complementary problem. In our doc-
ument-partitioned architecture, when a new document (or
a new version of a known document) becomes available, we
need to first determine the collection to which it should be
assigned. If the assignment is incorrect, the new document
will be lost among unrelated information, and the collection
selection function will not be able to find it. When the
assignment is performed, the system can use all the standard
techniques to update the local slice of the index.

The size of the individual collection has a very strong im-
pact on the performance of the system. Several works have
proposed different cost model for queries. In his work on
large English text corpora, Heaps [Heaps 1978] showed that
as more instance text is gathered, there will be diminish-
ing returns in terms of discovery of the full vocabulary from
which the distinct terms are drawn. This law was verified
also for pages coming from the Web. The law can be re-
stated by saying that the number of distinct terms T (n)
from a collection of n documents grows as:

T (n) = K · nβ

with K between 10 and 100, and β between 0.4 and 0.6 for
collection of English language documents. If documents are
of average size S:

total number of terms = n · S

average size of a posting list =
n · S

K · nβ
=

S

K
n1−β

According to the Heaps law, the growth of the average post-
ing list is sub-linear. If the length of the posting lists drives
the cost of solving a query, this will grow slower than the
growth of the collection.

[Chowdhury and Pass 2003] models the response time as lin-
early dependent from the collection size. While this is only
a first-order modeling of costs, as discussed in [Badue et al.
2007], it is very important to keep collections reasonably bal-
anced, in order to avoid a great disparity in the computing
pressure to servers. We will show that our strategy is able
to keep the collection size comparable, so that the cost of
answering each query is comparable among the servers.

4. UPDATING THE INDEX:
A MODEST PROPOSAL

Several researchers have investigated the problem of keeping
the document base and the index up to date, in a changing
environment like the Web. Two main issues have been in-
vestigated. First, the IR system needs to plan the crawling
strategy so to find new pages, to identify new versions of
pages and to prevent frequently changing pages (e.g. news
sites, blogs) from becoming stale in the index. Second, the

new documents, or their new versions, must be parsed and
indexed, and the main index must be updated.

In a distributed, document-partitioned configuration, new
documents are added to one of the IR cores. The core must
extract the posting lists for the new pages and make them
searchable. One simple way to do it is to create a second
index with the new postings, and query it in parallel with
the main index. The second, smaller index can be updated
when new documents are available and, after a chosen time
interval, the main and the second index can be merged into
one. The server undergoing this merging procedure may
become unavailable to answer queries, but this is usually
not problematic if several replicas are deployed to provide
enough computing bandwidth.

If the query is broadcasted to all cores, as in traditional
document-partitioned systems, the choice of the core to which
a new document is mapped does not have any effect on the
precision of the system. It can have an impact on perfor-
mance if the partitions are heavily unbalanced, but this can
be simply prevented by keeping track of the collection size
in each server.

In our architecture, on the other side, the choice is more im-
portant: it is crucial to assign new documents to the correct
collection, i.e. to the server where most similar or related
documents are already assigned. In other word, we want to
store the new document where the collection selection func-
tion will find it. This is complex because the document could
be relevant for several queries, and the collections will have
a different relevance or authoritativeness for each of them.

An ideal approach would be as follows. First, all queries
from the training set are performed against the new docu-
ments. This way, we can determine which documents are
matching which queries, and create the QV representation
for the new documents. The vectors are added to the QV
vectors of all the other existing documents, and co-clustering
is performed on the new matrix (using the previous cluster-
ing as a starting point). This is clearly unfeasible, as the
training set can be composed of several thousand queries.

A very quick approximation can be reached using the PCAP
collection selection function itself. The body of the document
can be used in place of a query: the system will rank the col-
lections according to their relevance. The rationale is simple:
the terms in the document will find the servers holding all
the other documents relative to the same broad topics. Our
collection selection function is able to rank the document
collections according to the relevance to a given query. If
the body of the document is used as query, the collection
selection function will find the closest collections.

In the first phase, we perform a query, using the document
body as a topic, against the query dictionaries, and we de-
termine the matching query clusters, i.e. the clusters com-
prising query with terms appearing also in the document.
Then, the PCAP matrix is used to choose the best docu-
ment clusters, starting from the query cluster ranking, as
seen in Section 2.2. If no query dictionary matches the new
document, it will be classified as silent and stored in the
supplemental index.



Note that this process is computing, in an approximate way,
the set of queries that could recall a new document. By
comparing the document body with the query dictionaries,
it tries to understand what query topic could retrieve the
given document. This is somewhat similar to what is done
by pSearch [Tang et al. 2002] and SSW [Li et al. 2004]. These
two systems project the documents onto a lower dimensional
space using LSI, and then route them to the correct servers
using the same infrastructure used by the queries.

Even if we will prove that this approach is robust, there are
several issues that could make it fail. For example, some
query cluster could be composed of queries for which the
document is actually a good matching, but the terms of
which do not appear in the document itself. This can happen
for instance in the presence of synonyms, or if the document
itself uses graphics to represent words and the query terms
are used, instead, in links pointing to the page.

This problem is limited by the redundancy of the QV ma-
trix and the robustness of the algorithm, as we discussed in
our previous works [Puppin et al. 2006, Puppin and Silvestri
2006]. Even if one good query, in some query clusters, may
use terms not present in the document, the query clusters
will be comprised of queries retrieving close documents, and
those terms might be present in the document. In any case,
after the document is mapped to one cluster, a full search
algorithm (using links, PageRank etc.) is used on the lo-
cal index, and the document will be correctly retrieved and
ranked.

From the moment of the assignment on, the new document
will appear among the results of the new queries. They
will contribute to building a new QV matrix, used when the
system chooses to have a major update of the whole index.
In fact, every once in a while, the system will be momentarily
stopped to update the partitioning and the local indexes.
While the latter is needed in every document-partitioned
architecture, our collection selection architecture also need
to update the assignment of documents to clusters. This
means moving a document from its initial position to the
position suggested by a complete round of co-clustering. We
will verify below that this is not strictly necessary, as the
approximate choice is good enough to our purposes.

5. THIS ACTUALLY WORKS
To test our approach, we used the WBR99 Web document
collection2, of 5,939,061 documents, i.e. Web pages, repre-
senting a snapshot of the Brazilian Web (domains .br) as
spidered by the crawler of the TodoBR search engine. The
collection consists of about 22 GB of uncompressed data,
mostly in Portuguese and English, and comprises about 2.7
million different terms after stemming.

Along with the collection, we used a query log of queries
submitted to TodoBR, in the period January through Octo-
ber 2003. We selected the first three weeks of the log as our
training set. It is composed of about half a million queries, of
which 190,000 are distinct. Then, we used subsequent weeks
as test sets. Every week comprises about 200,000 queries.

2Thanks to Nivio Ziviani and his group at UFMG, Brazil,
who kindly provided the collection, along with logs and eval-
uated queries.

d 5,939,061 documents taking (uncompressed) 22 GB
t 2,700,000 unique terms
t′ 74,767 unique terms in queries
tq 494,113 (190,057 unique) queries in the training set

Table 1: Main feature of our test set.

The main features of our setup are summarized in Table 1.
To index and query each sub-collection, we used Zettair3, a
compact and fast text search engine designed and written
by the Search Engine Group at RMIT University.

We trained our system with the query log of the training
period, by using our reference centralized index to answer
all the queries submitted to the system. We recorded the
top-ranking results for each query. Then, we performed co-
clustering on the resulting query-document matrix. The
documents are then partitioned onto several IR cores ac-
cording to the results of clustering.

We partitioned the first 5,000,000 documents into 17 clus-
ters: the first 16 clusters are the clusters returned by co-
clustering; the last one holds the silent documents, i.e. the
documents that are not returned by any query, represented
by null query-vectors (the 17-th cluster is used as a sup-
plemental index). We chose to partition into 16 clusters
because a smaller number of document clusters would have
brought to a situation with a very simple selection process,
while a bigger number would have created artificially small
collections.

We assumed that a part of the document collection, about
one million documents, is not initially available, because it
represents newer or changed pages collected over the two
weeks following the end of the initial training. After the
training, we use the strategy suggested above to assign the
new documents as they arrive. To speed the process up,
only the first 1000 bytes from the document body (stripped
of HTML tags, header and so on) were used as a query to
determine the best collection assignment.

We simulated six different configurations, as shown in Fig-
ure 3:

A. This represents the situation right after the training,
with 5 million documents available, partitioned using co-
clustering. We test against the first set of test queries
(queries for the first week after the training).

B. This represents the situation one week later, with 5.5
million documents available. Documents are assigned
using PCAP as just described. We test against the sec-
ond set of test queries (queries for the second week after
the training).

C. This is similar to B, but now old and new documents are
clustered using a full run of co-clustering. Same test set.

D. This is the situation after two weeks, with all documents
available. In this configuration, all new documents are

3Available under a BSD-style license at http://www.seg.
rmit.edu.au/zettair/.
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Figure 3: Different configurations for the experi-
ment on index update.

assigned with PCAP. We use the third week of queries.

E. Here we imagine that we were able to run co-clustering
for the first half million new documents, but not for the
latest ones. Same test set as D.

F. Finally, all 6 million documents are clustered with co-
clustering. Same test set as D.

5.1 Partition Sizes
The first important aspect to consider when updating the
partitions is their relative sizes: if a partition grows much
bigger than another one, the server holding it could become
slower than the other ones, contributing to a system-wide
degradation of performance. Even if, in our architecture,
this problem is limited by the use of a load-driven collection
selection strategy (see [Puppin et al. 2007]), still we want to
verify if this can be a problem or not.

We measured the size of the different partitions in each con-
figuration. Results are shown in Figure 4. The plots show
the size of the collection held by each cluster. The size of
the collection held by the overflow cluster is beyond scale
and truncated. The horizontal line shows the average size
for the clusters, excluding the overflow cluster.

In the worst case, i.e. Configuration D, the biggest cluster
holds about 2.5 times the documents held in the smallest
cluster. In the other cases, this difference is a little bigger
than 2.1 times, and the distance from the average is not
dramatic. It is not surprising that Configuration D has the
worst distribution: it is the configuration with the biggest
number of documents not assigned using co-clustering.

According to the Heaps law, the average size of posting lists,
in a collection 2.1 times bigger, is about 1.3–1.5 times bigger.
We showed that the load-driven collection selection is able to
effectively distribute the load across servers, and that a local
cache of posting lists is extremely effectively: this disparity
is more than tolerable by our system.

5.2 Result Quality
To compare the various strategy, we ask the collection se-
lection function to choose a fixed number of servers, and
we verify how many of the relevant documents are present
in the chosen servers. In our experiments, lacking human-
evaluated reference results, we follow the example of previ-
ous works [Xu et al. 1998], and we compare the results com-
ing from collection selection with the results coming from
a centralized index, which form the set of reference results.
We indexed the full set of documents with Zettair, and we
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Figure 4: Size of the document collections in each
cluster.



used it as our golden standard. This way, we are comparing
the same search algorithm (Zettair) on a centralized index
w.r.t. an index partitioned across several servers.

We use two metrics: intersection and competitive similar-
ity. Let’s call GN

q the top N results returned for q by a

centralized index (ground truth), and HN
q the top N results

returned for q by the set of servers chosen by our collection
selection strategy. The intersection at N, INTERN (q), for
a query q is the fraction of results retrieved by the collection
selection algorithm that appear among the top N documents
in the centralized index:

INTERN (q) =
|HN

q ∩ GN
q |

|GN
q |

Given a set D of documents, we call total score the value:

Sq(D) =
X
d∈D

rq(d)

with rq(d) the score of d for query q. The competitive simi-
larity at N COMPN is measured as:

COMPN (q) =
Sq(H

N
q )

Sq(GN
q )

This value measures the relative quality of results coming
from collection selection with respect to the best results from
the central index. In both cases, if |GN

q | = 0 or Sq(G
N
q ) = 0,

the query q is not used to compute average quality values.

As the reader can see in Figure 5, the collection selection
function performs with the same effectiveness on every con-
figuration: the quality of the results coming from the se-
lected servers is not degraded if documents are added with
our strategy.

Interestingly enough, the new process is able to reduce the
number of silent documents: in Configuration F (all doc-
uments fully co-clustered) about 3,100,000 are classified as
silent, and stored in the supplemental index, while in Con-
figuration D (5,000,000 documents co-clustered, 1,000,000
documents assigned with PCAP), only 2,500,000 end up in
the supplemental index.

This is due to two main reasons. First, we do not have
to face the cut-off we had in training: during co-clustering
only the top 100 results are used in training, but now even
a weak matching is a good drive. Second, and most impor-
tant, the query clusters, created by co-clustering are already
focused and coherent, and allow us to better discriminate
documents.

Note that this does not necessarily contribute to result qual-
ity: in [Puppin et al. 2006] we showed that the supplemental
index count to only 3% results. Still, it could help to have
a better balance among partitions. We plan to verify with
more experiments the effect that this has on performance
and quality, but this actually seems to suggest a way to
assign silent documents after co-clustering.

6. ALMOST OVER...
In this work, we presented a simple strategy to assign new
documents to collections in a distributed Web search archi-
tecture, based on the concept of collection selection. Our
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Figure 5: Intersection and competitive similarity at
10 and 50 with different configurations.



work exploits the features of our PCAP collection selection
algorithm to perform an effective assignment, with a very
limited computing cost (the cost of a query). The updated
partitions offer a result quality similar to that reached if we
reassign all documents from scratch, a more costly update
procedure.

All these results were measured with exhaustive experiments
conducted on a base of 6 million documents, with 190,000
queries for training and a test log of about 600,000 queries.

By using the PCAP collection selection function, we can
choose the best cluster for each new document. The pro-
posed strategy is effective in keeping the partitions reason-
ably balanced (with the smallest partition about half the
size of the biggest one) and in maintaining the same result
quality we would reach if the documents were fully reas-
signed using co-clustering. This simple strategy can be very
effective in a real implementation because of its very limited
cost.

We plan to verify if this strategy can be also used to as-
sign silent documents, i.e. all the documents that are never
recalled during training. While we proved that silent docu-
ments are not contributing to a big fraction of results [Pup-
pin et al. 2006], we could use the PCAP assignment strategy
to reduce the size of the supplemental index. The fact that,
after co-clustering, we have coherent document and query
clusters is helpful to assign documents that we cannot as-
sign properly during the training.

This paper is adding another contribution in support of our
idea of using collection selection to reduce the computing
load of a search engine, the number of machines needed to
serve a given number of users, the cost of buying, installing
and powering them, the number of system administrators
needed to keep them humming quietly. So, our dear reader,
the last word is yours: you can say we are trying to save the
world, or to have a bunch of innocent system administrators
fired!

:-)
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