
Optimization of Dynamic Data Types in Embedded
Systems using DEVS/SOA-based Modeling and Simulation

José L. Risco-Martín, *Saurabh Mittal, David Atienza, J. Ignacio Hidalgo, Juan Lanchares

Department of Computer Architecture
and Automation

Complutense University of Madrid
C/Prof. José García Santesmases, s/n

28040 Madrid (Spain)
(+34) 91 394 7603

{jlrisco, datienza, hidalgo, julandan}@dacya.ucm.es

*Arizona Center for Integrative Modeling
and Simulation

University of Arizona
ECE Building, 1230 E Speedway

Tucson AZ 85721
(+1) 520 204 2641

saurabh@ece.arizona.edu

ABSTRACT
New multimedia embedded applications are increasingly
dynamic, and rely on Dynamically-allocated Data Types (DDTs)
to store their data. The optimization of DDTs for each target
embedded system is a time-consuming process due to the large
searching space of possible DDTs implementations. This results
in the minimization of embedded design variables (memory
accesses, power consumption and memory usage). Till date some
effective heuristic algorithms have been developed in order to
solve this problem, however unreported, as the problem is NP-
complete and cannot be fully explored. In these cases the use of
parallel processing can be very useful because it allows not only
to explore more solutions spending the same time but also to
implement new algorithms. This research work provides a
methodology to use Discrete Event Systems Specification (DEVS)
to implement a parallel evolutionary algorithm within a Service
Oriented Architecture (SOA), where parallelism improves the
solutions found by the corresponding sequential algorithm. This
algorithm provides better results when compared with other
previously proposed procedures. In order to implement the
parallelism the DEVS/SOA framework in utilized. Experimental
results show how a novel parallel multi-objective genetic
algorithm, which combines NSGA-II and SPEA2, allows
designers to reach a larger number of solutions than previous
approximations. This research also establishes DEVS/SOA as a
platform for conducting complex distributed simulation
experiments.

Keywords
Embedded Systems Design, Evolutionary Computation, Discrete
Event System Specification, Service Oriented Architecture,
DEVS/SOA.

1. INTRODUCTION
Latest multimedia embedded devices are enhancing its
capabilities and are currently able to run applications reserved to
powerful desktop computers few years ago (e.g., 3D games, video
players) [6]. As a result, one of the most important problems
designers face today is the integration of a great amount of
applications coming from the general-purpose domain in a
compact and highly-constrained device.

One major task of this porting process is the optimization of the
dynamic memory subsystem. Thus, the designer must choose
among a number of possible dynamically-allocated data structures
or Dynamic Data Types (DDTs) implementations [2] (dynamic
arrays, linked lists, etc.) for each variable of the application,
according to some specific constraints of the target device and
typical embedded design metrics, such as memory accesses,
memory usage and energy consumption [3].

This task has been typically performed in the past using a pseudo-
exhaustive evaluation of the design space of DDTs, including
multiple executions of the application, to attain a Pareto front
(PF) of solutions [7], which tries to cover all the optimal
implementation points for the required design metrics. The
construction of this PF has been proven to be a very time-
consuming process, sometimes even unaffordable [9].

Extensive work has been performed in the field of embedded
memory subsystem optimization. Benini et al. [4] and Panda et al.
[23] presented two thorough surveys on static data and memory
optimization techniques for embedded systems presented during
the last decade. More recently, in [6] and [9], authors have
explored a coordinated data and computation reordering for array-
based data structures in multimedia applications. They used a
linear time algorithm reducing the memory subsystems
requirements by 50%. Nevertheless, they are not suitable for
exploration of complex DDTs employed in modern multimedia
applications.

Regarding dynamic embedded software, suitable access methods,
power-aware DDT transformations and pruning strategies based
on heuristics have started to gain ground for multimedia systems
[31] [23]. However, these approaches require the development of
efficient pruning cost-functions and fully manual optimizations.
In addition, these works are not able to capture the evaluation of
inter-dependencies of multiple DDTs implementations operating
together, in contrast to the method of Evolutionary Algorithms
(EAs) as proposed in this paper [19]. Atienza et al. [3] have
already outlined the potential of EAs for dynamic memory
optimizations. Nevertheless, their work only performed an initial
analysis of one single type of EA and does not provide a complete
analysis of tradeoffs between different technologies of sequential
and parallel EAs. We tackle this problem in the present research
work.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3504

Also, according to the characteristics of certain parts of
multimedia applications, several transformations for DDTs and
design methodologies [6] [31] have been proposed for static data
profiling and optimization with static memory access patterns to
physical memories. In this context, the use of EA-based
optimization has been applied to solve linear- and non-linear
problems by exploring the entire state space in parallel. Thus, it is
possible to perform optimization in non-convex regular functions,
and also to select the order of algorithmic transformations in
concrete types of source codes [23]. However, such techniques
are not applicable to DDT implementations due to the
unpredictable nature at compile-time of the stored data.

In this paper we propose a framework to explore the design space
of DDT implementation including a set of novel parallel
procedures based on Multi Objective Evolutionary Algorithms
(MOEAs) [10] and Discrete Event System Specification (DEVS)
[33]. The development of parallel evolutionary algorithms for
multi-objective problems involves the analysis of different
paradigms for parallel processing and their corresponding
parameters. In [29] a generic formulation for parallel multi-
objective evolutionary algorithms (pMOEA) is proposed and
questions related with migration, replacement and niching
schemes in the context of pMOEA are discussed. In [29] four
basic pMOEA based on the island paradigm are described: (1)
islands execute the same MOEA [32]; (2) islands execute
different MOEA [13]; (3) each island evaluates a different subset
of objective functions [30]; and (4) each island considers a
different region of the search domain [22]. Taking into account
this classification, our parallel design may be included in the
second group. Since our migration policy is synchronous, we have
combined two elitist evolutionary algorithms with different
complexity, namely Strength Pareto Evolutionary Algorithm 2
(SPEA2) [35] and Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [11], implementing three variations of a pMOEA.
SPEA2 is O(N3) and NSGA-II is O(mN2), where N is the
population size and m is the number of objectives.

Our experiments in a real-life dynamic embedded application
show that: (1) NSGA-II and SPEA2 reach important speed-ups
(up to 955x faster) with respect to other traditional heuristics; (2)
the parallel algorithm can achieve significant speed-ups (68%
faster) with respect to the sequential versions in a multi-core
architecture. Moreover, we compare the sequential and parallel
approaches by means of multiple metrics, showing that the quality
of the solutions is improved by the combination of NSGA-II and
SPEA2 in a parallel implementation; and (3) such combination is
executed on 16 workstations of two cores each, where several
population sizes were deployed as per our experiments. The
experiments returned very promising results. In particular, we got
empirical evidence that on increasing the size of the population,
the performance of the pMOEA improves as we increase the
number of workstations used.

The rest of the paper is organized as follows. Definitions of
MOEAs and underlying technologies such as DEVS and
DEVS/SOA are given in Section 2. In Section 3 the Dynamic
Data Types optimization problem is explained. In Section 4, we
present our multi-objective optimization process. A description of
the MOEAs, including an explanation of our parallel proposal,
which combines NSGA-II and SPEA2 algorithms, is also detailed.
Section 5 details our experimental setup as well as shows some

performance and quality metrics used in our experiments in
Section 6. Finally, in Section 7 we summarize the main
conclusions of this paper.

2. BACKGROUND
2.1 Multi-Objective Evolutionary Algorithms
Multi-objective optimization aims at simultaneously optimizing
several objectives sometimes contradictory (memory accesses,
memory usage and energy consumption for our problem). For
such kind of problems, there does not exists a single optimal
solution, and some trade-offs need to be considered. Without any
loss of generality, we can assume the following N-objective
minimization problem:

() () ()()
Xx

xxxz
∈

=
tosubject

fffMinimize N

,,, 21 K

where z is the objective vector with N objectives to be minimized,
x is the decision vector, and X is the feasible region in the
decision space. A solution x∈X is said to dominate another
solution y∈X if the following two conditions are satisfied:

{ } () ()
{ } () ()yx

yx

ii

ii
ffNi
ffNi

<∈∃
≤∈∀

,,,2,1
,,,2,1

K

K

If there is no solution which dominates x∈X, x is said to be a
Pareto Optimal Solution (POS). The set of all elements of the
search space that are not dominated by any other element is called
the Pareto Optimal Front (POF) of the multi-objective problem:
it represents the best possible solution with respect to the
contradictory objectives. In both algorithms, the sequential and
parallel versions, we attempt to reach the higher number of
solutions of the Pareto front as possible.
Nowadays, many MOEAs have been developed. They can be
classified into two broad categories: non-elitist and elitist, also
called first and second generation MOEAs [7]. In the elitist
approach, EAs store the best solutions of each generation in an
external set. This set will then be a part of the next generation.
Thus, the best individuals in each generation are always
preserved, and this helps the algorithm to get close to its POF.
Algorithms such as PESA-II [8], MOMGA-II [36], NSGA-II and
SPEA2 are examples of this category. In contrast, the non-elitist
approach does not guarantee preserving the set of best individuals
for the next generation [7]. Examples of this category include
MOGA [14], HLGA [15], NPGA [17] and VEGA [26].
When implementing a MOEA, the designer has to overcome two
major problems [34]. The first problem is how to get close to the
Pareto Optimal Front (POF) [10]. The second problem is how to
keep diversity among the solutions in the obtained set. These two
problems become common criteria for most current algorithmic
performance comparisons and they will be used in the
experimental results section.

Although all the cited MOEAs are different from each other, we
can find some common steps in these algorithms, which are
summarized in Table 1. As we have already mentioned, two
representative elitist algorithms, namely, SPEA2 and NSGA-II
were selected.

Table 1. Common evolutionary algorithm framework

1. Initialize the Population P
2. (elitist EAs) Select elitist solutions from P to create

external set EP
3. Create mating pool from one or both P and EP
4. Reproduction based on the pool to create the next

generation P using evolutionary operators
5. (elitist EAs) Combine EP into P
6. Go to step 2 if the terminated condition is not satisfied

2.2 DEVS AND DEVSJAVA
DEVS formalism consists of models, the simulator and the
experimental frame. We will focus our attention to the specified
two types of models i.e. atomic and coupled models. The atomic
model is the irreducible model definition that specifies the
behavior for any modeled entity. The coupled model is the
aggregation/composition of two or more atomic and coupled
models connected by explicit couplings. The formal definition of
parallel DEVS (P-DEVS) is given in [33]. An atomic model is
defined by the following equation:

λδδδ ,,,,,, int conextYSXM =

where,

• X is the set of input values
• S is the state space
• Y is the set of output values
• SS →:intδ is the internal transition function

• SXQ b
ext →×:δ is the external transition function

- () (){ }staeSsesQ ≤≤∈= 0,:, is the total state set, where
e is the time elapsed since last transition

- bX is a set of bags over elements in X
• SXS b

con →×:δ is the confluent transition function,
subject to () ()sscon int, δδ =∅

• YS →:λ is the output function

• () ∞∪ℜ→ +
0: Ssta is the time advance function.

The formal definition of a coupled model is described as:

ICEOCEICDYXN ,,,,,=

where,

• X is the set of external input events
• Y is the set of output events
• D is a set of DEVS component models
• EIC is the external input coupling relation
• EOC is the external output coupling relation
• IC is the internal coupling relation.

The coupled model N can itself be a part of component in a
larger coupled model system giving rise to a hierarchical DEVS
model construction.
Figure 1 shows a coupled DEVS model. M1 and M2 are DEVS
models. M1 has two input ports: “in1” and “in2”, and one output
port: “out”. The M2 has one input port: “in1”, and two output
ports: “out1” and “out2”. They are connected by input and output
ports internally (this is the set of internal couplings, IC). M1 is

connected by external input “in” of Coupled Model to “in1” port,
which is an external input coupling (EIC). Finally, M2 is
connected to output port “out” of Coupled Model, which is an
external output coupling (EOC).

M1 M2

Coupled Model

in in1 out1 out

in2 out
in

out2

Figure 1. Coupled DEVS model

The DEVSJAVA [1] is a Java based DEVS simulation
environment. It provides the advantages of Object Oriented
framework such as encapsulation, inheritance, and polymorphism.
DEVSJAVA manages the simulation time, coordinates event
schedules, and provides a library for simulation, a graphical user
interface to view the results, and other utilities. Detailed
descriptions about DEVS Simulator, Experimental Frame and of
both atomic and coupled models can be found in [33].

2.3 DEVS/SOA
The Service oriented Architecture (SOA) is a framework
consisting of various W3C standards, in which various
computational components are made available as “services”
interacting in an automated manner achieve machine-to-machine
interoperable interaction over the network. Web-based simulation
requires the convergence of simulation methodology and WWW
technology (mainly Web Service technology). The fundamental
concept of web services is to integrate software application as
services. Web services allow the applications to communicate
with other applications using open standards. We are offering
DEVS-based simulators as a web service, which are based on
these standard technologies: communication protocol (Simple
Object Access Protocol, SOAP), service description (Web Service
Description Language, WSDL), and service discovery (Universal
Description Discovery and Integration, UDDI).

Figure 2. DEVS/SOA distributed architecture

Figure 2 shows the framework of our distributed simulation using
SOA. The complete setup requires one or more servers that are
capable of running DEVS Simulation Service. The capability to
run the simulation service is provided by the server side design of
DEVS Simulation protocol supported by the latest DEVSJAVA
Version 3.1.

The Simulation Service framework is two layered framework.
The top-layer is the user coordination layer that oversees the
lower layer. The lower layer is the true simulation service layer
that executes the DEVS simulation protocol as a Service. The
lower layer is transparent to the modeler and only the top-level is
provided to the user.

The top-level has three main services: upload DEVS model,
compile DEVS model, and simulate DEVS model. The second
lower layer provides the DEVS Simulation protocol services:
initialize simulator i, run transition in simulator i, run lambda
function in simulator i, inject message to simulator i, get time of
next event from simulator i, get time advance from simulator i,
get console log from all the simulators, and finalize simulation
service.

The explicit transition functions, namely, the internal transition
function, the external transition function, and the confluent
transition function, are abstracted to a single transition function
that is made available as a Service. The transition function that
needs to be executed depends on the simulator implementation
and is decided at the runtime. For example, if the simulator
implements the Parallel DEVS (P-DEVS) formalism, it will
choose among internal transition, external transition or confluent
transition.

The client is provided a list of servers hosting DEVS Service. He
selects some servers to distribute the simulation of his model.
Then, the model is uploaded and compiled in all the servers. The
main server selected creates a coordinator that creates simulators
in the server where the coordinator resides and/or over the other
servers selected. This whole framework is known as DEVS/SOA
framework and details are available at [20][21].

Figure 3. Execution of DEVS SOA-Based M&S

Summarizing from a user’s perspective, the simulation process is
done through three steps (Figure 3): (1) write a DEVS model
(currently DEVSJAVA is only supported), (2) provide a list of
DEVS servers (through UDDI, for example). Since we are testing
the application, these services have not been published using
UDDI by now. Select N number of servers from the list available,

and (3), run the simulation (upload, compile and simulate) and
wait for the results.

3. THE DYNAMIC DATA TYPES
EXPLORATION PROBLEM
DDTs are software abstractions by means of which we can
manipulate and access data. The implementation of DDT has two
main effects on the performance of an application. First, it
involves storage aspects that determine how data memory is
allocated and freed at run-time, and how this memory is tracked.
Second, it includes an access component, which can refer to two
different basic access patterns: sequential (or iterator-based) and
random access.

vector<T1>* v1 = new vector<T1>();
// …
list<T2>* v2 = new list<T2>();
list<T2>::iterator itr = v2->begin();
for(; itr!=v2->end(); ++itr)

cout << *itr;
// …

SLL<T1>* v1 = new SLL<T1>();
// …
DLLAR<T2>* v2 = new DLLAR<T2>();
DLLAR<T2>::iterator itr = v2->begin();
for(; itr!=v2->end(); ++itr)

cout << *itr;
// …

Initial application code

Optimized application code

vector<T1>* v1 = new vector<T1>();
// …
list<T2>* v2 = new list<T2>();
list<T2>::iterator itr = v2->begin();
for(; itr!=v2->end(); ++itr)

cout << *itr;
// …

SLL<T1>* v1 = new SLL<T1>();
// …
DLLAR<T2>* v2 = new DLLAR<T2>();
DLLAR<T2>::iterator itr = v2->begin();
for(; itr!=v2->end(); ++itr)

cout << *itr;
// …

Initial application code

Optimized application code
Figure 4. Code before and after the exploration of Dynamic

Data Types
Figure 4 shows an example of DDTs exploration. The initial code
contains two variables, v1 and v2, instantiated as a vector and a
list, respectively. After the exploration process, we can obtain for
example a candidate solution that recommends v1 to be
instantiated as Single Linked List (SLL) and v2 as Double Linked
List of Arrays (DLLAR).

Table 2. DDT library

DDT Description

AR Array

AR(P) Array of pointers

SLL Single-linked list

DLL Doubly-linked list

SLL(O) Single-linked list with roving pointer

DLL(O) Doubly-linked list with roving pointer

SLL(AR) Single-linked list of arrays

DLL(AR) Doubly-linked list of arrays

SLL(ARO) Single-linked list of arrays and roving pointer

DLL(ARO) Doubly-linked list of arrays and roving pointer

More generally we can state that the application to optimize
contains a set of variables V, which are candidates to be
instantiated as a certain DDT from the set of possible

implementation of DDTs library D presented in [3] [9]. Thus, the
goal of our optimization flow is to obtain a set of pairs (variable,
DDT) {vi ∈ V, dj ∈ D}, such that minimizes memory accesses,
memory usage and power consumption for the target embedded
system. Additional constraints as the minimum and maximum
values for all three objectives may be defined. Clearly, this is a
multi-objective optimization problem.

To measure the quality of a solution, we have defined the
equations to evaluate the behavior of DDT implementations by
means of parameters such as the number of sequential accesses,

random accesses, average size, etc. In our case we have classified
the DDT implementations in basic DDT and multi-layer
implementations relevant for embedded multimedia applications.
Table 2 contains the DDTs implemented [3].

Once we have fixed the problem optimization process for DDTs,
we can describe the whole process shown in Figure 5. It has three
main steps: Profiling of the application, estimation of the
parameters and multi-objective optimization algorithms
execution. These three steps are described in the next sections.

Figure 5. DDTs optimization flow

3.1 Profiling of the application
In order to evaluate the different metrics we need to obtain the
real execution information from the application. Unfortunately,
the execution of the whole application is not a viable solution. An
alternative good solution recently proposed [9] is to obtain a
profiling report of the application where the following
information is logged: number and location of the accesses of an
element, addition of an element, removal of an element, the
clearing of the container, iterator operations such as pre-increment
or dereference, constructor, destructor, copy constructor and swap
operation. To this end, we need to replace all the candidate
variables in the application by our vector DDT implementation,
which logs all the information needed to evaluate them the using
equations developed in [3].

3.2 Parameters estimation
In this phase, we extract all information needed from the profiling
report. The purpose is to measure the quality of a solution (vi, dj)
in the DDT exploration, using several parameters, namely, the
number of candidate variables, number of elements stored in the
DDT in the worst case (Ne), average of the number of elements

stored (Nve), size of the elements in bytes (Te), size of the
pointers in bytes (Tref), number of read accesses (Nr), number of
write accesses (Nw) and cache misses (Npa). All these parameters
can be extracted from the profiling report. To this end, we have
developed a tool called Profile Analyzer. Cache misses are also
obtained by means of simulation, generating memory traces from
the profiling report and the DDT library, using them as input for
the Dinero IV cache simulator [12] for the particular memory
configuration of the target embedded system. This phase is the
most-time consuming part of the exploration, although it is done
only once for each target architecture, and for each tested
application. We are in a process of automating this data mining
process using XML.

3.3 Optimization
The last phase is the optimization process. It takes as input the
parameters obtained in the previous phase and minimizes three
objectives: memory accesses (MA), memory usage (MU) and
energy (E), defined by the following equations, where Hw
represents the effect that hardware parameters (memory
architecture, CPU power, line sizes, memory access time, etc.)
have on the optimization.

() ()
() ()

() ()HwNpaNwNrfdvE

NveNeTrefTefdvMU

NwNrNveNefdvMA

MA

MU

MA

,,,,

,,,,

,,,,

=

=

=

For more details about the mathematical model, see [25].

4. PARALLEL DEVS AND DEVS/SOA
IMPLEMENTATION
In this section we describe how to use parallel MOEAs in a DEVS
environment to solve the exploration of DDTs in embedded
applications described in Section 3. The search process could be
improved by using several threads to apply the operators in a
larger number of individuals. We propose a coarse-grained
pMOEA where each DEVS atomic model runs a different
population as a thread. The number of individuals is the same as
in the sequential version.

NSGA-II
SubPop1

Gener. 1

Gener. 100
(request)

Gener. 100

SPEA2
SubPop2

Gener. 1

Gener. 100
(request)

T i m
 e

.

request

response

response

response

request

response

Figure 6. A graphic representation of the DEVS model (multi-

core architecture) and it evolution over time
Figure 6 provides a scheme of the parallel procedure with two
atomic models (top of the Figure) and their execution over time
(bottom of the Figure). Each atomic model include two pair of
{request, response} output and input ports. Request connections
are used to ask for the best individual of the adjacent atomic
model, and response connections are used to send this individual
when available (every 100 generations, in Figure 6). In other
words, the specific MOEA (NSGA-II or SPEA2) is applied to
each atomic model separately, and the best partial results are
periodically sent from one atomic model to its neighbour on a ring
communication topology [5]. As in most of the pMOEAs,
migration from one subpopulation to another is controlled by
several parameters specified at the beginning of the execution and
remains unchanged. These parameters are: (a) the topology
defined by the connections between atomic models; (b) a
migration rate that controls how many individuals migrate, in our
case the best individual; and (c) a migration interval that
determines the migration frequency, every 100 generations.
The best individual is selected in the following way. First, we
extract the set of non-dominated solutions in the current

population. Second, we sort the resulting set with respect to one
random objective, and extract the first individual. Moreover, since
NSGA-II is faster than SPEA2 (O(mN2) vs. O(N3), where N is the
population size and m is the number of objectives), NSGA-II it
finishes first while SPEA2 is still exploring early generations.
Thus, as Figure 6 depicts, our migration policy is synchronized
every 100 generations.
We have implemented three variations that are tested in a multi-
core architecture. The only difference between these variation is
the MOEA algorithm that is controlling the subpopulation, i.e.
running on each atomic model:

(1) NS2 configuration: Four atomic models executing

NSGA-II, SPEA2, NSGA-II and SPEA2.

(2) S4 configuration: Four atomic models, but running all of

them SPEA2 algorithm

(3) N4 configuration: Four atomic models using the NSGA-

II algorithm.

The fitness function, the operators, and the stop criterion are the
same as in the sequential version.

Computer 1

MOEA
SubPop1

MOEA
SubPop2

Computer 2

MOEA
SubPop 3

MOEA
SubPop 4

XML /SOAP
Messages

XML /SOAP
Messages

Figure 7. A graphic representation of the DEVS model (multi-

core/distributed architecture)
The algorithm shown in Figure 6 follows a multi-threaded design,
which is suitable to be executed in multi-core architectures. The
approach we have implemented consists of executing our
proposed pMOEA in a set of workstations connected over a LAN.
To this end, using our DEVS/SOA framework, we have executed
32 atomic models on 16 workstations each of two cores. The
algorithm is exactly the same, but each workstation executes two
atomic models. Individuals (models) are sent between different
workstations using web services [20]. Figure 7 depicts an
illustrative example of two workstations each running two
MOEAs. Every workstation executes two MOEAs as a DEVS
coupled model. The coupled models are connected in the desired
topology (a ring in our case), which again is another design
parameter that could impact the performance. For simplicity our
atomic models are suited for a ring topology. Experiments with
other topologies are left for future study.

5. EXPERIMENTAL METHODOLOGY
In this section we describe the complete method applied to
compare the different type of sequential and parallel MOEAs
while optimizing a real-life dynamic embedded application. We
have evaluated the proposed optimization framework for a 3D

Physics Engine for elastic and deformable bodies [18]. For this
application we logged 3128 variables and the 10 possible DDTs
contained in Table 2, which can cover almost all of the real-life
embedded multimedia applications.

5.1 Embedded System HW/SW Specification
The model of the embedded system architecture consisted of a
processor with an instruction cache, a data cache, and embedded
DRAM as main memory. The data cache uses a write-through
strategy. The system architecture is illustrated in Figure 8.

CPU

I-Cache D-Cache

DRAM (main memory)

Figure 8. System architecture
To analyze the effect of MOEAs on embedded system’s memory
accesses, memory usage and energy consumption, we utilized
processor energy from [6], and the access time and energy values
for caches of 32KB and embedded 16MB DRAM main memory
from [28] and [16], respectively. The processor and memory
specification is described in Table 3.

Table 3. System specification

Processor Energy 168mW, 100MHz

Embedded DRAM 100 MHz

Energy 19.5 mW

Latency 19.5 ns

Bandwidth 50 MB/s

5.2 Performance metrics
To compare the performance of different MOEAs, we need to
evaluate the obtained set of non-dominated solutions considering:
(1) Convergence to POF. (2) Diversity on POF. Since the size of
possible DDT implementations is large and it is not possible to
cover the exact set of the POF, we compare the obtained Pareto
Front (PF) with each other. In this direction, we select the
following metrics to evaluate the performance of our approach.

5.2.1 Coverage
We use the coverage metric [34] to measure convergence. Let
PF', PF'' be two sets of non-dominated solutions. The coverage
metric can be defined as follows:

()
FP

ppFPpFPp
FPFPC

′′

′′′′∈′∃′′∈′′
=′′′

f:;
,

The value C(PF',PF'')=1 means that all points in PF'' are
dominated by or equal to points in PF'. On the other hand,
C(PF',PF'')=0 means that no solutions in PF'' are covered by the
set PF'. It is noted that both C(PF',PF'') and C(PF'',PF'), has to

be considered, since C(PF',PF'') is not necessary equal to
C(PF'',PF'). If C(PF',PF'')>C(PF'',PF'), the rate of dominated
solutions in PF'' is higher than that in PF'.

5.2.2 Spread
A spread metric determines the maximum range represented by
the nondominated solutions in each objective space. It was
introduced by Ranjithan [24]. A higher value of the spread metric
indicates a better performance. It is defined as

() ()
PFjPFx

xfxfD

j

N

i
ji

PF
jji

PF
j

,,2,1,
1

2

11 minmax
K=∈

⎟
⎠
⎞⎜

⎝
⎛ −= ∑

=
==

where N is the number of objectives.

5.2.3 Spacing
Schott proposed a metric which allows to measure the distribution
of vectors throughout PF [27]. It is defined as:

()

() ()∑

∑

=≠∧∈

=

−=

−=

N

i
kiji

jkPFx
j

PF

j
j

xfxfd

dd
PF

S

k 1

1

2

min

1

where N is the number of objectives, and d is the mean of all dj.
A zero value for this metric means that all members of PF are
equidistantly spaced.

We compare the obtained sets of non-dominated solutions by
means of the above three criteria.

5.3 Encoding a solution
In order to apply a MOEA correctly we need to define a genetic
representation of the design space of all possible DDT
implementations alternatives. Moreover, to be able to cover all
possible inter-dependencies of DDT implementations for different
dynamic variables of an application, we must guarantee that all
the individuals represent real and feasible solutions to the problem
and ensure that the search space is covered in a continuous and
optimal way [10].

Table 4. Example of an individual

D AR AR SLL … DLL

V v1 v2 v3 … vm

Table 4 shows the representation of a chromosome. Genes are
represented in the first row (gray shaded cells). Each of the
chromosomes represents the set of DDT that should be used to
instantiate all the corresponding variables in the application from
Table 2. For example, the second variable v2∈V will be
instantiated by an array (AR). A chromosome contains m genes,
where m is the number of the variables logged in the application,
m=size(V). We may use an integer to represent the values of a
gene, and the constraint a gene must satisfy is: 1 ≤ ddt ≤ size(D)

Consequently, if an application contains m variables, each
individual (chromosome) has to be constituted by m integer fields
(i.e., m genes). Our current implementation of the exploration

framework optimizes up to 3128 variables using variations of the
10 possible DDTs contained in Table 2 for each of them. Thus, it
can cover large real-life dynamic embedded applications.

6. EXPERIMENTAL RESULTS
To compare the performance of both sequential and parallel
algorithms, all parameters are set to the same values. After
different tests, we have fixed them to the values indicated in
Table 5. The external archive size (where non dominated
solutions are stored) is set to be equal to the initial population.
The crossover and mutation probabilities are the same that in the
sequential algorithms. The population size is set to 200 for each
atomic model, and the number of generations is set to 8000.

Table 5. Parameters for both sequential algorithms

Parameter Value

Population size 200

Number of generations 8000

Probability of crossover 0.80

Probability of mutation 0.01

Next, we summarize the results obtained by the sequential and
parallel evolutionary algorithms. As it was mentioned in Section
4, we are able to run our MOEAs under three configurations: (1) a
stand-alone atomic model (sequential architecture), (2) several
atomic models running in separated threads (multi-core
architecture) which utilize multiple processors when available,
and (3) several atomic models running in separated threads and
distributed amid a set of workstations (multi-core/distributed
architecture). The distributed version is configured by using the
DEVS/SOA framework. The experiments have been made using
three platforms: (1) AMD Sempron 3600+ 2GHz with 1GB DDR
memory, (2) Intel Core 2 CPU 6600 2.40GHz with 2GB DDR
memory, and (3) 16 workstations AMD Opteron Dual Core 2GHz
with 4GB DDR memory connected via 100Mbps Ethernet
network.

6.1 Sequential DEVS architecture
We have tested the DDTs exploration speed in comparison to
different alternative methods for a 3D Physics Engine application
on the AMD Sempron 3600+ 2GHz with 1GB DDR memory. The
results obtained for the different tested exploration methods are
shown in Table 6. We have compared our algorithms with state-
of-the-art pruning and optimization methods for DDT
implementations presented in [31], [9]. In these cases breadth-
first, deep-first and branch & bound exploration heuristics are
used to minimize overall memory access, memory usage and
energy consumption in embedded multimedia applications. In this
context, we have used a weighted sum of the three objectives as
the fitness function for these three algorithms. Since there are
103128 feasible solutions (10 DDTs for 3128 variables) it is
unfeasible to reach the complete POF by means of exhaustive
exploration. The results in Table 6 outline that the exploration
process with our method (using NSGA-II and SPEA2) is much
faster than using directly the implementations of DDTs and other
heuristics, namely, 954× faster.

Table 6. Comparison between the proposed sequential
algorithms and other techniques

DDT exploration method Time (AMD Sempron)

Breadth-First 18.14 × 106 s.

Deep-First 36.00 × 103 s.

Branch & Bound 25.20 × 103 s.

VEGA [3] 10.80 × 103 s.

NSGA-II 1.90 × 103 s.

SPEA2 3.03 × 103 s.

6.2 Multi-core DEVS architecture
We have also explored DDTs with each of the five algorithms
proposed (i.e., SPEA2, NSGA-II, N4, NS2 and S4) on an Intel
Core 2 CPU 6600 2.40GHz with 2GB DDR memory. The
coverage, spread and the spacing values are calculated by
averaging results of 100 trials.

NSGA-II SPEA2 N 4̂ S 4̂ NS 2̂
0

50

100

150

200

250

300

350

400

450

500
Physics3D

Algorithm

N
on

-d
om

in
at

ed
 s

ol
ut

io
ns

Figure 9. Non-dominated individuals obtained by NSGA-II,

SPEA2, N4, S4 and NS2
Figure 9 depicts the number of non-dominated individuals
obtained in the best population. NSGA-II offers the same non-
dominated individuals as SPEA2. NS2 offers 64% more optimal
solutions than both NSGA-II and SPEA2, 29% more than S4 and
27% more than N4.

Table 7. Coverage metric

 NSGA-II SPEA2 N4 NS2 S4

NSGA-II ---- 0.065 0.020 0.016 0.023

SPEA2 0.045 ---- 0.010 0.001 0.017

N4 0.071 0.139 ---- 0.153 0.267

NS2 0.083 0.152 0.384 ---- 0.516

S4 0.030 0.061 0.100 0.227 ----

Regarding convergence comparisons, Table 7 shows that the
coverage values of NS2 are better than any other algorithm. For
example, C(NS2,NSGA-II)> C(NSGA-II, NS2) is 0.083>0.016 or
C(NS2,N4)> C(N4,NS2) is 0.384>0.153. Thus, NS2 offers more
optimal alternatives to the system designer for the implementation
of the final embedded application.

Table 8. Spread and spacing for the five algorithms

 NSGA-II SPEA2 N4 NS2 S4

Spread 0.112 0.127 0.136 0.188 0.142

Spacing 0.002 0.002 0.001 0.001 0.001

Similar results are obtained using the average spread and spacing
metrics. Table 8 indicates that the higher spread is found by
parallel algorithms in all cases.
Table 9. Comparison between our sequential and distributed

algorithms

 AMD Sempron Intel Core 2

NSGA-II 1900.279 s. 712.236 s.

SPEA2 3026.896 s. 1328.312 s.

N4 983.183 s. 421.77 s.

NS2 1186.44 s. 546.682 s.

S4 1701.113 s. 707.063 s.

ARP SLL DLL SLLO DLLO SLLAR DLLAR SLLARO DLLARO NSGA-II SPEA2 N 4̂ S 4̂ NS^2

0

0.5

1

1.5

2

2.5

Physics3D

Mem. Accesses
Mem. Usage
Energy

NSGA-II SPEA2 N̂4 Ŝ4 NŜ2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 10. Overall results for different design metrics coming
from various sets of DDT implementations (logarithmic scale)

Table 9 shows the comparisons between the execution times of
both sequential and parallel algorithms. The left column contains
the execution time using 1 processor. The column on the right
shows the same results, but using 2 processors. In the best case,
we obtain an execution time of 712 s. for NSGA-II when two
processors are used and 1900 s. when one processor is used,
giving a speed-up of 63%.
For comparative reasons, we present Figure 10 to illustrate the
optimization process that our methodology performs. In this test,
the set of DDTs was successively implemented using AR, ARP,
SLL, etc. All the three objectives were normalized to the AR
DDT and represented in logarithmic scale. Thus, in the end,
compared to the combination proposed by our five algorithms, the
figure shows the achieved level of optimization and final gains
after applying the proposed optimization flow in Figure 5.
Furthermore, as this figure indicates, NS2 offered the best solution
among objectives.

6.3 Multi-core DEVS/SOA architecture
Finally, the NSK configuration was distributed on a set of 16
workstations AMD Opteron Dual Core 270 2GHz with 4GB DDR
memory, connected via a 100Mbps Ethernet network. To this end,
we placed two threads per workstation and the communication

among workstations was made through our DEVS/SOA
framework

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

2048
1024

512
256

0

10

20

Number of Workstations

(a)

Population Size

Lo
g

of
 E

xe
cu

tio
n

Ti
m

es

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

2048
1024

512
256

0

1

2

x 10
4

Number of Workstations

(b)

Population Size

N
on

-d
om

in
at

ed
 s

ol
ut

io
ns

Figure 11. Execution times (a) and non-dominated solutions

(b) as a function of the number of workstations. Each
workstation executes two DEVS atomic models

We tested our algorithm using from 1 to 16 workstations. This
leads to 2, 4, 6, …, 32 MOEAs running in parallel, namely NS1,
NS2, NS3, …, NS16, and different population sizes (256, 512,
1024, and 2048). The tests were performed by changing only the
number of workstations in order to observe and study the increase
in performance (speedup). In all these cases the number of
generations was set to 8000. The external archive size of each
island was set to the entire population size, i.e., 256, 512, 1024
and 2048.
In light of the results presented in Figure 11a, as the size of the
population increased, the performance of the parallel version
improved proportionally to the number of islands. Also, Figure
11b indicates that the number of non-dominated individuals
increased as the number of islands increased, especially for large
populations.
This shows that the proposed pMOEA is better suited for large
populations. It is also worthwhile to mention that with small
populations, a parallel and distributed version of a genetic
algorithm is most likely to converge to a local minimum due to a
small gene pool.

7. CONSLUSIONS AND FUTURE WORK
New multimedia embedded applications are increasingly
dynamic, and rely on DDTs to store their data. The selection of
optimal DDT implementations for each variable in a particular
target embedded system is a very time-consuming process due to

the large design space of possible DDTs implementations. In this
paper we have studied several MOEAs to solve this problem.
Particularly, we have proposed a new parallel algorithm (NSK)
which combines in a novel manner two widely used MOEAs. The
problem is formulated as a multi-objective combinatorial
optimization problem, for which we used three objective
functions: memory accesses, memory usage and energy
consumption. The results obtained shows that this parallel
approach performs very well. In fact, the NSK reaches more
optimal solutions than the other sequential and parallel algorithm,
obtaining a speed-up of 63% with respect to the non parallel
implementation.
We also have executed NSK in a cluster of 16 workstations of two
cores each. Our results show that if the size of the population is
increased, the performance of the parallel version improves
proportionally with respect to the number of available islands. As
a result, we can conclude that not only parallel implementations
improve the speed of the optimization process, but also the quality
and the variety of the solutions, especially for large populations.
In addition to doing performance evaluation of proposed NSK
algorithm, we have attempted to evaluate the utility of
DEVS/SOA infrastructure. This study is by far the first ever
conducted study on distributed DEVS/SOA infrastructure. We
used 16 workstations each running DEVS/SOA infrastructure.
Not only it validated the DEVS/SOA architecture as a distributed
simulation platform, it allows us to use it for benchmarking
studies for various other applications. Although we conducted our
research experiments in a LAN setting, deploying the application
over a grid enabled DEVS/SOA infrastructure allows us to
capitalize on the linear speedup that we achieved in our proposed
NSK.
Future work includes the development of dynamic control
parameters, such as, the topology, and a deeper study of migration
rates and frequency. We are also working on exploring other
alternatives with new combinations of different MOEAs to those
used in this paper. Further, comparison of DEVS/SOA
performance with other distributed simulation frameworks is
underway. The experiments designed in this study will be
performed on other frameworks to conduct benchmarks for
DEVS/SOA simulation framework.

8. ACKNOWLEDGMENTS
Omitted for blind review

9. REFERENCES
[1] Arizona Center of Integrative Modeling & Simulation

(ACIMS), http://www.acims.arizona.edu, 2008.
[2] Antonakos, J. L. and Mansfield, K. C. Practical Data

Structures using C/C++. Prentice Hall, 1999.
[3] Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C.,

Mamagkakis, S., Hidalgo, J. I., Catthoor, F., Soudris, D. and
Lanchares, J. Optimization of dynamic data structures in
multimedia embedded systems using evolutionary
computation. In SCOPES '07: Proceedingsof the 10th
international workshop on Software & compilers for
embedded systems (2007), 31-40.

[4] Benini, L. and de Micheli, G. System-level power
optimization: techniques and tools. ACM Trans. Des. Autom.
Electron. Syst., 5, 2 (2000), 115-192.

[5] Cantú-Paz, E. Efficient and Accurate Parallel Genetic
Algorithms. Kluwer Academic Publishers, 2000.

[6] Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E.,
Kjeldsberg, P. G., Achteren, T. V. and Omnes, T. Data
access and storage management for embedded
programmable processors. Kluwer Academic Publishers,
2002.

[7] Coello, C. A Comparative Survey of Evolutionary-based
Multiobjective Optimization Techniques. Knowledge and
Information Systems, 1 (1999), 269-308.

[8] Corne, D. W., Jerram, N. R., Knowles, J. D. and Oates, M. J.
PESA-II: Region-based Selection in Evolutionary
Multiobjective Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001)
(2001), 283-290.

[9] Daylight, E. G., Atienza, D., Vandecappelle, A., Catthoor, F.
and Mendias, J. M. Memory-access-aware data structure
transformations for embedded software with dynamic data
accesses. IEEE Transactions on VLSI Systems, 12 (2004),
269-280.

[10] Deb, K. Multiobjective Optimization using Evolutionary
Algorithms. John Wiley and Son Ltd., 2001.

[11] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6, 2
(2002), 182-197.

[12] Edler, J. Dinero IV Trace-Driven Uniprocessor Cache
Simulator. http://pages.cs.wisc.edu/markhill/DineroIV, 2008.

[13] Fernandez, J. M., Vila, P., Calle, E. and Marzo, J. L. Design
of Virtual Topologies using the Elitist Team of
Multiobjective Evolutionary Algorithms. In Proceedings of
International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS'07)
(2007), 266-271.

[14] Fonseca, C. M. and Fleming, P. J. Genetic Algorithms for
Multiobjective Optimization: Formulation Discussion and
Generalization. In Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA 1993) (1993),
416-423.

[15] Hajela, P. and Lin, C. Y. Genetic search strategies in
multicriterion optimal design. Structural Opt., 4 (1992), 99-
107.

[16] Hardee, K., Jones, F., Butler, D., Parris, M., Mound, M.,
Calendar, H., Jones, G., Aldrich, L., Gruenschlaeger, C.,
Miyabayashil, M., Taniguchi, K. and Arakawa, I. A 0.6V
205MHz 19.5ns tRC 16Mb embedded DRAM. In IEEE
International Solid-State Circuits Conference (ISSCC)
(2004).

[17] Horn, J., Nafpliotis, N. and Goldberg, D. E. A niched Pareto
genetic algorithm for multiobjective optimization. In
Proceedings of the First IEEE Conference on Evolutionary
Computation (1994), 82-87.

[18] Kharevych L. and Khan R. 3D Physics Engine for Elastic
and Deformable Bodies.
http://www.cs.umd.edu/Honors/reports/kharevych.html.

[19] Michalewicz, Z. Genetic Algorithms + data structures =
Evolution Programs. Springer-Verlag, 1996.

[20] Mittal, S., Risco-Martín, J. L. and Zeigler, B. P. DEVS-
Based Web Services for Net-centric T&E. In Summer
Computer Simulation Conference, SCSC 2006 (2006).

[21] Mittal, S., Risco-Martin, J. L. and Zeigler, B. P. DEVS/SOA:
A Cross-platform framework for Net-centric Modeling and
Simulation using DEVS. Submitted to SIMULATION:
Transactions of SCS, in review (2007).

[22] de Toro Negro, F., Ortega, J., Ros, E., Mota, S., Paechter, B.
and Martín, J. PSFGA: Parallel Processing and Evolutionary
Computation for Multiobjective Optimisation. Parallel
Computing, 30, 5-6 (May-June 2004), 721-739.

[23] Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert, K.,
Brockmeyer, E., Kulkarni, C., Vandercappelle, A. and
Kjeldsberg, P. G. Data and memory optimization techniques
for embedded systems. ACM Trans. Des. Autom. Electron.
Syst., 6, 2 (2001), 149-206.

[24] Ranjithan, S. R., Chetan, S. K. and Dakshima, H. K.
Constraint Method-Based Evolutionary Algorithm (CMEA)
for Multiobjective Optimization. In First International
Conference on Evolutionary Multi-Criterion Optimization
(2001), 299-313.

[25] Risco-Martin, J. L., Atienza, D., Hidalgo, J. I. and
Lanchares, J. Analysis of Multi-Objective Evolutionary
Algorithms to Optimize Dynamic Data Types in Embedded
Systems. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2008) (2008).

[26] Schaffer, J. D. Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms. In Genetic Algorithms and
their Applications: Proceedings of the First International
Conference on Genetic Algorithms (1985), 93-100.

[27] Schott, J. R. Fault Tolerant Design Using Single and
Multicriteria Genetic Algorithm Optimization, Ph.D. thesis,
Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1995.

[28] Shivakumar P. and Jouppi N. P. Cacti 3.0: An Integrated
Cache Timing, Power, and Area Model, Compaq Computer
Corporation, 2001/2, 2001.

[29] Veldhuizen, D. A. V., Zydallis, J. B. and Lamont, G. B.
Considerations in Engineering Parallel Multiobjective
Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation, 7, 2 (April 2003), 144-173.

[30] Wilson, L. and Moore, M. Cross-pollinating parallel genetic
algorithms for multiobjective search and optimization.
International Journal of Foundations of Computer Science,
16, 2 (April 2005), 261-280.

[31] Wuytack, S., Catthoor, F. and Man, H. D. Transforming set
data types to power optimal data structures. IEEE
Transactions on Computer-Aided Design, 15, 6 (1996), 619-
629.

[32] Xiong, S. and Li, F. Parallel Strength Pareto Multi-objective
Evolutionary Algorithm for Optimization Problems. In
Proceedings of the 2003 Congress on Evolutionary
Computation (CEC'2003) (2003), 2712-2718.

[33] Zeigler, B. P., Kim, T. and Praehofer, H. Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press,
2000.

[34] Zitzler, E. and Thiele, L. Multiobjective evolutionary
algorithms: a comparative case study and the strength Pareto
approach. IEEE Transactions on Evolutionary Computing, 3,
4 (1998), 257-271.

[35] Zitzler, E., Laumanns, M. and Thiele, L. SPEA2: Improving
the strength Pareto evolutionary algorithm for multiobjective
optimization. In Proceedings of the Evolutionary Methods
for Design, Optimization and Control with Application to
Industrial Problems (2002), 95-100.

[36] Zydallis, J. B., van Veldhuizen, D. A. and Lamont, G. B. A
Statistical Comparison of Multiobjective Evolutionary
Algorithms Including the MOMGA-II. In First International
Conference on Evolutionary Multi-Criterion Optimization
(2001), 226-240.

