
Distributed, Large-Scale Latent Semantic Analysis by
Index Interpolation

Sebastiano Vigna
DSI, Università degli Studi di Milano, Italy

ABSTRACT
Latent semantic analysis [12] is a well-known technique to
extrapolate concepts from a set of documents; it discards
noise by reducing the rank of (a variant of) the term/document
matrix of a document collection by singular value decompo-
sition. The latter is performed by solving an equivalent sym-
metric eigenvector problem on a related matrix. Scaling to
large set of documents, however, is problematic because ev-
ery vector-matrix multiplication required by iterative solvers
requires a number of multiplications equal to twice the num-
ber of postings of the collection. We show how to combine
standard search-engine algorithmic tools in such a way to
compute (reasonably) quickly the cooccurrence matrix C of
a large document collection, and solve directly the associ-
ated symmetric eigenvector problem. Albeit the size of C is
quadratic in the number of terms, we can distribute its com-
putation among any number of computational unit without
increasing the overall number of multiplications. Moreover,
our approach is advantageous when the document collection
is large, because the number of terms over which latent se-
mantic analysis has to be performed is inherently limited
by the size of a language lexicon. We present experiments
over a collection with 3.6 billions of postings—two orders
of magnitudes larger than any published experiment in the
literature.

Keywords: Latent semantic analysis, search engine

1. INTRODUCTION
Latent semantic analysis [12] applies dimensionality reduc-
tion to the term/document matrix of a document collection.
In general, dimensionality reduction is a technique exploit-
ing the existence of low-rank approximations of matrices cor-
relating some kind of entities and features (in the case of
document collections, documents and terms). Dimensional-
ity reduction gives a low-rank approximation that has the
same salient features of the original matrix, but can be rep-
resented very compactly in a low-dimensional space. When
considering term/document matrices, for instance, good ap-

proximations are typically of rank 200/300.

These reductions are usually computed by singular value
decomposition, a method originally developed by Eugenio
Beltrami and Camille Jordan to characterise linear trans-
formations up to rotations in the source and target spaces;
Eckart and Young [14] proved that it provides, in a precise
sense, the best possible low-rank approximation. Since then,
singular value decomposition has found literally hundreds of
applications in several different fields.

The classic application of singular value decomposition to
text analysis, called latent semantic indexing by its inven-
tors [12], applies dimensionality reduction to the classic vec-
tor space representation, in which every document is rep-
resented by a vector in the space of features (using within-
document frequencies or some weighting scheme) and rele-
vance is measured, for instance, by cosine similarity with a
query.

The interesting phenomenon experimentally measured by
the inventors of latent semantic indexing is that solving
queries in the low-rank approximation of the term/document
matrix gives actually better results that solving queries in
the full matrix. The interpretation given by the authors
is that dimensionality reduction squeezes terms into a low-
dimensionality concept space. At that point, documents are
evaluated with respect to their relevance to a concept, rather
than to a term, which frees the results of the search from
the strict necessity of returning documents containing the
query terms.

A particularly striking analysis of this phenomenon has been
given recently by Bast and Majumdar [2]: essentially, la-
tent semantic indexing (and more general dimensionality-
reduction techniques) owes its success to the ability to iden-
tify cooccurrence of terms (i.e., terms that appear in the
same document). Terms appearing in the same document
are obviosuly most related, but also terms coccorring with
a third term, and so on. Bast and Majumdar argue theoret-
ically and show experimentally that using the eigenvectors
of the cooccurrence matrix (which are part of the singular
value decomposition) it is possible to deduce a relatedness
score between terms that can be used to expand documents:
the results, in terms of several retrieval-success scores, is
even superior to that of a full latent semantic indexing.

This round of results suggests that getting the first few hun-

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3500

dreds (or even more) eigenvectors of the cooccurrence ma-
trix is at the core of latent semantic techniques. Actually,
from these eigenvectors and the original matrix it is possible
to rebuild the full singular value decomposition: many so-
phisticated methods for compute the singular value decom-
position reduce it indeed to a symmetric eigenvector prob-
lem [4], considering usually either one of the symmetric ma-

trices

(
0 M

MT 0

)
, M MT or MT M (for a very up-to-date

review, see [19]).

This paper started from the obvious observation that in-
verted indices can be seen as a compact, efficient represen-
tation of the matrix M . Less obviously, standard techniques
used in the resolution of disjunctive queries can be slightly
modified to compute the cooccurrence matrix rather quickly.
With some more work, we can also do the same in limited
memory, and possibly distributing the computation among
several units, without increasing the number of multiplica-
tions required. Then, we are faced again with a symmetric
eigenvector problem. However, since the term/document
matrix of a large collection is skinny (the number of rows
is significantly smaller than the number of columns, in par-
ticular in web applications, were the document collection is
very large), we actually have a rather small matrix, and the
corresponding eigenvector problem poses easier scale prob-
lems.

Essentially, an iteration over the usual symmetric reduction
we mentioned requires 2p multiplications, where p is the
number of postings1, whereas an iteration over the cooc-
currence matrix needs q ≤ m2, where q is the number of
pairs of cooccurrent terms m is the number of terms: since
p grows more or less lineary with the number of documents
n, whereas m is inherently limited by the number of terms
in a language, at some point the explicit computation of
the cooccurrence matrix becomes competitive. (Moreover,
if m becomes large most terms end up having a very low
frequency, so q � m2.)

There is of course a major obstacle—computing and storing
the cooccurrence matrix C = M MT itself. If (for the sake of
simplicity) we assume that all documents contain the same
number of distinct terms c, it requires n

(c
2
)

multiplications,
and, computing C in the obvious way, 2m passes over the
whole index, but of course this is not acceptable. The cooc-
curence matrix can also be computed (with the same num-
ber of multiplications) by scanning the document collection,
provided that C fits into main memory and can be accessed
randomly—again, an unacceptable assumption.2

We present a simple technique, index interpolation, that
leverages standard data structures used in search engines
to split and distribute the computation of the cooccurrence

1A posting is a pair 〈d, t〉 such that term t appears in docu-
ment d. Postings correspond (or at least are a superset) of
the nonzero entries of the term/document matrix M .
2More sophisticated approached could involve storing par-
tial images of C during the scan of the document collection.
The partial images could be saved and merged later. The
space occupied by such images would however be enormous,
and indeed there are no published reports in the literature
using such an approach for large-scale collections.

matrix. If a b×b support matrix can be accessed randomly in
main memory, by index interpolation the number of passes
over the index is reduced by a factor log b/b2, and can be
performed easily in a distributed fashion.

In Section 2 we define the basic notation. Then, we discuss
the standard queue-based techniques for disjunctive query
resolution and we introduce the front, a new operation on
priority queues that we use to interpolate the index. Finally,
we present some experiments that show the feasiblity and
the efficiency of our approach.

We remark that in this paper we do not discuss the pros and
cons of latent semantic analysis, which has its own forma-
tions of supporters and detractors, and the numerical prob-
lems related to eigenvector computations, which are treated
by a vast literature; rather, we concentrate on the algorith-
mic problem of computing distributedly the cooccurrence
matrix of large document collections starting from readily
available search-engine tools.

Scalability of latent semantic analysis has always been a
core concern [8]. In their upcoming book on information
retrieval [18], Manning, Raghavan and Schütze remark that
“at the time of this writing, we know of no successful ex-
periment with over one million documents. This has been
the biggest obstacle to the widespread adoption to LSI”. In a
most recent effort based on out-of-core (e.g., disk-based) sin-
gular value decomposition [19], experiments are performed
on less than one million document, about 300 000 terms and
62 millions of postings.

We present experimental results run on easily scalable com-
modity hardware for up to 300 000 terms, 25M documents
and 3.6 billions of postings. They show that using index
interpolation latent semantic analysis can be applied to col-
lections significantly larger than it was previously possible.

2. BASIC SETUP
We consider a collection of n documents D, a set of m terms
T , and a term/document matrix M that has m rows and n
columns; Mtd is the value correlating term t with document
d: for instance, 0 or 1 if we consider just occurrence, or the
count (a.k.a. within-document frequency), that is, the num-
ber of occurrences (possibly zero) of term t in document d, or
more sophisticated weighting schemes such as TF/IDF [22]
or BM25F [21]. The singular value decomposition

M = U6V T

expresses M as the product of two m×m and n×n orthogonal
matrices (U and V , respectively) and an m × n matrix that
is zero everywhere except on the diagonal, where it has non-
negative entries (6). The columns of U and V are referred
to as left and right singular vectors of M and the values of 6

as the singular values of M . Every real matrix has a singular
value decomposition.3

Dimensionality reduction by singular value decomposition is
obtained by sorting in decreasing order the singular values
and keeping just the first k (the others are replaced with

3Actually, every complex matrix has a singular value decom-
position, but in that case U and V are unitary.

zeroes). This gives us a new matrix M ′ of rank at most k
that is the best rank-k approximation of M , in the sense that
it minimises the difference with M in Frobenius norm [14].

A important fact is that U is the eigenvector matrix of
M MT , as

M MT
= U6V T V 6T U T

= U66T U T

and the same holds dually for V . Moreover, any of the two
matrices is sufficient to rebuild the singular value decompo-
sition completely (actually, the standard linear-algebra exis-
tence proof for the singular value decomposition starts from
the eigenvector decomposition of MT M or M MT).

We are particularly interested in U because its first k columns
provide a measure of correlation of each term with the first
k “concepts” (dimensions of the low-dimensional space) de-
fined by dimensionality reduction. This columns can be
used, for instance, for query expansion by measuring co-
sine similarity between the k-dimensional vectors associated
to each term, or for document reranking after a query has
been resolved with standard keyword-based techniques.

Actually, as we already mentioned, starting from the first
columns of U it is possible to deduce a relatedness score [2]
between terms: then, by resolving a query against the origi-
nal collection, where however documents have been expanded
so to contain related terms, one can obtain results compa-
rable or better than those of full latent semantic indexing.
The relatedness score is computed on the basis of the eigen-
vectors of C only, and this was one of the main motivations
for the present paper.4

3. DISJUNCTIVE QUERIES
We briefly present a quite standard framework for the reso-
lution of disjunctive queries in a search engine. We assume
that the document collection has been indexed, so that for
each term we obtain an iterator returning the documents5 in
which the term appears (i.e., nonzero columns of M for that
term) in increasing order. (For a comprehensive treatment
of inverted indices, see [18].)

Given a set of terms Q ⊆ T , we denote with
∨

Q the as-
sociated disjunctive query. Its semantics is given by the set
of documents which contain a nonzero element on at least
one column with index in Q (in the simpler case, the set
of documents containing the terms in Q). The standard
lazy (a.k.a. document-at-a-time) way to resolve a disjunc-
tive query is by means of an indirect priority queue.

4We remark that this document-expansion phase (in the
form suggested in [2]) poses its own scale problems: it is not
feasible to compare a query against each on-the-fly-expanded
document of a collection. However, it is an interesting chal-
lenge to build, compress and access quickly a conceptually
expanded index that indexes expanded instances of the orig-
inal documents. Whereas the low-rank term/document ma-
trix is large, dense, and difficult to access, such an index
might benefit from the well-developped techniques used in
search engines.
5Technically, the iterator returns document pointers—
integers denoting the documents themselves. To avoid ex-
cessive verbosity, we use “document” for “document pointer”
whenever no confusion is possible.

enqueue(P, x) insert item with index x in the queue
top(P) returns the index of the top item
dequeue(P) returns the index of the top item

and deletes it from the queue
change(P) signals that the top item has changed
size(P) returns the number of indices currently in P

Table 1: The operations available for an indirect
priority queue.

An indirect priority queue P is a data structure based on an
reference array A, which is managed outside the queue itself,
and a priority order that compares items from the reference
array. At each time, the queue contains a set of indices
into the reference array (initially, a specified set, possibly
empty). An array index x can be added to the queue calling
the function enqueue(P, x).

The index of the least item in the reference array with re-
spect to the priority order can be accessed by invoking the
function top(P). The index of the least item with respect
to the priority order is also returned by dequeue(P), which
removes the index from P.

The data structure assumes that the only item of the ref-
erence array that might change its value is A[top(P)]. Such
a change must be communicated immediately to the queue
by calling the function change(P). Table 1 summarises the
operations available on an indirect priority queue.

A standard heap-based implementation [23] uses linear space
and logarithmic time for all operations modifying the queue.
The resolution procedure for a disjunctive query

∨
Q in-

volves one iterator per term in Q, and an indirect queue with
a reference array containing the last document returned for
each term by its respective iterator. The queue compara-
tor is the natural document ordering. Initially, the queue is
filled with indices 0, 1, . . . , |Q| − 1 and the reference array
contains the first document returned by each iterator. The
first document d satisfying the query is A[top(P)]. Then,
we iteratively advance the iterator of index top(P), update
the corresponding entry A[top(P)] and update the queue by
invoking change(P). When the top element is greater than
d, we have the next document satisfying the query. When
an iterator is exhausted, its index is dequeued, and when
the queue is empty the process terminates.

The front. We now introduce a new basic operation on an
indirect queue: the front. The front of an indirect priority
queue P, denoted by front(P), is given by the set of indices
for which the corresponding value in the reference array is
equal to top(P):

front(P) := { i | A[i] = A[top(P)] }.

A simple example of a query, its result and the corresponding
fronts is given in Table 2. The front can be trivially com-
puted in linear (in the number of front element) time in a
heap-based queue by visiting the heap as a binary tree (other
priority-queue implementations might or might not support
front construction in linear time; this has to be proved on a
case-by-case basis).

Term Document pointer
a 0, 3, 5, 7, 9
b 3, 7, 10
c 0, 1, 6, 10
d 2, 3, 5, 9
e 1, 4

Document pointer Front
0 a
2 d
3 a, b, d
5 a, d
7 a, b
9 a, d
10 b

Table 2: On the left, a toy index in tabular form.
On the right, the result (document pointers) of the
query a ∨ b ∨ d and the corresponding fronts.

In our context, the front provides the terms of Q actually
appearing in the last document returned by the iterator. In
other words, besides knowing that some terms of a disjunc-
tive query appear in a certain document, the front let us
know exactly which are such terms.

4. BUILDING THE COOCCURRENCE MA-
TRIX BY INDEX INTERPOLATION

We assume that the inverted-index we access contains, be-
side document pointers, the counts (i.e., the number of oc-
currences of a term in a document, a.k.a. within-document
frequency). After the iterator for term t has returned a doc-
ument d, it gives access to the corresponding count (i.e., the
number of occurrences of t in d). From the count and some
global data (e.g., document lengths) we assume to be able to
compute the normalised entry Mtd for each term t appear-
ing in a document d. This arrangement makes it possible to
compute all normalisations we are aware of.

We note the following fundamental fact: given two sets of
terms X, Y ⊆ T , the values of the entries with rows in X
and columns in Y of the cooccurrence matrix C are entirely
determined by the sequence of fronts appearing in the reso-
lution of

∨
X and

∨
Y . This happens because the entry Ctu

is equal to ∑
d∈D

Mtd (MT)du =
∑
d∈D

Mtd Mud ,

and this sum can be obviously restricted to documents in
which both t and u appear. But such documents are ex-
actly those in the intersection of the document-pointer lists
associated to the disjunctive queries X and Y . On the other
hand, for each document d appearing both in the document
list associated to

∨
X and in that of

∨
Y the two fronts

fX (d) and fY (d) fetched just after d has been retrieved con-
tain exactly the terms of X and Y , respectively, that appear
in d. We conclude that by searching for all such d’s, and
enumerating the pairs of terms 〈t, u〉 ∈ fd (X) × fd (Y), we
can compute the entries of C with rows in X and columns
in Y .

We call this technique index interpolation. Note that index

interpolation can be computed using completely standard
inverted-index tools, provided that they give access to the
front of the queues solving disjunctions: we just have to scan
the documents returned by the query(∨

X
)
∧

(∨
Y

)
,

because the semantics of the middle ∧ is exactly given by
the intersection of the document lists associated to X and
Y . Thus, we leverage an existing highly optimised infras-
tructure.

First approximation: one-pass construction. Suppose
we solve a disjunction containing the whole term set T : in
this case, the front associated to each document contains
exactly the terms occurring in the document. Thus, if the
cooccurence matrix would fit our main memory we could
easily write directly in memory the cooccurrence matrix C :
we just iterate on pairs of elements of the front (which pro-
vides all pairs of terms 〈t, u〉 appearing in the same docu-
ment), and we update the entry Ctu suitably. At the end,
we save C in a compressed format for sparse matrices. In
practise, we are rebuilding (in a somewhat contrived way)
the direct information about the collection—the list of terms
appearing in each document.

However, assuming that the C can fit main memory is not
realistic, in particular if we want to work on, say, more than
100 000 terms. Moreover, in many cases building an iterator
requires some resources (e.g., opening files, mapping mem-
ory, etc.) and requiring such resources for the whole term
set T could be prohibitive.

Second approximation: batched construction. We
now refine our strategy: we fix a batch size b such that
we can comfortably store in main memory a b × b matrix
J (of integer of float data, depending on the kind of nor-
malisation applied to M). We assume a numeration t0, t1,
. . . , tm−1 of the terms, and we enumerate rows and columns
in batches Bk = { tkb, tkb+1, . . . , t(k+1)b−1 }. When we pro-
cess the row batch Bi and the column batch Bj , we solve the
query (

∨
Bi)∧(

∨
Bj), and for each document we look at the

fronts of the queues of
∨

Bi and
∨

Bj : as we remarked, the
submatrix of the cooccurrence matrix corresponding to row
indices from Bi and column indices from Bj is entirely de-
fined by the sequence of such fronts. It is just a matter,
for each document satisfying (

∨
Bi) ∧ (

∨
Bj), of enumerat-

ing the cartesian product of the two fronts, and update J
accordingly so that, at the end of the enumeration of the
documents, J contains exactly the submatrix of M we were
looking for. We can at this point store J on disk and try
the next pair of batches.

A pseudocode implementation of the computation of J is
provided in Table 3. We assume that Di and Dj are iterators
over the queries

∨
Bi and

∨
Bj , respectively; the front of Di

can be obtained with front(Di) and the count of each term
t in the front with count(Di , t); analogously for Bj . The
iterator A is obtained by intersection of Di and Dj , and
returns the documents satisfying (

∨
Bi) ∧ (

∨
Bj); finally,

we assume, as usual, that after A has returned a document
d, both Bi and Bj are positioned over d. All iterators are
advanced by a function next() returning the special value

0 forever begin
1 d ← next(A);
2 if d = ⊥ then return;
3 foreach t ∈ front(Di) do
4 foreach u ∈ front(Dj) do
5 Jtu = Jtu + count(Di , t) · count(Dj , u)

6 end;
7 end;
8 end;

Table 3: The procedure for computing the subma-
trix of C corresponding to the terms in row batch Bi
and column batch Bj . The iterator Di enumerates∨

Bi , Dj enumerates
∨

Bj , and A intersects Di and
Dj to enumerate (

∨
Bi) ∧ (

∨
Bj).

⊥ when iteration is completed. We note that an obvious
optimised version can be used if Bi ∩ Bj 6= ∅, as in that case
some entries of J are identical by symmetry.

Batch reuse. If we enumerate row and column batches
in natural order, it is obvious that several column batches
will be in turn combined with the same row batch. Thus,
it is a good idea to store (either in memory or in secondary
storage) the result of the query resolution of the row batch
Bi , so that it can be retrieved for each column batch more
quickly. Unfortunately, the size of the result can be quite
large.

We notice that we have to solve a problem similar to that ap-
proached by the authors of [3]—storing (in our case, caching)
efficiently the results of disjunctive queries. Thus, we use the
same approach: we compress and cache the results of solv-
ing the row batches queries so that document pointers are
gap-encoded, and terms are represented by their frequency
ranks. In this way, terms with high frequency are assigned
small values, which can be represented using suitable univer-
sal instantaneous codes. In any case, the sequence of terms
forming the front associated to a certain document is saved
in gap encoding, so to reduce further space occupancy. In [3],
the authors show that if we assume a Zipf-like distribution
for terms in each batch this encoding provides a compression
close to the empirical entropy of the index, and, in practise,
the result is a very low cost (in our experiments, about one
byte) per posting. Thus, not only in theory the I/O cost is
not larger than scanning the index, but as a matter of fact
we half the number of necessary iterators, the use of the as-
sociated resources, and we incur into the log b speed penalty
caused by heap operations just once per row.

Distributing the computation. The most interesting
feature of the batched approach is that its computations can
be trivially distributed (e.g., by assigning a pair of row/column
batches per machine). The computation of each batch is
completely independent, and it just require access to the
inverted lists of the relevant terms; the latter are highly
compressed and easily extractible from the whole index, or
could be accessed using a high-performance distributed file
system. Once again, this kind of access is common in a
search engine.

Note that such an assignment corresponds to delegate the
computation of a submatrix of C to each computational
unit. In a parallel or grid-like computation environment
(e.g., Google’s MapReduce [11]), say endowed with u com-
putational units, the subdivision will give rise to submatrices
of size m/

√
u×m/

√
u which will be manageable even with a

large number of terms.

We assume to use an implicitly restarted Lanczos-method
iterative solver [24], which is the tool of choice for approx-
imated large-scale eigenvector computations. To work on a
symmetric eigenvalue problem, the solver just require the
ability to compute the product of the involved matrix with
a vector.

Such a solver can be easily run in a distributed fashion: to
compute Cv for a vector v, we just split v (which is of size
m) into

√
u pieces v0, v1, . . . , v√u−1 of size m/

√
u: each

computational unit can then independently and in parallel
compute the product of its own m/

√
u × m/

√
u submatrix

with a suitable vj . The results can be gathered exchanging

overall just O(m
√

u) floating-point numbers and performing
just O(m

√
u) sums.

There is also some literature about parallel (e.g., [25]) solu-
tion of symmetric eigenvector problems using Lanczos itera-
tive methods that could be applied to further speed up this
phase.

5. COMPARING COMPUTATION TIME
In this section we give a rather rough comparison of the
effort required to use a centralised, standard approach and
ours.

Let us say that we have a set of n documents and a set of m
terms giving rise to p postings. We denote with k the num-
ber of required eigenvectors, and with s the number of steps
required by the solver to compute them. Note that since we
are just precomputing C , the number of steps required is the
same both in the standard approach and in our case.

It is however important to note that the iterative solver has
to multiply by M and MT ; to accomplish this task keep-
ing in memory just a vector of m element, access by row
to MT , rather than to M , is needed (first we multiply MT

and dump the resulting vector v to disk; then, we read v

in streaming and build incrementally, rather than coordi-
natewise, the product Mv, always accessing MT by rows).
While storing and compressing M is an everyday activity in
a search engine, storing and compressing MT is a different
task needing different techniques. (We must also remark,
however, that starting from a non-indexed document col-
lection MT is actually easier to build, as no inversion is
needed.)

The number of multiplications required by a Lanczos itera-
tive solver using the standard approach is 2ps; from an I/O

viewpoint, 2s passes over some representation of MT are re-
quired (or a pass over M and another pass over MT , in case
both matrices are available). The corresponding time bound
is O(ps), assuming the matrices have been compressed so
that only to nonzero entries have to be read.

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 d

oc
um

en
ts

Number of distinct terms

Figure 1: A plot of the number of documents for
each value of the number of distinct terms, com-
pared with a suitably scaled lognormal distribution
with parameters µ = 5, σ = 1.

In our case, we have two distinct activities: the construction
of C , and the iterative computation of C ’s eigenvectors. For
both cases, we can just try to provide some estimates, as
the number of multiplications depends deeply on the distri-
bution of terms within documents.

If the n documents in the collections have each c0, c1, . . . , cn−1
distinct terms, to build C we will need

∑
0≤d<n

(
cd
2

)

multiplications (as we already noted, this is independent on
the number of batches and of the degree of distribution of
the computation). Note that

∑
d cd = p.

To relate (at least to some degree of approximation) this
number of p, we assume a lognormal distribution for the ci ;
our assumption stems from the lognormal model for the dis-
tribution of document lengths [13, 20], but of course this is
a very rough approximation, as document lengths count the
number of occurrences of terms, not the number of distinct
terms. Nontheless, in Figure 1 we show that actually the
assumption fits rather well the distribution of the number
of distinct terms in the GOV2 collection.

This means that we can try to estimate the number of multi-
plications required for the computation of C by considering
the sum of the squares of a large number of independent,
identically distributed lognormal random variables with av-
erage p/n:

∑
0≤d<n

(
Cd
2

)
=

1
2

∑
0≤d<n

C2
d −

1
2

∑
0≤d<n

Cd .

Since Cd = eXd for some normally distributed variable Xd ,
say with variance σ , C2

d = e2Xd has still lognormal distri-
bution. If we denote with µ the mean of Xd (so p/n =

eµ+σ 2/2), we have that the mean of L2
d is

e2(µ+σ 2)
= (p/n)2eσ 2

We conclude that∑
0≤d<n

(
Cd
2

)
≈

1
2

(
eσ 2

p2/n − p
)
.

In the end, if we denote with c = p/n the average number
of distinct terms per document, the experimental fact that
for GOV2 σ = 1 tells us that we need ≈ 1.5 cp multiplica-
tions. Essentially, modulo a small multiplicative factor the
collection behaves as if all documents had the same num-
ber of distinct terms c (in which case we would need exactly
nc(c + 1)/2 = p(c + 1)/2 multiplications).

Once C is computed, we need to run an iterative solver.
Estimating the number of multiplications required is now
rather difficult, because the trivial estimate q ≤ m2 for the
number q of nonzero entries of C does not take into account
that, albeit not sparse as M , C is still sparse, in particular
if stopwords are eliminated. We have no simple model to
propose: experimentally, Table 4 shows that if we eliminate
stopwords and proceed including more and more terms of
low frequency, the matrix becomes quadratically larger, but
it also becomes sparser.

In the range shown, with respect to the number of terms
q varies almost linearly: this is due to the fact that when
we add low-frequency terms we are mostly increasing q by
cooccurrences with frequent terms, as terms appearing in
less than 0.1% of a collection have a very low probability
of cooccurrence. This also implies that by a more careful
stopword selection q can be reduced significantly.

All in all, up to 150 000 terms the number of multiplications
required by our method is less than half of that required
by the standard method. At 300 000, the ratio is reversed
and our method requires almost twice the number of mul-
tiplications. We claim, however, that the possibility of per-
fect parallelisation of the matrix/vector products more than
compensate for this loss.

In any case, the overall time required by the iterative solver
for the s passes over C is O(qs). The time required for the
passes over the index during the construction of C requires
some more consideration instead, as it depends on the batch
size b and on batch reuse.

It is clear that there are two extremes in the choice of batch
size: if B0 = T , we make a single pass over the whole in-
dex, but we need to access the whole cooccurrence matrix
randomly, whereas if |Bi | = 1 for all i we essentially com-
pute the product M MT in the standard way using constant
additional memory. Note that the overall number of mul-
tiplication is independent of the batch size, as we examine
the cooccurrence of two terms in a document exactly once,
but the number of passes over the index is 1 in the first case
and 2m in the second case. On the other hand, in the first
case we have to manage a large heap of size m, imposing a
log m slowdown on query resolution, whereas in the second
case there is no cost associated to heaps.

Min. Freq Terms Postings Nonzero Interp. Iter. (seq) Total (seq) Total (16 CPUs)
100 ≈ 300 000 3.6 G 6.1 G (13.5%) 23.2 h 1640 s 493 h (0.52 ms/p) 42.5 h (0.043 ms/p)
300 ≈ 150 000 3.58 G 3.5 G (31.1%) 18.3 h 800 s 234 h (0.23ms/p) 22.3 h (0.022 ms/p)
600 ≈ 100 000 3.56 G 2.2 G (44%) 18.2 h 460 s 134 h (0.14ms/p) 16.2 h (0.016 ms/p)
2100 ≈ 50 000 3.5 G 0.8 G (64%) 17.7 h 130 s 42 h (0.04ms/p) 7.3 h (0.0075 ms/p)

Table 4: Postings, nonzero entries in the upper triangular part of the cooccurrence matrix, interpolation
time, sequential time for a single iteration of the eigensolver and total sequential and parallel time for
different subsets of terms. The notation ms/p denotes milliseconds per posting. The terms were selected
by discarding stopwords, terms containing digits, terms longer than 30 characters and then thresholding the
minimum frequency. The overall number of iterations required to compute the 300 required eigenvectors is
1051 in all cases.

By batching, we reduce the number of passes to (m/b)2, but
each pass has a log b slowdown due to heap management.
Actually, since most of the cost of index scanning is itera-
tor access and query resolution, and these costs are to be
counted just once per row by batch reuse, an accurate es-
timate the time required by index scanning is O(p(m/b +
1) log b), which we confirm experimentally in Section 6.

Nonetheless, there are several additional factors to take into
account: a batch of large size means that several posting lists
have to be scanned in parallel, which, depending on the size
of the index, might give rise to a significant disk-seek activ-
ity. Finally, if the batch is too large the cooccurrence matrix
might be significantly larger than the processor second-level
cache, resulting in a high cost in term of cache misses. All
these problems, however, are easily solvable once the com-
putation is distributed among a large number of units.

6. EXPERIMENTS
We report some experiments witnessing the feasibility of our
approach using commodity PCs with a Xeon 2.80GHz pro-
cessor and 4GiB of RAM (but we actually use a fourth of
that). We report also timings for the same experiments run-
ning in parallel on 16 CPUSs of the same kind.

We start from an MG4J6 index of the TREC GOV2 collec-
tion (about 25M documents). MG4J has a number of facil-
ities to manipulate and transform inverted indices that are
particularly suited to the computation we described. First of
all, we fix a stopword list of 541 terms (obtained by the Cross
Language Evaluation Forum), we eliminate terms contain-
ing digits and terms longer than 30 characters. Then, we use
MG4J’s built-in facilities to eliminate unwanted terms from
the index and generate indices with an increasing number of
terms by thresholding the minimum frequency (see Table 4).

These limitations are dictated by the need of including all
“meaningful” terms: by thresholding the frequency we avoid
the enourmous amount of garbage of a web collection.

This point deserves a full discussion, as, of course, the eigen-
vectors of C do change if terms are removed from the collec-
tion. In the literature attacking large-scale latent semantic
analysis, different approaches have been used in the past:
for instance, Martin et al. [19] uses a preprocessed collec-

6MG4J (Managing Gigabytes for Java) is a Java search en-
gine [7] developed by the author in collaboration with Paolo
Boldi.

tion (where preprocessing is not completely defined, and in-
cludes at list the removal of a “large stop list”) but then do
not remove any term from the collection, whereas Bast and
Majumdar [2] performs several kinds of term removal that
seem to be similar to ours (we cannot be more precise be-
cause the authors do not describe fully the criteria for inclu-
sion/exclusion); since the second paper contains a full and
very successful result evaluation, we assume that stopwords
and low-frequency terms can be removed harmlessly.

It should also be noted that web collections make term re-
moval dramatically necessary : our index of GOV2, for in-
stance, contains 34M terms, most of which are of course
garbage (e.g., strings appearing in base64 encodings of mailing-
list attachments). All literature we are aware of applies la-
tent semantic analysis to very clean collections (e.g., news-
paper articles) so they can afford to keep around all terms7.
But such collections are akin to a well-kept garden, whereas
the web is a jungle: typos, distorted words, and even ASCII
art, make the number of terms of an index unbelievably
large.

In a real application, the selection would be probably be
less arbitrary that the one we used, and would involve a
dictionary-based or an n-gram based selection (to get out-of-
dictionary terms with a plausible linguistic structure). Since
the main goal of this paper is improving the scalability of
latent semantic analysis, the actual terms involved do not
actually matter: our choice, moreover, creates a set of rather
dense term lists that constitute the worst case for the tech-
niques we describe.

We then proceed to compute the cooccurence matrix C—
actually, since it is symmetric, we just compute the upper
right part. We store the matrix using a simple compression
scheme encoding runs of zeros by their run lengths, as the
matrix is rather sparse. This trivial encoding speeds up
significantly the iterations of the eigensolver.

In Figure 2 we show in logarithmic scale how computation
time decreases when the batch size is increased (we tried

batch sizes 2i , 6 ≤ i ≤ 14). For very small batch sizes, the
computation time is mostly dependent on index access, and
then our model correctly predicts a log b/b scaling. When
batch size goes beyond 1024, the computation time becomes

7More precisely: all literature for which complete
and detailed information about the construction of the
term/document matrix is available.

 100

 1000

 10000

 100 1000 10000

T
im

e
(m

in
ut

es
)

Batch size

Figure 2: Computation time (single machine) plot-
ted with respect to batch size. The line shows the
predicted log b/b scaling. When the batch size be-
comes too large, disk-seek activity and cache misses
become prominent.

dominated by multiplications and memory accesses. When
the batch size exceeds 8192 the time becomes essentially
stable, as we start paying for the non-locality of index access
and cache misses.

Once the matrix is computed, we use ARPACK [17] to ob-
tain its first 300 eigenvectors; sequential and parallel com-
putation times for four different subsets of terms are given
in Table 4.

We remark that these experiments can be easily replicated
using the GOV2 collection, which is (more or less) publicly
available, MG4J and ARPACK, which are free software, and
a few hundreds lines of code (available upon request from the
author).

7. PRIOR WORK
First of all, let us notice that a line of research on large-scale
focuses on a reduction of the original matrix: for instance,
[19] propose to compute clusters of documents and substi-
tute clusters with their centroids, whereas [1, 15] suggest
to partition the document collection into semantically un-
related areas. In both cases the result is a much smaller
matrix, which can be handled using standard techniques.
This approach is clearly orthogonal to the kind of problems
we want to solve.

There is of course a vast literature about parallel and dis-
tributed SVD computation (see, e.g., the comprehensive sur-
vey [6] or the reference handbook [16]) that can be immedi-
ately applied to LSA. Actually, we used for our sequential
tests ARPACK’s implementation of the Lanczos method,
which has a parallel counterpart (PARPACK). Nonetheless,
the technique we describe makes it possible to apply immedi-
ately the simplest parallelisation strategy—having distinct,
nonoverlapping submatrices at each processor. Most of the
effort in parallelising an iterative method is concentrated

in spreading intelligently information among the processors
(e.g., depending on the sparseness of the matrix), but in our
case we will build information exactly where it is needed:
all multiplications happen with perfect parallelism, as all
computational units will compute independently exactly the
part of the cooccurence matrix they need, without increase
of total work.

A parallel implementation of a variant of the Lanczos method
using multiplication by M and MT has been presented by
Berry and Martin in [5]. As an example, they report, on a
network of 16 dual (450MHz) UltraSPARC II 64-bit proces-
sors with 512 Mbytes SDRAM, 10 minutes (0.025 ms/posting)
for computing the first 100 eigenvector of the TREC LA-
TIMES collection (156 413 terms, 131 896 documents, ≈ 23.5M
postings) using less than 300 iterations. A direct compari-
son of the final timing per posting, rescaled for the different
number of iterations (0.08 ms/posting against our 0.022) is
very favourable, but also not very instructive, because our
method is geared to skinny term/document matrices, so it
would probably not work so well on such a small collection.
Moreover, the CPU performances are difficult to compare.
It would rather be interesting to evaluate Berry and Mar-
tin’s parallel Lanczos on a reasonably large collection such
as GOV2.

Finally, there is a vast literature about matrix multiplica-
tion. Most of the literature, however, is concerned with the
product of square matrices, and all results we are aware of
for rectangular matrices (starting with the classic paper by
Coppersmith and Winograd [10], later refined by Copper-
smith [9]) require random access to the matrices involved,
which is not feasible in our setting.

To the best of our knowledge, the published experiments
with largest corpora are those performed in [19]: using an
AMD Opteron 240 running at 1.4 GHz, about 20 hours were
necessary to compute 300 eigenvectors of a collection of
62 millions of postings (≈ 800 000 documents, ≈ 300 000
terms), resulting in a cost of ≈ 1.16 ms/posting. We are
able to compute 300 eigenvectors over 3.6 billions of post-
ings (≈ 25 000 000 documents, ≈ 300 000 terms) in 516 hours,
resulting in 0.52 ms/posting, with the benefit of leveraging
an existing infrastructure and an easy parallelisation proce-
dure leading us to 42.5 hours and 0.043 ms/posting.

It must be noted again, however, that a direct confronta-
tion with figures reported in the literature (even scaled by
the number of postings) is not so instructive, as we use a
collection whose number of postings is at least two orders
of magnitude larger, and with such a significant change of
scale many nonlinear effects come into play.

8. CONCLUSIONS AND FUTURE WORK
We have described a simple system to compute the cooccur-
rence matrix of a document collection using minor modifi-
cations to standard tools used in search engines. In a sense,
we are using the machinery of a search engine as an efficient,
distributed matrix multiplier. Thus, we can take advantage
of the large body of knowledge accumulated, of optimised
implementations, and of the compressed matrix representa-
tion implicitly provided by an inverted index. At the same
time, our approach is very scalable and lends itself naturally

to distributed, parallel or grid-like computation.

The inherent limit of our approach is the size of the cooccur-
rence matrix, which led us to (somewhat artificially) limit
the number of terms to about 300 000 in our experiments:
on the other hand, we do not know of published experi-
ment using a larger number of terms. It should be noted
that very frequent terms are usually stopwords, which just
add noise to the term/document matrix; moreover, including
low-frequency terms has little impact on computation time,
and generates very sparse cooccurrence matrices, which can
be compressed.

Depending on the density and on the size of the cooccurrence
matrix, which in turn depend on the distribution of terms
and document sizes in the document collection, the number
of multiplications required by one pass of an iterative solver
using the cooccurrence matrix can be larger or smaller than
that required by a standard approach (i.e., multiplying by

M and MT). It is an interesting open problem to develop a
probabilistic analysis of the density of the cooccurrence ma-
trix that could lead to a choice of one technique or the other,
depending on the structure of the document collection.

As we have discussed, when applicable our techniques are
significantly faster than previous proposals, and the collec-
tions we are able to manage easily are (in postings) at least
two orders of magnitude larger than those reported in the
literature. This opens a number of interesting possibilities
in the application of latent semantic analysis to collections
with dozens of millions of document.

9. ACKNOWLEDGMENTS
The author would like to thank Oerd Cukalla and Alessan-
dro Rinaldi for implementing the first version of the index
interpolator.

10. REFERENCES
[1] Devasis Bassu and Clifford Behrens. Distributed LSI:

Scalable concept-based information retrieval with high
semantic resolution. In M. W. Berry and W. M.
Pottenger, editors, Proc. of the 2003 Text Mining
Workshop, San Francisco, CA, pages 72–82, 2003.

[2] Holger Bast and Debapriyo Majumdar. Why spectral
retrieval works. In SIGIR ’05: Proceedings of the 28th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 11–18, New York, NY, USA, 2005. ACM Press.

[3] Holger Bast and Ingmar Weber. Type less, find more:
Fast autocompletion search with a succinct index. In
Efthimis N. Efthimiadis, Susan T. Dumais, David
Hawking, and Kalervo Järvelin, editors, SIGIR 2006:
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 364–371. ACM, 2006.

[4] Michael W. Berry. Large-scale sparse singular value
computations. International Journal of Supercomputer
Applications, 6(1):13–49, Spring 1992.

[5] Michael W. Berry and Dian I. Martin. Parallel SVD
for scalable information retrieval. In Proceedings of the
International Workshop on Parallel Matrix Algorithms
and Applications, Neuchatel, Switzerland, 2000.

[6] Michael W. Berry, Dani Mezher, Bernard Philippe,
and Ahmed Sameh. Parallel computation of the
singular value decomposition. Rapport 00071892,
Inria, 2003.

[7] Paolo Boldi and Sebastiano Vigna. MG4J at TREC
2005. In The Fourteenth Text REtrieval Conference
(TREC 2005) Proceedings, 2005.

[8] Chung-Min Chen, Ned Stofel, Mike Post, Chumki
Basu, Devasis Bassu, and Clifford Behrens. Telcordia
LSI engine: Implementation scalability and issues. In
Karl Aberer and Ling Liu, editors, Eleventh
International Workshop on Research Issues in Data
Engineering: Document Management for Data
Intensive Business and Scientific Applications,
Heidelberg, Germany, 1-2 April 2001, pages 51–58.
IEEE Computer Society, 2001.

[9] Don Coppersmith. Rectangular matrix multiplication
revisited. J. Complex., 13:42–49, 1997.

[10] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. J. Symbolic
Comput., 9(3):251–280, 1990.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In OSDI
’04: Sixth Symposium on Operating System Design
and Implementation, pages 137–150, 2004.

[12] Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A.
Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[13] Allen B. Downey. The structural cause of file size
distributions. In SIGMETRICS ’01: Proceedings of the
2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages
328–329, New York, NY, USA, 2001. ACM Press.

[14] Carl Eckart and Gale Young. The approximation of
one matrix by another of lower rank. Psychometrika,
1(3):211–218, 1936.

[15] Jing Gao and Jun Zhang. Clustered SVD strategies in
latent semantic indexing. Inf. Process. Manag.,
41(5):1051–1063, 2005.

[16] Erricos J. Kontoghiorghes. Handbook of Parallel
Computing and Statistics. CRC Press, 2006.

[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang.
ARPACK Users’ Guide. Software, Environments, and
Tools. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1998.

[18] Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008. Preprint
available online.

[19] Dian I. Martin, John C. Martin, Michael W. Berry,
and Murray Browne. Out-of-core SVD performance
for document indexing. Applied Numerical
Mathematics, 2007. In press.

[20] Michael Mitzenmacher. Dynamic models for file sizes
and double pareto distributions. Internet Math.,
1(3):226–251, 2004.

[21] Stephen E. Robertson, Hugo Zaragoza, and Michael J.
Taylor. Simple BM25 extension to multiple weighted
fields. In David Grossman, Luis Gravano, ChengXiang
Zhai, Otthein Herzog, and David A. Evans, editors,

Proceedings of the 2004 ACM CIKM International
Conference on Information and Knowledge
Management, Washington, DC, USA, November 8-13,
2004, pages 42–49. ACM, 2004.

[22] Gerard Salton and Chris Buckley. Term-weighting
approaches in automatic text retrieval. Information
Processing and Management, 24(5):513–523, 1988.

[23] Robert Sedgewick. Algorithms in C: Parts 1–4:
Fundamentals, data structures, sorting, searching.
Addison–Wesley, Reading, MA, USA, 1998.

[24] Danny C. Sorensen. Implicit application of polynomial
filters in a k-step Arnoldi method. SIAM J. Mat.
Anal. Appl., 13(1):357–385, 1992.

[25] Kesheng Wu and Horst Simon. A parallel Lanczos
method for symmetric eigenvalue problems. In
Proceedings of Supercomputing’97 (CD-ROM), San
Jose, CA, 1997. ACM SIGARCH and IEEE.

