
Approximate Similarity Search in Metric Spaces using
Inverted Files ∗

Giuseppe Amato
ISTI-CNR

Via G. Moruzzi, 1
56124, Pisa, Italy

giuseppe.amato@isti.cnr.it

Pasquale Savino
ISTI-CNR

Via G. Moruzzi, 1
56124, Pisa, Italy

pasquale.savino@isti.cnr.it

ABSTRACT
We propose a new approach to perform approximate similarity search
in metric spaces. The idea at the basis of this technique is that when
two objects are very close one to each other they ’see’ the world
around them in the same way. Accordingly, we can use a measure
of dissimilarity between the view of the world, from the perspective
of the two objects, in place of the distance function of the underly-
ing metric space. To exploit this idea we represent each object of a
dataset by the ordering of a number of reference objects of the met-
ric space according to their distance from the object itself. In order
to compare two objects of the dataset we compare the two corre-
sponding orderings of the reference objects. We show that efficient
and effective approximate similarity searching can be obtained by
using inverted files, relying on this idea. We show that the proposed
approach performs better than other approaches in literature.
Categories and Subject Descriptors: H.3 [Information Storage
and Retrieval]: H.3.3 Information Search and Retrieval;
Keywords: Approximate Similarity Search, Access Methods

1. INTRODUCTION
Traditional database systems are able to efficiently deal with struc-
tured records by using the exact match paradigm. However, in some
cases data cannot be represented effectively as structured records.
Consider for instance, text data, multimedia data, or even biolog-
ical data. In these cases, the similarity search paradigm [11] has
to be used instead of exact match. Similarity searching consists in
retrieving data that are similar, with respect to an application de-
pendent similarity function, to a given query.

Techniques for improving performance of exact match search can-
not be used for similarity search, and the efficiency problem of the
similarity searching paradigm has been discussed since long time
[18, 3, 20]. Techniques to efficiently deal with similarity search
in very specific applications, as for instance full-text search [15,
19], were developed. However, efficient approaches that allow ap-

∗This work was partially supported by the DELOS NoE and the
Multimatch project, funded by the European Commission under
FP6 (Sixth Framework Programme).

plication to generic similarity search problems still need to be in-
vestigated. A promising direction to address this issue is the ap-
proximate similarity search [21, 4, 1, 9] paradigm. Approximate
similarity search provides an improvement in similarity search per-
formance at the price of some imprecision in the results.

We propose a technique for approximate similarity search when
data are represented in generic metric spaces. The metric space ap-
proach to similarity search requires the similarity between objects
of a database to be measured by means of a distance (dissimilarity)
function, which satisfies the metric postulates: positivity, symme-
try, identity, and triangle inequality. A comprehensive dissertation
on similarity search in metric space can be found in [20].

The basic idea of our proposal is that when two objects o1 and o2

are very similar (which in metric spaces means that they are close
one to each other), their view of the surrounding world (their per-
spective) is similar as well. This implies that, if we take a set of
objects from the database and we order them according to their
similarity to o1 and o2, the obtained orderings are also similar. The
basic idea here is that we can approximatively judge the similar-
ity between any two arbitrary objects o1 and o2, by comparing the
ordering, according to their similarity to o1 and o2, of a group of
reference objects, instead of using the actual distance function be-
tween the two objects.

Clearly, it is possible to find some special examples where very
similar (or even identical) orderings correspond to very dissimilar
objects. For instance, if reference points are all positioned on a
line, two objects that are positioned on another line orthogonal to
the first one will produce the same ordering of the reference points,
independently of their actual position. However, we will see that
in real cases, even with a random selection of the reference points,
the accuracy of this approach is very good.

We will also see that this technique can be very efficiently imple-
mented relying on the use of the inverted files, exploiting several
years of investigation on scalable search techniques on this data
structure. In fact, our experiments prove that this technique offers
performance, in terms of efficiency and accuracy, much higher than
other methods existing in literature.

The structure of the paper is as follows. Section 3 formalizes the
idea of searching by using the perspective of the objects. Section
4 shows how this idea can be efficiently supported by the use of
inverted files. Sections 5, 6, and 7 discuss some relevant opti-
mizations to the basic idea and assess the performance of the ap-
proach trough extensive experimentation. Section 8 compares the

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008  978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3486 



proposed approach to approaches from the literature. Section 9
concludes and discusses possible future research directions.

2. RELATED WORKS
Techniques for approximate similarity search can be broadly classi-
fied in techniques that exploit space transformations and techniques
that reduce the amount of data to be accessed. Our approach can be
considered an hybrid approach given that, as we will see, even if it
it mainly based on a space transformation it also adopts techniques
to reduces the amount of data accessed. Many approaches need ob-
jects to be represented as vectors and cannot be applied to generic
metric spaces. A more complete survey can be found in [20].

Among space transformation techniques we mention dimension-
ality reduction techniques as, for instance, those proposed in [7,
12], where the authors propose techniques to approximatively and
efficiently compute the inner product between two vectors by ex-
ploiting an ad-hoc dimensionality reduction. Space transformation
is also used in approximate search techniques based on VA-Files
[17] where dimensionality reduction is obtained by quantizing the
original data objects. Other techniques that fall in the category of
space transformation are FastMap [8], which can be mainly used in
vector spaces, and MetricMap [16] suited to metric spaces.

Techniques that reduce the space to be examined basically aim at
improving performance by accessing and analyzing less data that is
technically needed to have a mathematically precise result. These
strategies try to infer which are the most promising portions of the
space to be examined or to decide when it might be useless to con-
tinue searching for qualifying objects. Many of these techniques
were defined exploiting data structures that use an hierarchical de-
composition of the space, as for instance the M-Trees [5]. In [13,
14] a technique that analyzes the angle formed between objects in
a ball region, the center of this region, and a query object, to decide
when a region has to be accessed is proposed. This technique can
be applied on any data structure based on hierarchical decomposi-
tion of the space by means of ball regions when data are represented
in a vector space. A technique employing a user-defined parame-
ter as an upper bound on approximation error is presented in [21].
The error parameter is used as an upper bound to the error intro-
duced if a region of the space is not accessed when searching. A
technique that retrieves k approximate nearest neighbors of a query
object by returning k objects that statistically belong to the set of
l (l ≥ k) actual nearest neighbors of the query object is also pre-
sented in [21]. The value l is specified by the user as a fraction
of the whole dataset. A technique called Probably Approximately
Correct (PAC) nearest neighbor search in metric spaces is proposed
in [4]. The approach searches the approximate nearest neighbor to
a query object guaranteeing that the introduced error is within a
user-specified confidence interval. A technique that uses a prox-
imity measure to decide which tree nodes can be pruned, even if
their bounding regions overlap the query region, is proposed in [1].
When the proximity of a node’s bounding region and the query re-
gion is small, the probability that qualifying objects will be found
in their intersection is also small. A user-specified parameter is em-
ployed as a threshold to decide whether a node should be accessed
or not. If the proximity value is below the specified threshold, the
node is not promising from a search point of view, and thus not
accessed.

Comparison of our method is made against the proximity based
method, presented above, which from other experiments seems to
be one of the best performing techniques.

3. PERSPECTIVE BASED SPACE TRANS-
FORMATION

Let D be a domain of objects and d : D × D → R be a metric
distance function between objects of D. Let RO ⊂ D, be a set of
reference objects chosen from D.

Given an object o ∈ D, we represent it as the ordering of the ref-
erence objects RO according to their distance d from o. More for-
mally, an object o ∈ D is represented with ō = ORO

d,o , where ORO
d,o

is the ordered list containing all objects of RO, ordered according
to their distance d from o.

We denote the position in ORO
d,o of a reference object roi ∈ RO

as ORO
d,o (roi). For example, if ORO

d,o (roi) = 3, roi is the 3rd near-
est object to o among those in RO. We call D̄ the domain of the
transformed objects. ∀o ∈ D, ō ∈ D̄.

Figure 1 exemplifies the transformation process. Figure 1a) sketches
a number of reference objects (black points), data objects (white
points), and a query object (gray point). Figure 1b) shows the en-
coding of the data objects in the transformed space. We will use
this as a running example throughout the reminder of the paper.

As we anticipated before, we assume that if two objects are very
close one to each other, they have a similar view of the space. This
means that also the orderings of the reference objects according to
their distance from the two objects should be similar. In order to
measure the similarity between two orderings we use the Spearman
Footrule Distance (SFD) [6], which is a popular measure to com-
pare ordered lists. Given two ordered lists S1 and S2, containing
all objects of RO, the SFD between S1 and S2 is computed as the
sum of the absolute differences between positions of objects in the
two orderings. More formally

SFD(S1, S2) =
X

ro∈RO

|S1(ro)− S2(ro)|

We denote the distance between objects in the transformed domain
as d̄(ō1, ō2) = SFD(ORO

d,o1 , ORO
d,o2).

The transformed domain D̄ and the distance d̄ can be used to per-
form approximate similarity search in place of the domain D and
the distance function d. Figure 1c) shows the distance, computed
in the transformed space, of the data objects from the query object.
It can easily be seen that it is consistent (it gives the same ordering)
with the actual distance of data objects from the query.

In the following sections we will discuss how approximate similar-
ity search can be executed very efficiently and precisely using this
space transformation.

4. USING INVERTED FILES
Let us suppose that we have a dataset X ⊂ D and a query q ∈ D.
Suppose we want to search for the k objects of X nearest to q. An
exhaustive approach is that of ordering the entire dataset X accord-
ing to the distance from q and to select the first k objects. Let X̄
be the dataset in the transformed space and q̄ ∈ D̄ the transformed
query. The approximate ordering of X with respect to q can be
obtained in D̄ by computing the distance d̄(q̄, ō),∀o ∈ X . In the
following we will show that this ordering can be obtained by rep-
resenting (indexing) the transformed objects with inverted files and



ō1= (5,2,1,3,4) 

ō2= (4,3,5,1,2) 

ō3= (5,2,3,1,4) 

ō4= (3,5,2,1,4) 

q̄ = (5,1,2,3,4) 

 

    a) b) c) 

1 

2 

3 4 

q 

o2 

o3 

o4 

o1 5 

603021),(

401120),(

1242222),(

200110),(

4

3

2

1

=++++=

=++++=

=++++=

=++++=

oqd

oqd

oqd

oqd

Figure 1: Example of perspective based space transformation. a) Black points are reference objects; white points are data objects;
the gray point is a query. b) Encoding of the data objects in the transformed space. c) Distances in the transformed space

using search algorithms derived from the full text search area [15,
19]. Let us see this in details.

We can index transformed objects with inverted files as follows.
Entries (the lexicon) of the inverted file are the objects of RO. The
posting list associated with an entry ro ∈ RO is a list of pairs
(o, ORO

o (ro)), o ∈ X , that is a list where each object o of the
dataset X is associated with the position of the reference object ro
in ō. In other words, each reference object is associated with a list
of pairs each referring an object of the dataset and the position of
the reference object in the transformed object’s representation. For
instance, an entry (o, 7) in the posting list associated with reference
object ro, indicates that ro is the 7th closest object to o among those
in RO.

Therefore, the inverted file has the following overall structure:

ro1 → ((o1, O
RO
o1 (ro1)), . . . , (on, ORO

on
(ro1)))

. . .
rom → ((o1, O

RO
o1 (rom)), . . . , (on, ORO

on
(rom)))

where n is the size of the dataset X and m is the size of the set of
reference objects RO.

Figure 2 shows the inverted file obtained for the running example
in Figure 1.

A basic algorithm that quickly computes the distance d̄ of all ob-
jects of the dataset X from q using an inverted file data structure
is given in Figure 3. The Algorithm uses an accumulator ao, as-
sociated with each object o found, to incrementally compute the
distance d̄(ō, q̄). The set of accumulators A is initially empty (line
1.). The posting lists of the various entries are accessed (lines 2.
and 3.) and for each entry in a posting list (line 4.) if the object
is seen for the first time a new accumulator is added to the list of
accumulators (lines 5.–7.). Then the value of the accumulator is up-
dated by adding the difference in position of the current reference
object ro, in ORO

d,q and ORO
d,o (line 8.). At the end of the algorithm

execution all objects are associated with an accumulator that con-
tains their distance d̄ from the query object. It is easy to maintain
the accumulators ordered during the algorithm execution so that at
the end we have the entire dataset ordered. This algorithm is very
similar to algorithms that incrementally compute the dot product in

))2,(),1,(),3,(),1,((5

))5,(),5,(),1,(),5,((4

))1,(),3,(),2,(),4,((3

))3,(),2,(),5,(),2,((2

))4,(),4,(),4,(),3,((1

4321

4321

4321

4321

4321

oooo

oooo

oooo

oooo

oooo

→
→
→
→
→

Figure 2: Inverted file obtained for the running example of Fig-
ure 1

IN: query: q,
reference objects: RO,
posting lists associated with reference objects;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ RO
3. Let pl be the posting list associated with ro
4. For each (o, ORO

d,o (ro)) ∈ pl
5. If ao /∈ A
6. Set ao = 0
7. Set A ← A ∪ {ao}
8. Set ao = ao + |ORO

d,q (ro)−ORO
d,o (ro)|

Figure 3: Basic searching algorithm using inverted files.

text retrieval systems. The difference is that here we compute the
Spearman Footrule Distance.

In the following we will discuss how we can estimate the number
of reference objects to be used with a dataset. In addition we will
also discuss the cost of this solution in terms of storage space and
searching complexity. We will see that this preliminary solutions
has some performance drawbacks. However, in the remaining sec-
tions will suggest some relevant modifications to this basic strategy
that guarantee much higher efficiency still offering a high approx-
imation accuracy. We will use the above solution as a baseline to
evaluate the proposed refinements.

4.1 How to chose the size of RO
A basic question that should be answered is how to choose the num-
ber of reference objects to be used to map D into D̄.



Given a set of reference objects RO, the maximum number of dif-
ferent objects that can be represented in the transformed space is
given by the factorial of the size of RO: #(RO)!. This follows
by the fact that objects in D̄ are represented by permutations of all
elements of RO. However, we are not actually interested in the
number of objects that we can represent in D̄. Rather, we are more
interested in the capability of the distance d̄ to order objects with
respect to a query object q̄. It is easy to see that the maximum dis-
tance measured by the SFD is (#RO)2/2. In addition, note that
SFD always computes even values. Thus, the maximum number
of different distances that can be computed is (#RO)2/4. This
means that if the size of RO is too small, many objects will have
the same distance from any query object. In order to be able to
distinguish the distance of each object of X̄ from any query object,
the size of RO should be at least

#RO ≥ 2 ·
p

#X (1)

This is just a theoretical and quite rough lower bound. It clearly
does not guarantee that all objects will have a different distance
from any query object.

According to Equation 1, in order to index a dataset containing
50,000 objects we need about 448 reference objects. In order to
index 1,000,000 objects we need about 2000 reference objects.

4.2 Storage and search cost
Let’s estimate the cost of storing and searching the inverted file, us-
ing the proposed structure, with the lower bound given by Equation
1, and the search algorithm of Figure 3.

Each posting list contains a pair for every object of the dataset X .
Therefore the size of each posting list is proportional to the size of
the dataset X . The storage space needed to store the inverted file is
consequently proportional to #RO ·#X ≈ 2 · √#X ·#X = 2 ·
(#X)3/2, which is higher than linear even if smaller than quadratic
with respect to the size of the dataset X .

Therefore, suppose we need 6 bytes to encode a pair in the post-
ing list, the amount of space needed to store an inverted file for a
dataset of size 50,000 is about 128MB. In case of a dataset contain-
ing 1,000,000 objects we need 11GB.

The algorithm given in Figure 3 has to read all posting lists in order
to process a query. Therefore, suppose a disks with average trans-
fer rate of 50MB/s, we need about 2.5 seconds for the database
with 50,000 objects and about 3.5 minutes for the dataset contain-
ing 1,000,000 objects. This is clearly outperformed by most tra-
ditional access methods for similarity search [10, 5] even without
approximation, provided that objects can be represented by vectors
or can be represented in metric spaces.

In the reminder of the article we will modify this basic idea to gain
orders of magnitude in performance. We will proceed according
to these guidelines: 1) we will reduce the search cost by reducing
the number of posting lists accessed during search (the approach
proposed above accesses all posting lists); 2) we will reduce the
size of the inverted file by reducing the number of posting lists
where each object is referred (at the moment each object is referred
by every posting list); 3) we will further reduce the search cost
by reducing the amount of entries read in every posting list (at the

0

0,1

0,2

0,3

0,4

0,5

0,6

100 200 300 400 500

#RO

R
ec

al
l

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

100 200 300 400 500

#RO
E

P

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

Figure 4: Performance varying the number of reference ob-
jects.

moment all entries of a posting list are read).

As a baseline, in order to assess the tradeoff between efficiency and
approximation accuracy, we will use the basic approach presented
above, whose performance is empirically evaluated in the following
section.

4.3 Performance evaluation
In this section, we report results of an experimental evaluation of
the above presented idea. As we said before we use this as a base-
line to compare enhancements proposed in the next sections.

We conducted our experiments using a dataset of color histograms
represented in 32 dimensions. This data set was obtained from the
UCI Knowledge Discovery in Databases Archive [2]. The color
histograms were extracted from the Corel image collection as fol-
lows. The HSV space is divided into 32 subspaces (colors), using
8 ranges of hue and 4 ranges of saturation. The value for each di-
mension of a vector is the density of each color in the entire image.
The distance function used to compare two feature vectors is the
histogram intersection implemented as L1. The dataset contains
50,000 objects. 50 random objects were used as queries and were
not inserted in the index.

As suggested in [20], we used the measure of the recall and position
error to assess the accuracy of the method. Specifically, given a
query object q, recall is defined as

R =
#(S ∩ SA)

#S
(2)



and the position error is defined as

EP =

P
oA∈SA |OX(OA)− SA(OA)|

#SA ·#X
, (3)

where S and SA are the ordering of the k closest objects to q found
respectively by an exact similarity search algorithm and by the pro-
posed method. OX is the ordering of the entire dataset X with
respect to the distance from q.

In the experiments we set the disk block size to 4 KBytes and each
entry of the posting lists is encoded with 4 bytes1.

Results are shown in Figure 4. The graphs show the recall and
the position error varying the number of reference objects RO for
various options of the k closest objects to the query considered.
The graphs also show the number of disk block reads varying the
number of reference objects. In the experiment we varied the size
of RO from 100 up to 500 objects. Note that according to the
observations made in Section 4.1 the size of RO should be about
448 objects. We measured performance using k equal to 1, 3, 10,
and 50. Reference objects RO were chosen randomly from the
dataset.

As expected, the search cost increases linearly with the size of RO.
Note also that, given that the algorithm orders the entire dataset,
the number of disk reads is clearly independent from the number of
considered objects k. Surprisingly, we note that the accuracy of the
method is not heavily affected by size of RO. In fact we note that
accuracy slightly improves (recall increases and error decreases)
when increasing size of RO from 100 to 200. However, it remains
basically constant for the remaining values. This suggests that the
size obtained according to guidelines in Section 4.1 is in fact over-
estimated. This effect is exploited, as we will see, in enhancements
of this technique presented in next sections.

Looking more specifically at the results we can observe that recall
improves with larger values of k. This is intuitively explained by
the fact that when the result set is large, the probability to have
elements from the exact result is higher. For instance, when we
retrieve 50 objects (k is 50), on average we obtained a recall of
0.37. On the other hand, the position error is smaller for small
values of k. This implies that generally, even if the true nearest
neighbors are missed, the real ranks of the retrieved objects are not
far from to the nearest neighbors. For instance, when k is 1, we
obtained a position error of about 0.001. This means that the 50-th
nearest neighbor was found on average instead of the first nearest
neighbor, on a database of 50.000 objects. With large values of
k, the probability that result objects with high rank are missed and
replaced by objects with much higher real rank is higher, so errors
are also larger.

5. SEARCHING WITH THE KS CLOSEST
REFERENCE POINTS

In previous section we have seen that no additional performance
improvement is obtained when the size of RO increases above cer-
tain values. Encouraged by the observation that an higher number
of reference points does not necessarily imply higher effectiveness,
1This can be obtained by maintaining the entries of the posting list
ordered according to the position and by using a small index for
each posting lists that gives the offset corresponding to the possible
positions. This is further discussed in Section 7.

ks=2 

q̄ = (5,1) 

 321),(

220),(

422),(

110),(

4

3

2

1

=+=

=+=

=+=

=+=

oqd

oqd

oqd

oqd

Figure 5: Encoding the query with the ks closest reference ob-
jects and computing the distance in the transformed space us-
ing this reduced encoding.

we can modify the search algorithm in such a way that not all ref-
erence points are used.

More specifically, when we want to process a query object q, in-
stead of representing it as the ordering ORO

d,q of all the objects in
RO, we rather represent it as the ordering of the ks (ks ≤ #RO)
reference objects of RO closest to q. We denote this ordering as
q̄ = ORO

ks,d,q . The distance d̄ is now computed by using a variant
of the Spearman Footrule Distance, the Induced Footrule Distance
(IFD), defined as:

IFD(S1, S2) =
X

ro∈S1

|S1(ro)− S2(ro)|

The IFD considers just the elements occurring in the first ordered
list and discards the others. Differently than SFD, it produces both
even and odd values so the maximum distance also corresponds to
the maximum number of different distances.

Figure 5 shows the distance, computed in the transformed space
according to the IFD, of data objects from the query objects when
the query is represented just by using the ks closest reference ob-
jects.

In order to support this optimization, the search algorithm given
in Figure 3 needs only to be modified in line 2. In fact, it should
not access the posting lists associated with all reference objects.
Rather it only accesses the posting lists associated with the ks clos-
est reference objects to q. Line 2. is therefore changed to "For each
ro ∈ ORO

ks,d,q".

As we will empirically prove in the following, using the ks refer-
ence objects for representing queries has both the effect of reducing
the search costs, given that just ks posting lists will be accessed,
and increasing the effectiveness, given that the reference objects
closest to q are the ones that more effectively represent the neigh-
boring of q.

The search cost in this case is proportional to ks ·#X that, when
ks ¿ #RO, is significantly smaller than before. Next section
discusses the effectiveness of this approach for various values of
ks.

5.1 Performance evaluation
Here we discuss the results obtained by applying the above idea.
The settings of the experiments are exactly as before. The only
difference is that in this case we maintain fixed the size of RO and
we evaluate the performance by varying the number ks of objects
from RO used to represent the query q.



#RO=500

0

0,1

0,2

0,3

0,4

0,5

0,6

10 30 50 70 90

k_s

R
ec

al
l

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

#RO=500

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

10 30 50 70 90

k_s

E
P

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

Figure 6: Performance searching with a subset of reference ob-
jects. We maintain fixed the total number of reference objects.

Results are reported in Figure 6. As before, the graphs show the
recall, the position error and the number of disk block reads. We
used 500 as size for RO and we varied the value of ks from 10 to
100. Clearly, the cost increases linearly with ks and (when ks is
smaller than #RO) it is lower than the cost obtained before, given
that less posting lists are accessed.

Looking at the accuracy measures, on the other hand, we observe
a non intuitive behavior. Surprisingly, accuracy is always better
than that obtained using all objects of RO to represent the query
(compare Figure 6 with Figure 4). On average we obtain the best
results when ks is 50. In this case, when we retrieve 50 objects
(k is 50), the recall is about 0.54 and the error is about 0.0019. In
previous experiments, using all 500 objects of RO, to represent the
query, we had a recall of about 0.38 and an error of about 0.0052.
This, added to the fact that search cost is one order of magnitude
lower (about 2500 disk reads compared to 25000 of the previous ap-
proach) demonstrates that the method is very promising: we have
higher accuracy at much lower cost. This strange behavior can be
explained by observing that the closest reference objects are the
most reliable to represent an object to be indexed, while reference
objects that are far from the indexed object introduce noise. In other
words nearby objects have the same ordering of the nearest refer-
ence objects, while ordering of reference objects that are far from
them might be completely different. This effect can be exploited to
also encode the objects to be indexed with fewer reference objects,
in addition to the query. This is discussed more in details in next
section.

6. INDEXING WITH THE KI CLOSEST REF-
ERENCE POINTS

The idea of taking just the closest reference objects can also be used
to represent any object that has to be indexed, rather than just the
query.

Let ki ≤ #RO be the number of reference objects used for index-
ing. In this case every object can be represented as ō = ORO

ki,d,o,
using a smaller amount of reference objects. Note that, in this case,
different objects will be typically represented by different reference
objects, given that different objects will have different neighbor ref-
erence objects.

This representation of an object will be clearly smaller than using
all reference objects. In addition, this has also the effect of reducing
the size of the inverted file. In fact every object will be just inserted
into ki posting lists, by reducing their size and by also reducing the
search cost. The size of each posting list will depend on the number
of objects that have the associated reference objects in the first ki

positions. However, given that every object will be inserted in ki

posting lists, the overall size of the inverted file will be proportional
to ki ∗ ·#X . Let ks ≤ ki be the number of reference objects used
for searching. On average, we can estimate that the searching cost
will be proportional to ks · (ki ∗ ·#X)/#RO.

Figure 7 shows the encoding of data objects in the transformed
space, when just the ki closest reference objects to an object is
used (Figure 7a), the corresponding inverted file (Figure 7b), and
the distances from the query computed in the transformed space ac-
cording to this modification (Figure 7c). Note that the IFD com-
putes the distance by summing the position differences of reference
objects in the query and data object encoding. However, now it can
happen that a reference object occurs in the query encoding and it
does not occur in an object’s encoding. When this happens we sup-
pose that the position difference of the missing reference objects is
greater than the maximum possible. That is, we suppose that the
difference is ki + 1.

Let us now discuss how the search algorithm has to be used with
this modification to the indexing strategy. The basic algorithm that
we gave previously in Figure 3, computes the distance of objects
from the query incrementally using the accumulators. This tech-
niques relies on the fact that every object appears exactly once in
every posting list. Therefore every posting list contributes to com-
pute the distance of every object. However, as discussed above,
some reference objects might not occur in some object’s encod-
ing and consequently some objects might be missing from some
posting lists. In fact, when an object is indexed with its ki closest
reference objects, it will appear just in ki posting lists. This means
that when processing a query, an object might be encountered in
some posting lists and it might not be seen in others. This leads to
miscalculation of the distance. In fact, when an object is not seen
in a posting list, it is as if 0 is erroneously summed to its accumu-
lator, in correspondence of the reference object associated with the
posting list. However, note that 0 means that the position of the
reference object in an object is exactly the same than its position
in the query, while the actual position difference (so the distance)
should be higher.

To solve this, we change the way in which the accumulators are
used. Figure 8 shows the modified algorithm. When objects are
seen for the first time the associated accumulator is initialized with
the maximum possible distance for an object, which is (ki +1) ·ks

(line 6.). In fact an object can be seen at most in ks posting lists and
we assume an unseen reference object having position (ki + 1), as



ki=3 ks=2 

ō1= (5,2,1)  

ō2= (4,3,5)  q̄ = (5,1) 

ō3= (5,2,3) 

ō4= (3,5,2) 

 

     a)  b) c)  

))2,(),1,(),3,(),1,((5

))1,((4

))1,(),3,(),2,((3

))3,(),2,(),2,((2

))3,((1

4321

2

432

431

1

oooo

o

ooo

ooo

o

→
→
→
→
→

5)1(1),(

4)1(0),(

6)1(2),(

110),(

4

3

2

1

=++=

=++=

=++=

=+=

i

i

i

koqd

koqd

koqd

oqd

Figure 7: Indexing with the ki closest reference objects to data objects and searching with the ks closest reference objects to the
query. a) Encoding of data objects. b) Inverted file. c) Distance from the query in the transformed space.

IN: query: q,
reference objects: RO,
posting lists associated with reference objects,
number of reference objects used for indexing: ki,
number of reference objects used for searching: ks;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ ORO

ks,d,q

3. Let pl be the posting list associated with ro
4. For each (o, ORO

d,o (ro)) ∈ pl
5. If ao /∈ A
6. Set ao = (ki + 1) ∗ ks

7. Set A ← A ∪ {ao}
8. Set ao = ao − (ki + 1) + |ORO

d,q (ro)−ORO
d,o (ro)|

Figure 8: Searching algorithm that uses an inverted file where
the closest ki reference objects were used to index objects.

discussed before. Every time an object is encountered its current
distance is reduced by replacing (subtracting) the maximum possi-
ble difference, which is (ki +1), with the actual position difference
from the query (line 8.).

6.1 Performance evaluation
Let us see what is the performance when just the ki closest objects
of RO are used to represent objects. The experiments that we per-
formed are similar to those presented before. However in this case
we fix both the size of RO and the number ks of objects used to
represent the query, and we vary the settings for ki. Specifically,
we choose 500 as size for RO, we set ks to 50, and we vary ki

from 50 to 500.

Results are reported in Figure 9. Also in this case, we see that the
search cost linearly increases with values of ki. When all objects
of RO are used for searching (ki = 500), clearly, the cost is the
same than that obtained in previous experiment in correspondence
of ks set to 50.

For what concerns the accuracy, we can see that after a small im-
provement obtained moving setting for ki from 50 to 100, the per-
formance remains substantially constant. Differences in perfor-
mance, when settings of ki range from 100 to 500, are unnotice-
able. The clear advantage is that we obtain again the same accu-

#RO=500,k_s=50

0

0,1

0,2

0,3

0,4

0,5

0,6

50 150 250 350 450

k_i

R
ec

al
l

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

#RO=500,k_s=50

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

50 150 250 350 450

k_i

E
P

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

Figure 9: Performance indexing with a subset of reference ob-
jects. We maintain fixed the total number of reference objects
and the subset of reference objects used for searching.

racy with much lower cost. In fact, when ki is set to 100 we have
a search cost of about 600 disk blocks read, rather than 2500 (with
ks=50 and all reference objects used to index) or 25,000 (when
all reference objects were used to index and search), as discussed
in previous experiments. This confirms previous intuition that the
closest reference objects are the most reliable to represent an object
to be indexed.

7. ACCESSING A FRACTION OF THE POST-
ING LISTS

Previous algorithms read the entire content of the accessed posting
lists. However, also here we can find some opportunity for reduc-
ing the search cost. We can observe that in the posting lists there



 … Pairs ordered according to the position 
 … 
q̄ = (…,ro,…)   ro→(…,(oi,p-MPD),…, (oj,p),…, (om,p+MPD),…) 
 … 
 … accessed pairs 
 
position p     max position difference: MPD 

Figure 10: Accessing a portion of the posting lists: just the consecutive entries in the interval [p−MPD, p + MPD] are accessed.

are some pairs that are more promising that others. Specifically, the
most promising pairs are those whose position (the position of the
reference object) is closer to that of the query. In fact, the IFD
is computed by summing the position difference of a reference ob-
ject in the query and in the searched objects. Given that we are
interested in the k closest objects to the query, it is likely that ob-
jects whose position difference is high will fall outside the first k.
Therefore, we can use a threshold parameter MPD which indi-
cates the Maximum Position Difference and we can access just the
pairs whose position difference is below the threshold.

In order to do that efficiently we can maintain the pairs of the post-
ing lists ordered according to their position and, rather than access-
ing the entire posting lists, we can sequentially scan just the portion
that contain pairs whose position difference is below the threshold.
For instance, suppose that reference object ro has position p in the
query q, that is ORO

d,q (ro) = p. Then, the search algorithm will just
access the consecutive pairs of the posting list, associated with ro,
whose position is in the interval [p − MPD, p + MPD]. This
process is depicted in Figure 10.

Note that the number of possible positions is much smaller than the
number of pairs in a posting list. Therefore, sorting of the entries
of the posting lists, according to the position, can be efficiently
performed in linear time using a count-sort algorithm, after bulk
insertion.

The revised ranking algorithm, which accesses a subset of the post-
ing lists content, is given in Figure 11. It first computes the mini-
mum (mp) and the maximum (Mp) position that read pairs should
have (lines 3. and 4.). Then, it accesses just the pairs in that interval
(line 5. 6.). Note that direct access to the initial position of the in-
terval can be obtained by maintaining an index (an array) for each
posting list that indicates the offset corresponding to possible posi-
tions. The index for a posting list has size equal to the maximum
possible position, which is ki, and can be stored at the beginning of
the posting list itself. Note that the use of an index for the positions
in the posting list makes it possible to store only the reference to
the object, rather than the pair containing the object and its posi-
tion. In fact the position can be inferred from the index, knowing
the absolute position of the object in the posting list.

7.1 Performance evaluation
In order to test the effect of accessing just a portion of the posting
lists, we maintain fixed the size of RO, ks, and ki. We performed
various tests varying the value of MPD. Specifically, the size of
RO was set to 500, ks to 50, and ki to 100. Values for MPD
ranged from 10 up to 100.

Results are reported in Figure 12. As intuition suggests, the search
cost increases linearly with MPD, given that larger values of MPD

IN: query: q,
reference objects: RO,
posting lists associated with reference objects,
number of reference objects used for indexing: ki,
number of reference objects used for searching: ks,
maximum allowed position difference: MPD;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ ORO

ks,d,q

3. Let mp = max(0, ORO
ks,d,q(ro)−MPD),

Mp = min(ki, O
RO
ks,d,q(ro) + MPD)

4. Let pl be the posting list associated with ro
5. Let plMp

mp the subset of pl containing pairs with positions
between mp and Mp

6. For each (o, ORO
d,o (ro)) ∈ plMp

mP

7. If ao /∈ A
8. Set ao = ki ∗ ks

9. Set A ← A ∪ {ao}
10. Set ao = ao − ki + |ORO

d,q (ro)−ORO
d,o (ro)|

Figure 11: Search algorithm that accesses a fraction of the post-
ing lists.

imply more entries to be read in the posting lists. However, simi-
larly to what we have observed before, reading many entries is un-
necessary from the accuracy point of view. In fact, from the graph
we can see that the performance increases when MPD ranges be-
tween 10 and 40, afterwards it practically remains constant. In a
few words, we have again the same accuracy than before while ac-
cessing less information from the disk. Specifically, when we set
MPD to 40, the search cost is about 390 disk block reads with an
accuracy that is practically the same (in terms of recall and position
error) than that obtained by reading the full posting lists, as can be
seen comparing Figures 12 ,6, and 9.

8. COMPARISONS
In this section we assess the performance of the proposed approach
in contrast with other methods of approximate similarity search in
metric spaces, proposed in literature. Comparisons among some
relevant methods [21, 1, 4] were already presented in other works
[1, 20]. Thus, for brevity we just compare the proposed techniques
with the method of approximate similarity search based on region
proximity [1], which was previously recognized as one offering
very high performance.

Approximate similarity search based on region proximity uses the
M-Tree [5] access method, and relies on a strategy of pruning non
promising subtrees, during the search phase, measuring the proba-



#RO=500,k_s=50,k_i=100

0

0,1

0,2

0,3

0,4

0,5

0,6

10 30 50 70 90

MPD

R
ec

al
l

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

#RO=500,k_s=50,k_i=100

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

10 30 50 70 90

MPD

E
P

0

5000

10000

15000

20000

25000

D
is

k 
re

ad
s

k=1

k=3

k=10

k=50

Disk
reads

Figure 12: Performance accessing a portion of the posting lists
We maintain fixed the total number of reference objects, the
subset of reference objects used for searching, and the subset of
reference objects used for indexing.

bility of overlap of the underlying ball regions with the query re-
gion. Tradeoff between accuracy and search cost can be tuned us-
ing a threshold on this probability of overlap. In order to have an
objective comparison we used the same dataset described above [2]
and the same queries. We also used the same size of the disk blocks
in both cases (as we said before it was set to 4 KBytes).

Results are reported in Figure 13. The graphs show the perfor-
mance of the four variants of our proposal and the proximity based
method when the number k of searched objects is 50. For each
method we plotted the search cost, in terms of disk block reads,
against the recall and the precision error. A logarithmic scale is
used for the search cost axis.

Leaving out of consideration our baseline method, where all ref-
erence objects are used for indexing and searching, the remaining
variants typically offer much higher accuracy at the same search
cost with respect to the method based on proximity. Specifically,
when the search cost is between 100 and 1000 disk accesses, our
methods offers a recall around 0.5 and a position error of about
0.02. On the other hand, the proximity based method offers a re-
call around 0,1-0,2 and a position error above 0.03. Note that the
point with highest accuracy (recall 1 and error 0), offered by the
proximity based method, was obtained with extreme settings of
the approximation threshold corresponding to execute in fact ex-
act similarity search.

We should also point out that the number of disk reads is an objec-
tive measurement of cost that, on the other hand, does not take into

0

0,1

0,2

0,3

0,4

0,5

0,6

100 1000 10000 100000

Average disk reads

R
ec

al
l

Proximity

ro=[100,500]

ro=500, k_s=[10,100]

ro=500,k_i=[50,500],k_s=50

ro=500,k_i=100,k_s=50,MPD
=[10,100]

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

100 1000 10000 100000

Average disk reads
E

P

Proximity

ro=[100,500]

ro=500, k_s=[10,100]

ro=500,k_i=[50,500],k_s=50

ro=500,k_i=100,k_s=50,MPD
=[10,100]

Figure 13: Comparisons of various setting of the proposed ap-
proach against a state-of-the-art method. We consider the case
where the number k of retrieved objects is 50.

consideration the effect of data placement in the disk and disk ac-
cess sequences. In fact, the proximity based method relies on a tree
based data structure where search algorithm cannot sequentially ac-
cess blocks in the disk. Rather, disk blocks are mostly accessed in
a random fashion sequence. In contrast, a major advantage of in-
verted files is the possibility to perform searches by maximizing
sequential disk accesses, whose cost is much lower than random
accesses. Thus, due to this effect, the real performance advantage,
of the proposed method over the proximity method, is in practice
even higher than that shown in Figure 13.

From the graphs it is also evident how the best variant of our method
is when just a portion of the posting lists are accessed.

9. CONCLUSIONS AND FUTURE WORK
In this paper we presented an approach to approximate similarity
search in metric spaces based on a space transformation that relies
on the idea of perspective from a data point. We proved through
extensive experimentation that the proposed approach has clear ad-
vantages over other methods existing in literature. A major charac-
teristics of the proposed technique is that it can be implemented by
using inverted files, thus capitalizing on many years of investigation
on efficient and scalable searching algorithms on this data structure.
The proposed approach belongs to the category of general purpose
access methods for similarity search. It can be applied to any appli-
cation where the similarity search paradigm can be modelled using
metric spaces.

There are still some issues that are worth of investigations to further
improve this technique.



We did not discuss and investigate how to optimally chose the ref-
erence points. In the experiments we chose reference objects ran-
domly from the dataset. However, performance can be higher if
reference objects are selected carefully. In fact, in the introduction
we gave an example of a bad choice of the reference points that
returned misleading estimation of the similarity between objects.
We believe that it is also possible to find strategies for choosing
reference objects that offer an optimal accuracy of the similarity
estimation.

Our method relies on the settings of some parameters. In order to
obtain good performance, the size of RO, and the settings for ks,
ki, and MPD have to be chosen. In this paper we chose these
parameters empirically. However, they depends on specific charac-
teristics of the dataset like its intrinsic dimensionality, the distance
distributions, the data distribution, in addition to its size. A serious
investigation on this will offer the possibility to optimally set the
parameters beforehand by knowing the statistics of the database to
be managed.

10. REFERENCES
[1] G. Amato, F. Rabitti, P. Savino, and P. Zezula. Region

proximity in metric spaces and its use for approximate
similarity search. ACM Trans. Inf. Syst., 21(2):192–227,
2003.

[2] S. D. Bay. The uci kdd archive. Irvine, CA: University of
California, Department of Information and Computer
Science. http://kdd.ics.uci.edu.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is ”nearest neighbor” meaningful? In C. Beeri and
P. Buneman, editors, Database Theory - ICDT ’99, 7th
International Conference, Jerusalem, Israel, January 10-12,
1999, Proceedings, volume 1540 of Lecture Notes in
Computer Science, pages 217–235. Springer, 1999.

[4] P. Ciaccia and M. Patella. Pac nearest neighbor queries:
Approximate and controlled search in high-dimensional and
metric spaces. In ICDE, pages 244–255, 2000.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB’97,
Proceedings of 23rd International Conference on Very Large
Data Bases, August 25-29, 1997, Athens, Greece, pages
426–435. Morgan Kaufmann, 1997.

[6] P. Diaconis. Group Representations in Probability and
Statistics, volume 11 of IMS Lecture Notes - Monograph
Series. Institute of Mathematical Statistics, Hawyard Ca,
1988.

[7] Ö. Egecioglu and H. Ferhatosmanoglu. Dimensionality
reduction and similarity computation by inner product
approximations. In Proceedings of the ACM International
Conference on Information and Knowledge Management
(CIKM 2000), McLean, Virginia, USA, November 6-11,
2000, pages 219–226. ACM Press, 2000.

[8] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In M. J. Carey and D. A. Schneider,
editors, Proceedings of the 18th ACM International
Conference on Management of Data (SIGMOD 1995), San
Jose, California, USA, May 22-25, 1995, pages 163–174.
ACM Press, 1995.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E.

Abbadi. Approximate nearest neighbor searching in
multimedia databases. In Proceedings of the 17th
International Conference on Data Engineering, April 2-6,
2001, Heidelberg, Germany, pages 503–511. IEEE
Computer Society, 2001.

[10] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data, Boston,
MA, pages 47–57, 1984.

[11] H. V. Jagadish, A. O. Mendelzon, and T. Milo.
Similarity-based queries. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 22-25, 1995, San Jose, California,
pages 36–45. ACM Press, 1995.

[12] Ü. Y. Ogras and H. Ferhatosmanoglu. Dimensionality
reduction using magnitude and shape approximations. In
Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM 2003),
New Orleans, Louisiana, USA, November 3-8, 2003, pages
99–107. ACM Press, 2003.

[13] S. Pramanik, S. Alexander, and J. Li. An efficient searching
algorithm for approximate nearest neighbor queries in high
dimensions. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (ICMCS
1999), Florence, Italy, June 7-11, 1999, volume 1. IEEE
Computer Society, 1999.

[14] S. Pramanik, J. Li, J. Ruan, and S. K. Bhattacharjee. Efficient
search scheme for very large image databases. In G. B.
Beretta and R. Schettini, editors, Proceedings of the
International Society for Optical Engineering (SPIE) on
Internet Imaging, San Jose, California, USA, January 26,
2000, volume 3964, pages 79–90. The International Society
for Optical Engineering, December 1999.

[15] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill Book Company, 1983.

[16] X. Wang, J. T.-L. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro,
and K. Zhang. An index structure for data mining and
clustering. In Knowledge and Information Systems,
volume 2, pages 161–184. Springer, 2000.

[17] R. Weber and K. Böhm. Trading quality for time with nearest
neighbor search. In C. Zaniolo, P. C. Lockemann, M. H.
Scholl, and T. Grust, editors, Proceedings of the 7th
International Conference on Extending Database Technology
(EDBT 2000), Konstanz, Germany, March 27-31, 2000,
volume 1777 of Lecture Notes in Computer Science.
Springer, 2000.

[18] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In A. Gupta, O. Shmueli, and
J. Widom, editors, VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August
24-27, 1998, New York City, New York, USA, pages 194–205.
Morgan Kaufmann, 1998.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Bell: Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

[20] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity
Search - The Metric Space Approach, volume 32 of
Advances in Database Systems. Springer, 2006.

[21] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate
similarity retrieval with m-trees. VLDB J., 7(4):275–293,
1998.




