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ABSTRACT 
The general goal of our research is the creation of a natural and 
intuitive interface for navigation, interaction, and 
input/recognition of American Sign Language (ASL) math signs 
in immersive Virtual Environments (VE) for the Deaf. The 
specific objective of this work is the development of two new 
gesture recognition systems for SMILE™, an immersive learning 
game that employs a fantasy 3D virtual environment to engage 
deaf children in math-based educational tasks. Presently, SMILE 
includes standard VR interaction devices such as a 6DOF wand, a 
pair of pinch gloves, and a dance platform. In this paper we show 
a significant improvement of the application by proposing two 
new gesture control mechanisms: system (1) is based entirely on 
hand gestures and makes use of a pair of 18-sensor data gloves, 
system (2) is based on hand and body gestures and makes use of a 
pair of data gloves and a motion tracking system. Both interfaces 
support first-person motion control, object selection and 
manipulation, and real-time input/ recognition of ASL numbers 
zero to twenty. Although the systems described in the paper rely 
on high-end, expensive hardware, they can be considered a first 
step toward the realization of an effective immersive sign 
language interface. 

Categories and Subject Descriptors 
K. Computing Milieux - K.3 [Computers and Education]: 
K.3.1 Computer Uses in Education - Collaborative learning, 
Computer-assisted instruction (CAI), Computer-managed 
instruction (CMI). 

General Terms 
Design, Human Factors. 

Keywords 
Sign language recognition, HCI, Virtual Environments, Deaf 
education 

1. INTRODUCTION 
Deaf education, and specifically math/science education, is a 
pressing national problem [1, 2]. To address the need to increase 
the abilities of young deaf children in math, we have recently 
created an immersive application (SMILE™) for learning of K-5 
arithmetic concepts and related ASL signs [3, 4]. SMILE is an 
interactive virtual world comprised of an imaginary town 

populated by fantasy 3D avatars that communicate with the 
participant in written English and ASL. The user can explore the 
town, enter buildings, select and manipulate objects, construct 
new objects, and interact with the characters. In each building the 
participant learns specific math concepts by performing hands-on 
activities developed in collaboration with elementary school 
educators (including deaf educators), and in alignment with 
standard math curriculum. The application is designed for display 
on different systems: a stationary projection-based four-wall 
device, i.e., the Fakespace FLEX [5], a single screen immersive 
portable system [6], and low cost Fish Tank VR systems. 
Presently, children travel through the virtual world using a 6 DOF 
wand or a dance platform, and can grasp and release objects using 
the wand or a pair of pinch gloves. SMILE has been evaluated 
extensively by a panel of experts and by groups of target users 
(i.e., children ages 5-11). As a result of these evaluations several 
usability problems have been identified: 

1. To date, SMILE user interfaces do not allow for 
input/recognition of ASL signs. Children answer the questions 
posed by the 3D signers by selecting numbers from a floating 
menu which appears when needed. This presents a problem if we 
consider that deaf children of deaf parents are likely to know the 
signs for the numbers but might not be familiar yet with the 
corresponding math symbols. In this case, the children should be 
able to enter the answer to a problem by forming the correct ASL 
hand shape, rather than by selecting the number symbol. 

2. SMILE requires the user to perform concurrent tasks. For 
instance, in certain situations, children need to answer a math 
question while moving through the environment carrying an 
object. Currently, SMILE interaction mechanisms do not fully 
support simultaneous and consistent tasking.     

3. Deaf children of hearing parents use the application not only to 
increase their math skills, but also to learn the correct signs for 
math terminology. While the children can observe the 3D 
characters perform the signs, they cannot test and get feedback on 
their signing skills since all interactive activities require responses 
in the form of math symbols. 

In an effort to improve on the current implementation of the 
program, we propose two new user interfaces which allow for 
first person motion control, object selection and manipulation, 
and real-time input and recognition of ASL math signs. Interface 
(1) uses a pair of 18-sensors Immersion cybergloves [7] coupled 
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with an Intersense wrist tracker [8], interface (2) uses the 
cybergloves and a Metamotion motion capture optical system [9]; 
recognition of hand gestures is performed by a pre-trained neural 
network.  

In Section 2 of the paper we address problems related to 
immersive sign language interfaces and we present a review of 
recent approaches in sign language input and recognition. In 
Section 3 we describe the two new user interfaces, and in section 
4 we discuss their merits and limitations, along with future work. 
Conclusive remarks are presented in section 5.  

2. BACKGROUND 
Existing data suggest that immersive VLEs offer significant, 
positive support for education in general [10] [11]. In regard to 
disabilities education, literature findings show that VR has many 
advantages over other teaching technologies because it can fulfill 
the majority of the learning requirements of students with 
disabilities [12]. Some of the most commonly encountered needs 
of people with learning impairments include: control over 
environment; self-pacing; repetition; ability to see or feel items 
and processes in concrete terms (difficulty with abstract 
concepts); safe and barrier-free scenarios for daily living tasks; 
and motivation [13]. However, in order to be effective, VLEs for 
the hearing impaired need to support sign language interfaces, i.e., 
ways of input, recognition, and display of signing gestures.  

Though there has been significant progress in development of 
sign language input recognition systems, the majority of 
interactive applications for the deaf still make use of standard 
input devices. For instance, in the only two existing examples of 
immersive VLE for deaf/speech-impaired students (i.e., the 
Virtual Supermarket [14] and the VREAL project [15]) 
participants use mouse, keyboard and joystick to interact with the 
programs; real-time input and recognition of signs is not 
supported. 

In this paper we improve on the state-of-the-art by presenting a 
first step toward the development of an intuitive gesture-based 
system for natural communication and interaction between deaf 
users and immersive virtual environments. 

1.1 State-of-the-art in sign language input and 
recognition 
Sign language input and recognition has been an active area of 
research during the past decade. Currently, there are two main 
approaches to gesture input: direct-device and vision-based input 
[16-18]. The direct-device approach uses a number of 
commercially available instrumented gloves, flexion sensors, 
body trackers, etc. as input to gesture recognition [19]. Some 
advantages of direct devices, such as data gloves, include: direct 
measurement of hand and finger parameters (i.e., joint angles, 
wrist rotation and 3D spatial information), data input at a high 
sample frequency, and no line-of-sign occlusion problems. 
Disadvantages include: reduced user’s range of motion and 
comfort, and high cost of accurate systems (i.e., gloves with a 
high number of sensors –18 or 22–).  

Vision based approaches use one or more video cameras to 
capture images of the hands and interpret them to produce visual 
features that can be used to recognize gestures. The main 
advantage of vision-based systems is that they allow the users to 

remain unencumbered. Main disadvantages include: high cost, 
complex computation requirements in order to extract usable 
information, line-of sign occlusion problems, and sensitivity to 
lighting conditions.  

Recently, researchers have started to develop gesture input 
systems that combine image-and device-based techniques in order 
to gather more information about gestures, and thereby enable 
more accurate recognition. Such hybrid systems are often used to 
capture hand gestures and facial expressions simultaneously [20].  

Recognition methods vary depending on whether the signs are 
represented by static hand poses or by moving gestures. 
Recognition of static signing gestures can be accomplished using 
techniques such as template matching, geometric feature 
classification, neural networks, or other standard pattern 
recognition methods to classify the pose [21]. Recognition of 
dynamic gestures is more complex because it requires 
consideration of temporal events. It is usually accomplished 
through the use of techniques such as time-compressing 
templates, dynamic time warping, Hidden Markov Models 
(HMMs) [22] and Bayesan Networks [23].  

In this paper we are concerned with static or semi-static ASL 
gestures. The goal is input and recognition of ASL numbers 
which are represented by static hand-shapes (numbers 0-9) and by 
hand gestures requiring a very limited range of motion (numbers 
>9). To capture the hand gestures, we have chosen a direct-device 
approach because research findings show that this approach yields 
more accurate results. 

3. IMPLEMENTATION 
3.1 System (1): hand gesture-based  
This interface makes use of a pair of light-weight 18-sensor 
Immersion cybergloves coupled with an InterSense IS-900 6DOF 
wrist tracker.  Each glove has two bend sensors per finger, four 
abduction sensors, and sensors for measuring thumb cross-over, 
palm arch, wrist flexion, and wrist abduction; the wrist tracker 
uses ultrasonic and inertial tracking to determine the position and 
orientation of the user’s hand within the 3D environment. The 
user wears the gloves to input ASL number handshapes with the 
dominant hand, navigation gestures with the non-dominant hand 
(for instance, the “L” handshape of the manual alphabet to move 
left, “R, B, F” to move right, backward, and forward 
respectively), and grasp/release gestures with the dominant hand. 
For example, the participant can grasp objects by making a closed 
fist (the ‘S’ handshape of the manual alphabet). Tracking 
information enables the program to identify which object in the 
scene is closest to the user’s fingers when the user grabs that 
object with the gloves. The tracking information also allows that 
object to remain in the user’s grasp as the user moves the hand 
around the scene. When the user forms the ‘neutral’ handshape 
(i.e., the letter ‘Y’) grasped objects are released at the user’s new 
hand position.  Figure 1 shows a student interacting with SMILE 
using system (1). 

In general, our mapping of gestures to specific tasks has been 
designed so that the association between hand pose and meaning 
is natural and intuitive for a deaf user. However, one problem was 
encountered when mapping gestures to grasp and release tasks. 
Typically, the index-thumb pinch metaphor is used for picking 
virtual objects and the open fist is used to release control of 



objects [24].  In our case, we could not use the index-thumb pinch 
gesture for grasping and the open fist for releasing objects 
because these hand poses are too similar to number ‘9’ and 
number ‘5’, respectively. In order to ensure recognition accuracy 
while maintaining a fairly intuitive gesture-to-meaning mapping, 
we use a closed hand (the ‘S’ handshape) for grasping, and a 
semi-open hand for releasing objects (the ‘Y’ handshape). 

The decision to assign signing and grasp/release tasks to the 
dominant hand, and navigation tasks to the non-dominant hand is 
based on research studies in the field of human motor behavior.  
Literature findings show that the non-dominant hand is generally 
used for large scale positioning, while the dominant hand is used 
for fine-grained tasks. Moreover, humans position their dominant 
hand relative to the coordinate system specified by the non-
dominant hand [25].  

A problem inherent with implementing gesturing as a means of 
interaction is ‘the fact that natural gesturing involves a series of 
transitions from gesture to gesture essentially creating a 
continuum of gesturing’ [26]. This makes distinguishing 
successive gestures very difficult, as the hands and fingers may be 
constantly moving. In order to ensure recognition accuracy, our 
interface requires users to form the ‘neutral’ hand pose between 
different successive gestures.  

 

Figure 1. User inputs the number ‘1’ ASL handshape with the 
cybergloves in response to a question asked by the ’lizard’ 

character. SMILE in the background displayed on a 12-screen 
tiled wall 

Recognition. To recognize the hand gestures input via the gloves 
we have used a neural networks approach based on the Fast 
Artificial Neural Network Library, (FANN) [27], a freely 
available package from Sourceforge. This library supports various 
configurations of neural networks. For SMILE we use the 
standard complete backward propagation neural network 
configuration with symmetrical sigmoid activation function. This 
configuration includes a set of 28 networks, one per hand gesture, 
with 18 input neurons that corresponds to the 18 angles provided 
by each data glove. To date, the hand gestures recognized by the 
system include: 21 ASL number handshapes + 5 navigation 
gestures + 1 grasp gesture + 1 ‘neutral’ gesture. The 28 gestures 
are represented in figure 2. 
 
One output neuron for each network determines whether the input 
configuration is correct (value close to 1) or incorrect (value close 
to -1 because of symmetrical sigmoid function). The training error 
was set to 10

−6 
and training of all 28 neural networks for all the 

input sets was realized in about 10 minutes on a standard laptop 
with 1.6 GHz Intel Pentium. The neural networks were correctly 

trained after not more than 10
4
 epochs. The detection of one sign 

was, on the same computer, performed at the rate of about 20Hz . 
The accuracy rate with registered users was 90%. The accuracy 
rate with unregistered users was 75%. 
Training. The training data set was provided by five ASL signers. 
Each signer input the 28 hand shapes three times. The training 
data set for each gesture is composed of 3 × 5 correct handshapes 
and 15 incorrect handshapes. For instance,  the training set for the 
letter F (used to move forward) includes the 15 ASL handshapes 
corresponding to letter ’F’, and 15 randomly selected ASL 
configurations corresponding to different hand gestures (provided 
by the same signers). 

 
Figure 2. The 28 gestures recognized by system 1 

 
Communication with SMILE. The handshape recognition software 
runs on a Windows-based laptop. However, the SMILE 
application, when running in immersive environments, such as a 
tiled wall or a CAVE-like device, runs on a cluster of several 
workstations. These workstations may run either Linux or 
Windows. Thus it is necessary for the recognition software to 
communicate with the SMILE application through some external 
mechanism. 
 
The VRJuggler software [28] that SMILE is built on provides a 
C++ library for external communications via a TCP/IP network, 
called VPR (VRJuggler Portable Runtime). SMILE uses these 
external interfaces by first opening a TCP/IP connection to the 
computer running the handshape recognition application, during 
the initialization of the SMILE application. When recognition of a 
handshape occurs, the application sends the recognized gesture 
over the network via theTCP/IP socket. 
 
The glove device with handshape recognition can be uniquely 
configured to control many aspects of the SMILE program. 
Before each frame is drawn, if a gesture has been recognized, the 
application uses this information to determine what actions should 
take place. For example, when the handshape ‘F’ is recognized it 
instructs the application to navigate the world forward at a fixed 
speed. The flowchart in figure 3 illustrates communication 
between the cyberglove, the gesture recognition program, and 
SMILE. 
 
 



 

 
Figure 3. Flowchart illustrating the connection between 

system (1) and SMILE 
 

3.2 System (2): hand and body gesture-based  
This interface makes use of a pair of data gloves (described in 
section 3.1) and a 19-marker MetaMotion optical motion capture 
system with a setup of 4 or 6 cameras. Users can input ASL signs 
and can grasp and release objects simultaneously with the 
dominant and non-dominant hand, respectively. They can stand 
anywhere within the capture area and move through the 
environment by stepping forward, back, left, or right, and can 
rotate the 3D scene by stepping forward and pointing their toe in 
the direction of rotation.  

In order to accomplish motion through the 3D environment the 
positions of two markers are compared. The waist, the most 
centralized position, is stored as the origin of the space. The right 
ankle position is compared to the waist to determine what 
direction the user is stepping. The distance the foot is away from 
the user and the direction relative to the user’s waist orientation 
determine the speed and direction of navigation in SMILE, 
respectively. Two other markers are then compared, the right 
ankle position and the right toe position. The difference between 
the positions of these points can be used to create a vector that is 
then normalized and used with the dot product to determine the 
angle the foot is pointing (relative to the user’s leg in order to 
rotate the world). This way, by simply stepping forward and 
pointing the toe, the user can rotate the 3D scene. To avoid 
accidental motion, a ‘dead zone’ has been established for small 
angles and distances. When the foot is placed close to the waist, 
or with a small angle of rotation, no motion occurs. The user must 

place her foot outside the dead zone in order to translate or rotate. 
The dead zone limits were set through trial and error until they 
reached a point where triggering of motion required deliberate 
action by users, without becoming uncomfortable. Figure 4 shows 
a student using the motion tracking system to travel through 
SMILE. 

 
Figure 4. A user wears the optical mocap suit and steps 

forward to navigate through SMILE.  The waist, ankle and 
toe markers are highlighted on the left. 

 
Communication with SMILE. The motion capture system operates 
on a set of Windows workstations dedicated to processing video 
images and determining marker positions. This system is also 
separate from the rendering cluster that the SMILE application 
runs on. Therefore, the motion capture system must also 
communicate with the SMILE application via an external 
connection. This is accomplished in the same way that the 
connection between interface (1) and SMILE is designed (see 
figure 5). When the motion capture system has successfully 
recognized the position of the 19 markers on the participant, the 
data are stored and sent over the network via the TCP/IP socket. 

4.  DISCUSSION 
Both interfaces have their own strengths and weaknesses. The 
main advantage of interface (1) is its portability and, therefore, its 
applicability to a variety of immersive VR devices, including low- 
cost fish tank systems. The main disadvantage is the fact that it 
does not fully support concurrent tasking. The user can navigate 
through the environment while carrying an object or while 
inputting a sign, but the three tasks of travel, sign input, and 
object manipulation cannot occur at the same time. Another 
limitation of the current implementation is the inability to control 
speed of travel. Future work involves experimenting with various 
hand gesture metaphors to control the rate of motion in a natural 
way. 

In addition to support of simultaneous tasking, one of the 
strengths of interface (2) is the user ability to navigate the virtual 
world using the lower body. Traveling through the 3D 
environment by stepping in different directions requires little or 
no cognitive mapping to perform, therefore it is one of the most 
usable means of virtual locomotion in immersive environments. 
Another advantage of system (2) is support of input and 
recognition of ASL signs that require arms, spine, and shoulder 
motions. Although ASL signs for mathematics do not rely heavily 
on arms and shoulder movements, many other ASL signs involve 



motion of the entire upper body. System (2) is not restricted to 
input of math signs only, it could be easily extended to input and 
recognition of all ASL signs. The main disadvantage of system 
(2) is the fact that it is not easily portable and, therefore, restricted 
to use in stationary VR devices. 

 
Figure 5. Flowchart illustrating the connection between 

system (2) and SMILE 

One main limitation of both systems is the high cost of the 
hardware components. Currently, the cost of the gloves is a major 
obstacle to immediate dissemination of interface (1) to 
educational institutions for the Deaf. We are investigating more 
cost-effective, types of gloves available on the market 
(http://www.vrealities.com/glove.html), as well as gloves created 
by researchers specifically for input of signing gestures [29]. 

 System 2 was designed primarily to experiment with full-body 
interaction in stationary, multiple screen immersive devices, 
therefore we are not concerned with the high cost of the 
equipment at this stage of development.  Presently, this interface 
could be used in centers of informal education, such as museums, 
or in research centers. However, we anticipate that motion capture 
technology will become more affordable in the next few years and 
might provide one of the most effective and natural interaction 
systems for immersive applications for hearing and non-hearing 
users. 

Another limitation of both interfaces is that recognition is 
presently restricted to ASL numbers 0-20. In future 
implementations recognition will be extended to include numbers 
1-1000, decimals, fractions, and mathematical operators. In 
addition, one characteristic of ASL numbers is that they are 

signed in different ways depending on their meaning (i.e., 
numbers used to describe quantities– cardinals–, numbers for 
monetary values, numbers associated with tell-time activities, 
etc.). For instance, for dollar numbers 1-9, the number hand-shape 
is associated with a twisting motion (wrist roll) to indicate dollars; 
for cent numbers, one possibility is to sign the cardinal number 
and fingerspell the word c-e-n-t-s. In order to be truly effective 
and usable, sign language e recognition systems need to consider 
these variations. 

5. CONCLUSION 
 
The interfaces presented in this paper are still to be considered 
prototypes since many of their features are only at a first stage of 
development and present numerous limitations. But in spite of 
their weaknesses, they are, to our knowledge, the first immersive 
sign language interfaces that support input and recognition of 
ASL math signs, as well as natural and intuitive navigation and 
interaction. 

Many aspects of the interfaces still need to be tested and 
improved. A comparative evaluation of the interfaces will be 
carried out in Fall 2007 in collaboration with the Indiana School 
for the Deaf (ISD). In addition to assessing the usability of the 
interfaces, the full-scale evaluation will address the problem of 
signer-independent recognition. An ideal sign recognition system 
should give good recognition accuracy for signers not represented 
in the training data set (unregistered signers) [31]. Inter-person 
variations that could impact sign recognition include different 
signing styles, different sign usage due to geographical and social 
background, and fit of gloves. Many works report that recognition 
accuracy for unregistered signers decreases severely (by 30-40%) 
when the number of signers in the training set is small, and when 
the signs involve significant, continuous movement. In the case of 
our interfaces we are concerned with the problem of degradation 
of recognition accuracy due to fit of the gloves (since SMILE is 
aimed at children of different ages -5 - 11 years-), but we 
anticipate good recognition results considered that many of the 
math signs are static or involve minimal motion. Studies show 
that recognition accuracy for unregistered signers is relatively 
good when only hand shapes and/or limited motion are considered 
[30]. So far, 7 unregistered signers have used our interfaces; 
recognition accuracy was 75%. 
 

In conclusion, research findings show that automatic analysis of 
Sign Language gestures has come a long way, and current work 
can successfully deal with dynamic signs which involve 
movement and which appear in continuous sequences. However, 
much remains to be done before sign language interfaces may 
become commonplace in face to face computer human interaction 
in general, and in immersive applications in particular. One aspect 
that needs further investigation is recognition of grammatical 
inflections and mimetic signs, and non-manual signals (NMS). 
While interpretation of NMS in conjunction with gesture 
recognition is fundamental for understanding sign language 
communication in general [31], it is not so important for ASL 
mathematics. Therefore, considered that most ASL mathematics 
signs are represented by static or semi-static signs and do not rely 
greatly on NMS, we believe that the realization of a natural 
immersive American Sign Language interface for mathematics is 
a goal achievable in the near future. 
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