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Abstract. The importance of achieving high performance
Fourier transforms for Cognitive Radio applications can not be
over-emphasized. This includes signal detection in the presence
of noise power uncertainty, multi-resolution spectrum sensing,
minimization of subcarriers’ side lobes in OFDM modulators,
multi-stream processing, or spectrum loading, for example.
With the emergence of advanced multicore processors, there is
a remarkable opportunity to develop novel, massively parallel
implementations of the FFT. This paper reviews recent
advances in the area, and presents results for three classes of
devices: the IBM Cell multi-SIMD processor, the Nvidia Tesla
SIMT processor, and the EnLight digital optical core device.

cognitive radio; FFT; multicore procesors;
Pprocessors; transverse vectorization.

optical core

I. INTRODUCTION

In recent years, there has been a tremendous growth of
interest in efficient implementations of the Fast Fourier
Transform (FFT) to support Cognitive Radio applications.
This has been motivated primarily by the critical role FFTs
play in signal detection approaches to channel sensing. With
the emergence of revolutionary computing technologies,
there is a strong rationale to review recent advances, in
particular as related to various multicore and digital optical
core implementations. This is the objective of this paper.

The physical layer of Cognitive Radio (CR) systems may
involve different multi-carrier communication methods. A
key common requirement is that spectral holes (unused parts
of the RF spectrum) be determined dynamically. Other
critical requirements include high spectral-resolution, a
capability to estimate the average power in each sub-band of
the spectrum, determining unknown directions of potentially
interfering signals, and the ability to minimize the side-lobes
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of each subcarrier band to enable data transmission without
interference with other parts of the frequency band.

A standard assumption is that 4G communications will be
based on Orthogonal Frequency-Division Multiplexing
(OFDM) [1]. Hence, related algorithms such as the FFT
(and its inverse) may need to be adapted to the specific CR
context. For example, it has been pointed out [2] that the
requirement to nullify individual carriers to avoid potential
interferences may result in highly sparse data sequences (ie,
OFDM sequences with a large number of zero components)
during white-space detection. Conventional FFT algorithms
may be less efficient in such instances, and various schemes
are being proposed [2] to overcome this challenge.

It has been widely recognized that the FFT, as part of
an OFDM modulator, can also be used for channel
sensing. To that effect, filter banks for multicarrier
communications and methods for spectral analysis in a
CR setting have been discussed [3]. Since many signals of
interest exhibit cyclostationarity, the multitaper method
(MTM) for nonparametric spectral estimation has been used
for rapid spectral analysis. MTM can also perform space-
time processing and time-frequency analysis [4].

Spectrum loading is a dynamic spectrum control technique
for broadband CR systems. It involves the mapping of
discrete spectrum components of a framed symbol sequence
onto available spot-wise spectra [5]. Computational schemes
based on FFTs have been designed that effectively exploit
the spot-wise spectra distribution.

Physical layer spectrum sensing techniques based on FFT
have been shown to enable detection of signals on a TV
channel at levels as low as -116 dBm. [6]. To overcome the
considerable performance degradation of conventional
energy detection schemes in the presence of noise power



uncertainty, an approach that combines the FFT and Max-
to-Mean Ratio (MMR) has been shown as highly effective
(in terms of noise power independence and lower sample
size requirement) for weak narrowband signals [7].

It is often of interest to estimate the Signal-to-Noise power
Ratio (SNR) from observed samples that are taken
asynchronously. Iterative methods for computing the
Maximum Likelihood estimate for this problem are typically
based on the Karhunen-Loeve Transform (KLT) of the data
vector. An interesting recent development shows that the
computationally intensive KLT can be superseded by the
more efficient FFT, asymptotically achieving the same
performance [8].

Finally, interesting studies have been published in the area
of energy based multi-resolution spectrum sensing
techniques. Here, the emphasis has been on the design of
adaptive FFT algorithms that can focus on a small part of
the interested bands with finer resolutions and at lower
computational costs [9]. Implementation on reconfigurable
platforms has also been examined. In another hardware
perspective, architectures for pipelined FFTs with multi-
stream OFDM processing have been proposed [10].

The above references emphasize the central role of the FFT
algorithm in CR. While the ultimate goal is clearly the
design of adaptive FFT schemes, a first and essential step is
to understand the considerable gain in computational
throughput that can be achieved from emerging processor
technology.

Motivated by these considerations, we report on recent
advances in developing efficient FFT algorithms for
implementation on emerging multicore processors. Section I1
focuses on the EnLight digital optical core processor. The
novel FFT transverse vectorization scheme, as related to the
IBM Cell multi-SIMD processor, is discussed in Section III.
In Section IV we present the initial results of our SIMT
(Single Instruction Multiple Thread) implementation of the
FFT on the NVIDIA Tesla. Conclusions are summarized in
Section V.

II. DIGITAL OPTICAL CORE PROCESSOR

Revolutionary computing technologies are defined in terms
of technological breakthroughs, both at the device and
algorithmic levels, which leapfrog over near—term projected
advances in conventional hardware and software to
(potentially) result in paradigm shifts in computational
science. One of the most promising advances in this area
builds upon the emergence of digital optical devices.

Optical processing is inherently capable of high-parallelism
that can be translated to very high performance computing.
In recent years, the Center for Engineering Science
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Advanced Research (CESAR) at the Oak Ridge National
Laboratory (ORNL) has been collaborating with Lenslet
Laboratories (Israel), to explore the feasibility of demanding
signal processing computations using the novel, Lenslet—
developed, EnLight™ platform [11].
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Fig. 1 EnLight ™ processor architecture

The EnLight™256 is a small factor signal processing chip
(5x5 cm®) with a digital optical core. The processor is
optimized for array operations, which it performs in fixed
point arithmetic. The native precision is 8-bit per clock
cycle. Higher precision can readily be obtained by using
more than one clock cycle per MVM [12].

The architecture of a computational node is shown in Fig 1.
The optical core performs matrix-vector multiplications
(MVM), where the nominal matrix size is 256x256. The
system clock is 125MHz. At each clock cycle, 128K
multiply-and-add operations are carried out, which yields a
peak performance of 16 Trillion Operations per Second
(TeraOPS). From a computational complexity perspective,
the paradigm-shifting nature of this processor stems from
the fact that a complete MVM can be achieved in a single
clock cycle. Moreover, the power dissipation per board is
approximately 40 Watt. Due to the inherent parallelism of
the architecture, the computational speed increases with the
scale of the problem. The scaling penalty of the optical chip
is relatively small compared to standard DSP electronics.

At ORNL, we had access to the EnLight™ Alpha hardware,
shown in Fig 2. This is a demonstrator board for the optical
processing technology, with a reduced size 64x64 optical
core. The EnLight™ Alpha clock operates at 60 MHz. The
optical core has 64 input channels (256 vertical cavity
surface emitting lasers, configured in groups of 4 per
channel, hence the 8 bit native precision). The size of the
active matrix is 64x64; it is embedded in a larger multiple
quantum well (MQW) spatial light modulator of size
264x288. There are 64 output channels (64 light detectors
integrated with an array of analog-to-digital converters). The



optical core performs the MVM function at the rate of 60 10°
X 64% x 2 =492 Giga operations per second. The 64 input
and 64 output channels produce data streams of 60 10° x 64
% 8 bits/s = 30.7 Giga-bits per second, cach way.

Fie. 2 The EnLicht Alvha

The FFT results reported hereafter were obtained using both
an implementation on the actual EnLighf™ Alpha hardware,
and a (bit-exact, cycle-exact) emulator that is included in the
EnLight™256 software development platform. Note that the
software interface between a workstation and the EnLight
Alpha processing board has a hierarchical structure.
Specifically, higher level programming languages such as
FORTRAN, C, or MATLAB generate Hardware Descrip-
tion Language (HDL) files and bit-streams via the use of
Xilinx Sysgen blocks of the MATLAB/Simulink module.
These, in turn are used to program the FPGAs that control
the optical core.

Our FFT tests were carried out in the framework of matched
filter computations that occur in anti-submarine warfare
tracking applications. For illustrative purposes, we consider
a set of 33 filter banks (32 Doppler cells and plus one target
echo), with complex data sequences of length 80 K samples
[13]. To enable implementation on the EnLight Alpha, a
well known factorization [14] of the (zero-padded) data
vectors into multidimensional arrays was applied until a
segment size fitting the core was obtained. That segment
was then transformed using a DFT (since the actual matrix
vector multiplication is of complexity one on the optical
processor). The FFT was expanded backward via twiddle
factor implementation on the FPGAs. The following results
were achieved: on a dual Intel Xeon running at 2 GHz, we
required 9,626 ms. This time was reduced to only 1.41 ms
on the Alpha, which corresponds to a speed-up factor of
over 13,000! The estimated performance on the EnLight256
was 0.17 ms. In terms of accuracy, while substantial
quantization noise was observed for low-magnitude spectral
values (we did not trade precision for clock cycles), all
peaks of relevance to the detection and tracking process
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matched accurately those produced by floating point
FORTRAN or MATLAB computations on the workstation,
as shown in Fig. 3.
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Fig. 3 Comparison of accuracy: matched filter calculation on the
EnLight Alpha hardware. Filter output (green for Alpha, blue for
MATLAB) is plotted versus target range (in m).

III. IBM CELL MULTI-SIMD PROCESSOR

In 2000, IBM, Sony, and Toshiba formed an alliance to
develop a revolutionary, new computational platform for
game and video applications and for numerically intensive
tasks in science and engineering. The Cell Broadband
Engine™ architecture [15] is the extraordinary resulting
product of five years of a sustained, intensive R&D effort.
In its latest (third generation) release, the PXC 8i includes
one multithreaded 64-bit PowerPC processor element (PPE)
with two levels of globally coherent cache, and eight
synergistic processor elements (SPE). Each SPE consists of
a processor (SPU) designed for streaming workloads, local
memory, and a globally coherent DMA engine. Emphasis is
on SIMD processing. An integrated high-bandwidth element
interconnect bus (EIB) connects the nine processors and
their ports to external memory and to system I/O.

The key design parameters of the PXC 8i are as follows.
Each SPE comprises a 28.75 GFLOP (single precision)
synergistic processing unit (SPU), a 256 KB local store
memory, a 2x25.6 GB/s memory flow controller (MFC)
with a non-blocking DMA engine, and 128 registers, each
128-bit wide to enable SIMD-type exploitation of data
parallelism. It is designed to dissipate 4W at a 4 GHz clock
rate. We, however, run the SPEs at 3.2 GHz. The EIB
provides 2 X 25.6 GB/s memory bandwidth to each SPE
local store, and allows external communication (I/O) up to
35 GB/s (out), 25 GB/s (in). The PPE has a 64-bit RISC
PowerPC architecture, a 32KB L1 cache, a 512 KB L2
cache, and can operate at clock rates in excess of 3 GHz. It
includes a vector multimedia extension (VMX) unit. The



total power dissipation is estimated nominally around 125W
per node (not including system memory and NIC). The total
peak throughput exceeds 230 GFLOPS per Cell processor,
for a total communication bandwidth above 204.8 GB/s.
The Cell architecture is illustrated in Figure 4.
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Fig. 4 IBM CELL processor architecture

Exploiting the capabilities of single-instruction-multiple-
data stream (SIMD) processors to improve the performance
of the FFT has long been of interest to the applied
mathematics, signal processing, and computer science
communities [16, 14]. Most Cell implementation efforts
reported so far have focused on parallelizing a single FFT
across all synergistic cores (SPEs). We define such a
paradigm as inline vectorization. It is this approach that has
produced the fastest execution time published to date [17].
In contradistinction, we are interested in the case where M
1D data arrays, each of length N, would be Fourier-
transformed concurrently by a single SPE core. This would
result in 8 M arrays that could be handled simultaneously by
the Cell processor, with each core exploiting its own SIMD
capability. We have defined such a paradigm as transverse
vectorization [18, 19].

Our method, which generalizes a decimation in frequency
Cooley-Tukey radix 2 scheme, was implemented in a mixed
language framework (FORTRAN 95/2003 and C) using the
IBM XLF and XLC compilers for multicore acceleration
under Linux. The C components made use of the IBM Cell
SDK 3.1, specifically the SPE management library /ibspe?2
for spawning tasks on the SPU, for managing DMA
transfers, and for passing local store (LS) address
information to the FORTRAN subroutines. The FORTRAN

Digital Object Identifier: 10.4108/ICST.CROWNCOM2010.9283
http://dx.doi.org/10.4108//CST.CROWNCOM2010.9283

code was used for the numerically intensive computations.
Subroutines were written and compiled using IBM XLF
11.1. Intrinsic SIMD functions including spu_add ,
spu__sub , spu_splats , spu_mul , and specialized data
structures for SIMD operations were exploited. These
functions benefit from the large number of vector registers
available within each core. The FORTRAN code was
compiled at the O5 optimization level.

For test purposes we initially used up to 128 data vectors
per core, each vector containing 1024 complex samples. The
following scenario was adopted. The explicitly vectorized
version of our algorithm was implemented using the SIMD
data structure VECTOR(REAL(4)) and the SIMD intrinsic
functions / instructions available on the SPU. Multiple input
vectors of 1024 complex data samples were processed in
each SPE core. These complex vectors were de-interleaved,
and their real and imaginary components were stored
separately. This step was considered necessary since some
of the SIMD intrinsics do not yet support complex data
types. The data was processed 4 vectors at a time, with a
triple-buffering scheme used to hide the DMA latencies.

Timing results for all of the routines were obtained using the
SPU decrementers and time base to convert clock cycles
into microseconds. The SPU clock was started before
issuing the first DMA fetch of input data and stopped affer
confirming the final output data was written to main
memory. The results were compared with results from a
scalar FFT program run on the PPU core and found to be
accurate to within floating-point (32-bit) precision.

We now provide a comparison to the latest and best results
related to FFT implementation on the Cell that have been
published to date in the open literature [17]. For complex
data vectors of length 1024, Bader reports a processing time
of 5.2 microseconds when using all SPEs of a Cell
processor running at 3.2GHz. This outperformed the
industry standard FFTW by a factor of two. To compare his
processing time to ours, we observe that we need 181
microseconds to process 64 vectors on the 8 SPEs of the
Cell. This results in a time of 2.82 microseconds per 1D
data vector. We also timed the processing of 128 vectors per
SPE (that is a total of 1024 vectors, each of length 1024
complex samples). The average (over the SPEs) time is
2709.75 microseconds, corresponding to 2.64 microseconds
per FFT. This is even faster than the result shown above for
64 vectors per Cell, due to the reduced impact of pipeline
start-up and shutdown.

IV. THE NVIDIA TESLA PROCESSOR

The recent emergence of the NVIDIA Tesla general purpose
graphical processing unit (GP GPU), which exploits the
NVIDIA CUDA architecture [20], is beginning to



revolutionize the area of high-performance computing. The
Tesla is built in terms of an array of 30 Streaming
Multiprocessors (SMs). Each SM consists of eight scalar
processor cores. This results in a total of 240 cores for the
Tesla. In addition, an SM includes two special units for
transcendental functions, a multithreaded instruction unit,
and 16 KB of shared memory. There are 4 GB of global
RAM available to the GPU, and its clock runs at 1.296 GHz.
The architecture of the Tesla is shown in Fig. 5.
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Fig. 5 Architecture of the Tesla GPU (courtesy NVIDIA).

From a purely computational perspective, the fundamental
underlying paradigm is the concept of scalar thread. Threads
are grouped in blocks that execute concurrently on one SM
with zero overhead [20]. Massive parallelism is achieved in
terms of a kernel grid comprising the thread blocks. As any
thread block terminates, a new block is launched on the first
available (vacated) multiprocessor.

It is important to realize that the concept of the SIMD
parallelism does not apply directly to the Tesla. Rather, the
CUDA architecture exploits the single-instruction-multiple-
thread (SIMT) concept [20]. Each thread block executing on
an SM is partitioned into groups of 32 threads (called
warps) that are scheduled by the SIMT unit to execute
concurrently. Under SIMT, each thread from a warp is
assigned to one of the scalar processor cores belonging to
the SM. Threads composing the warp start at the same
program address, but are then nominally free to branch and
execute independently. At every instruction select time, the
SIMT unit selects a warp that is ready to execute and issues
the next instruction to the active threads in the warp. If
threads in a warp diverge via data-dependent conditional
branching, the warp serially executes each branch path
taken, while disabling threads that are not on that path.
Finally, when all paths complete, the threads converge back
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to the same execution path [20]. Since a warp executes one
common instruction at a time, the highest efficiency is
achieved when all 32 threads in a warp agree on their
execution path. This is precisely what happens under our
transverse vectorization construct.

The specific computational platform considered for this
study is the NVIDIA Tesla C1060 GPU operating in
conjunction with an Intel Xeon E5530 2.4 GHz CPU that
accesses 6 GB of ECC DDR3 1066 MHz RAM. The
operating system is the 64-bit edition of Windows XP. Our
algorithms are programmed in CUDA FORTRAN using a
compiler provided by the Portland Group Inc [21].

Our implementation comprises two components. A code
that runs on the host CPU and a kernel that runs on the GPU
and is invoked by the host. In practice we run a set of
identical kernels on a one-dimensional grid partitioned into
thread blocks. These blocks get assigned to different SMs of
the GPU as scheduled by the hardware. Because of the
latencies associated with data retrieval from the GPU’s
global memory, there is a strong incentive to maximally
exploit all banks of shared memory, as well as the constant
memory. The abstract-level outline of our approach is as
follows. Let

y = z::fl x W where dimx =dimy =N
denote the DFT of a vector x. If we factor the vector length
NaSN:ijNg, andletn=n1 +TZZN1 andm=m1N2 + m;,
then we obtain the following DFT factorization that exploits
the periodicity of the exponential matrix Wy

n =N, -1 n,=N,-1 namy o mm, o nm,
y = E x W W UW,
m,.m, n, =0 n,=0 nyn, N, N N,

It is easy to recognize that the above expression represents
N; concurrent N, — point Fourier transforms along the rows
of X (innermost summation), followed by multiplication by
the “twiddle” factors, leading into N, concurrent N; — point
Fourier transforms along the columns. This allows us, by
judiciously choosing N; and N,, not only to assign stride one
thread indices, but also to optimally exploit the shared
memory. We use a radix-8 Stockham — based FFT scheme
[22], where we have implemented loop unrolling. Moreover,
note that, even though complex numbers are supported both
by NVIDIA’s CUDA C and PGI’s CUDA FORTRAN
compilers, we split the real and imaginary components to
achieve better alignment in memory fetches.

To benchmark our performance, we have also implemented
the cuFFT library (for NVIDIA's CUDA architecture,
version 2.3) on the Xeon / Tesla C1060 system. The driver
program was written in C and compiled using Microsoft's
Visual C++ Express Edition compiler. Preliminary FFT
timing runs suggest that processing performance in excess
of 190 GFLOPS can be achieved for complex data sample



vectors of length 512 points, when processed in batches of
16384. For vector lengths of 4096 points, the performance
of cuFFT drops to under 138 GFLOPS for batches of 2048.
Our vectorized Stockham scheme exceeds 87 GFLOPS for
this vector length and batch size. The fastest results
previously reported [23] near 100 GFLOPS. Note that our
algorithm has not yet been fully optimized (neither in terms
of stride balance, nor in terms of optimal memory
assignments), so that substantial room for progress exists.
All previous times refer to device execution only.

V. CONCLUSIONS

It is widely recognized that the FFT algorithm plays a
central role in Cognitive Radio. This paper has attempted to
illustrate the considerable gain in computational throughput
that can be achieved from emerging processor technology,
including the IBM Cell multi-SIMD processor, the NVIDIA
Tesla GPU, and the EnLight digital optical core device. In
CR, the ultimate goal is clearly the design of adaptive FFT
schemes. These can not only exploit the advances reported
herein, but also incorporate unconventional architectural
advances in processors such as the Coherent Logix HyperX
[24]. This ultralow power processor (a few pico-Joules per
floating point operation) offers real time compute and 1/O
capabilities, and is the subject of a companion paper [25].

Regarding GPU computing, we note that the recent release
by PGI of the high-performance CUDA FORTRAN
compiler for the NVIDIA Tesla opens, via mixed language
(C and FORTRAN) programming an optimal framework for
ultra fast future implementations. Such a framework would
fully exploit the intrinsic array language, compiler
optimization and numerical capabilities of FORTRAN in
conjunction with the DMA and system capabilities of C.
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