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Abstract—In this paper we consider the problem of signal-to-
interference-plus-noise ratio (SINR) balancing in the downlink
of cognitive radio (CR) networks while simultaneously keeping
interference levels at primary user (PU) receivers (RXs) below
an acceptable threshold with uncertain channel state information
available at the CR base-station (BS). We optimize the beam-
forming vectors at the CR BS so that the worst user SINR
is maximized and transmit power constraints at the CR BS
and interference constraints at the PU RXs are satisfied. With
uncertainties in the channel bounded by a Euclidean ball, the
semidefinite program (SDP) modeling the balancing problem is
solved using the recently developed convex iteration technique
without relaxing the rank constraints. Numerical simulations are
conducted to show the effectiveness of the proposed technique in
comparison to known approximations.

I. INTRODUCTION

The problem of maximizing the worst signal-to-
interference-plus-noise-ratio (SINR) of a cognitive radio
(CR) device in the downlink of a CR network, operating
in the vicinity of multiple primary users (PUs) was solved
in [I] by obtaining optimal beamforming vectors using
the uplink-downlink duality concept. The work of [1] was
recently extended to the case of maximizing the worst user
SINR with imperfect channel estimates at the CR base station
(BS) [2]. This extension assumed that errors in the channel
state information (CSI) are bounded by ellipsoids. Based
on this channel matrix uncertainty model, the problem was
formulated as a quasi-convex optimization program using
the S-procedure [3]. To be precise, in the case of channel
uncertainty, the authors first derived an equivalent problem
that involved rank-1 constraints on the positive semidefinite
(PSD) matrices modeling the beamforming vectors. These
constraints rendered the problem non-convex. Later, the
problem was solved by relaxing the rank-1 constraints and
using the bisection search [4] algorithm.

Relaxing such rank constraints results in an upper bound to
the optimal solution. However, under certain conditions (e.g.,
by showing that the optimum cost of original problem is equal
to that of the Lagrange dual of its relaxed version [5]) we
can obtain the optimal solution, one with rank-1 constraints
satisfied. In addition to this, there are many optimization
problems in communications, for example [6]—[8] to name just
a few, that can be formulated as semidefinite programs (SDPs)
[4] with rank constraints. As a result of these nonconvex rank
constraints various relaxations and approximations are usually
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adopted. Different techniques have also been developed to ob-
tain approximate rank-1 solutions [7], [8] from the optimized,
but relaxed, variables. In [9] the problem of rank constrained
SDPs modeling power optimization in the downlink of CR
networks with perfect channel estimates available at the BS
is studied. By elegantly fine tuning the results of [10], SDP
relaxation of three classes of optimal beamforming problem
were shown to always possess rank-1 solutions in [9].

In this paper, we study the problem of rank constrained
SINR balancing in the downlink of CR networks with imper-
fect channel estimates available at the CR BS. In particular,
our approach does not require any relaxation of rank con-
straints. Our main contributions include showing successful
incorporation of the recently developed convex iteration [11]
technique and developing a low complexity algorithm to solve
the problem.

The remaining paper is organized as follows: In Section II
we describe the system model. The analytical framework is
presented in Section III and in Section IV we detail our
proposed solution. Finally, the results and conclusions are
presented in Sections V and VI respectively.

Throughout the paper matrices are represented using bold-
face uppercase letters while boldface lowercase letters are used
for vectors. Tr(.), (.)7 and [E(.) denote the trace, the conjugate
transpose and statistical expectation operators respectively. I
denotes an identity matrix of appropriate size. C**¥ denotes
the space of = X y matrices with complex entries. CA/(0,T)
represents the distribution of a zero mean circularly symmetric
complex Gaussian random variable with variance I'. ||.|| is the
lo norm operator. M(:, j) is used to represent the jth column
of a matrix M. [i : [] gives a row vector from i to [ with
unit increments in the entries. M > O indicates that M is
a PSD matrix. SV, RY and R represent subspaces of the
set of N x N Hermitian-symmetric matrices, the set of real
N-vectors and the set of real numbers, respectively. diag(IN)
returns the principal diagonal of a square matrix N and M = I
indicates that M — I > 0 is PSD.

II. SYSTEM MODEL

Let us consider a CR BS having N¢g antennas serving
C single antenna cognitive devices. It is assumed that the
cognitive broadcast channel is operating in the vicinity of
K single antenna PU receivers (RXs). Suppose s € C¢
represents the column vector of data symbols meant for the



C different CR RXs such that the symbol for the ith RX is
s; ~CN(0,1),7 =1,...,C. The CR BS transmits a vector,
x € CNer, obtained by linear precoding of s, i.e.,

C
x=zpjsj = Ps, (1)
j=1

where P € CNerXC s the precoding matrix and p; represents
its jth column. With the above model we have E(ss') =
I. Thus, assuming that the total available power is Piotal,
the constraint on the transmit power becomes E(||x[|?) =
Zf:l p;l|> = Tr(PTP) < Piptar- The BS then transmits the
vector x over a quasi-static flat-fading channel. The received
signal, y;, at the ith CR user is given by:
C
yi = hyx +n; = hip;s; + Z h;p;s; + ni, 2
j=1
J#i
where h; € C'*Ner ig the downlink channel vector for the
ith user and n; ~ CN(0,02). In a similar way, the signal
received at the mth PU RX, z,, is:

C
Zm = hintmx + vy = Z hinlm PnSn + Um, (3)

n=1

where hyy, € CY*Ner and v,,, ~ CN(0,02,) are the channel
and noise at the mth PU RX, respectively.

Channel Uncertainty: In practice the CR BS is not able to
obtain perfect CSI for both the CR-CR and CR-PU channels.
We model the CSI error for the CR-CR channel h; as:

h; = h; +e;, “)

where fli is the estimated channel for user 7 at the CR BS and
e; € H;(d;) where
Hi(0:) = {ai : [|as]| < i} S
Similarly, the channels for the CR-PU links are modeled as
Bin,, = Bine,, + €in, ©)

where ﬁimm is the estimated channel for the mth PU at the
CR BS and ejy,, € Hint,, (Oint,,,) Where

Hinlm (5inlm) = {bm : ”bm” < 6intm}~ (7

The ball uncertainty models described above are common
models used to characterize errors caused by processes such
as quantization and estimation [12].

III. ANALYTICAL FRAMEWORK

With the system model elaborated in Sec. II, it is easy to
see that the total signal power received at the ith CR RX,
P; = E(|y;|?), is given by:

C

P; =h;p;p/h! + > h;p;pih! + 02, ®)
j=1
i#i

where the first term on the right hand side of (8) is the power
of the desired signal while the second term represents the inter-
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user interference. Thus, for user ¢, the SINR is defined by:

(fli + ei)PiPI(fli + ei)T

SINR; = ——= = , i=1,...,C.
>oj=1(h; +e;)p;p;(h; + €)f + o7
J#i
)
Similarly, the interference power at the mth PU, IP,,, is:
c
IPm = Z(himm +eimm)pnpl(himm +eimm)T, m = 1, e K
n=1
(10)

A. Problem Formulation

We aim to maximize the minimum SINR of the users in
the CR system subject to transmit power constraints while
simultaneously maintaining interference power at the PU RXs
below a certain acceptable threshold. These problems, in the
context of ordinary broadcast channels, are generally catego-
rized as max-min fair SINR problems [12], [13]. However,
we perform the maximization of the weakest SINR over the
channel uncertainty models described above. Thus, we solve:

Py : maximize t
P
subject to SINR; >t,1=1,..., C, Ve; € Hz(éz)
1P, < <m7 veintm S 7_(intm (6intm)
c
Z Tr(Psz) S Ptotal
n=1

where (,,, is the maximum tolerable interference level for the
mth PU RX.

B. Approximate Solution of P

Recently, P; has been solved in [2] by using the powerful
S-procedure [3]. Their result for the case of spherical channel
uncertainty can be written as:

Lemma 1 ( [2]): With the substitution, W; = p;p|, prob-
lem P; can be equivalently rewritten as:

P> : maximize ¢
TiyAm,t, W

fliQiflI —to? — 7,07 hQ; } -0
(h; Qi)' Qi +7I] —
7>0,i=1,2...,C
[_ﬁimm Shi, +Gn = Andl, —hin,,S } _
(—hing,, S)F —S+ A1)~
A >0,m=1,2,.... K
Tr(S) < Piotar, Wi = 0,rank(W;) = 1, Vi.

where Q; = W, — tzjczl W, and S = 210:1 W..

Clearly P» is non-convéx lowing to the rank-1 constraints. By
relaxing the rank-1 constraints, the problem becomes a quasi-
convex optimization problem and hence can be efficiently
solved using the one dimensional bisection search algorithm
[4], [12], [14]. In [2], the authors modify the basic bisection
search by storing those iterations that returned rank-1 solutions
and later, if the final beamforming solution is not optimal, they
use that rank-1 solution which produced the largest SINR. It is

subject to [



worth noting that the above solution does not incorporate the
effect of interference from PU TXs to CR RXs. Due to space
constraints we do not explicitly present results including this
effect and leave the details to the forthcoming journal version.
However, preliminary results are shown in Sec. V.

IV. PROPOSED SOLUTION

As is evident from the above discussion, the known solution
to the problem at hand is approximate due to the rank-1
constraints. There are many problems in communications [6]—
[8] that involve such constraints on the rank of unknown
matrix variables and these are often solved based on some
approximating technique. Motivated by this we attempt to
present a solution to Py without relaxing the rank constraints.
We replace the feasibility problem associated with Py with a
set of equivalent convex programs that are solved iteratively
in conjunction with the bisection search to obtain rank-1
solutions. Our technique utilizes convex iteration algorithm
[11] approach to solve rank constrained SDPs.

A. The Main Idea of “Convex Iteration” [11]

Suppose we are given a SDP in the variable F € SV
and we are to solve the following corresponding semidefinite
feasibility problem:

FP: find F
subjectto F € C,F = 0,rank(F) <n

where C is a convex set assumed to contain PSD matrices
with rank-n or less. Then, F can be determined by iteratively
solving the following two convex problems:

FPi: minikgnize Tr(FD)

subjectto FeC,F >0

where D € S¥ is the direction vector obtained by solving the
following SDP,

FPo: mingnize Tr(F*D)

subjectto 0 <D XL, Tr(D)=N —n

where F* is an optimal solution to FP; for some given
iterate D. We continue iterating between FP; and FP5 until
Tr(F*D*) attains a vanishingly small value, where D* is the
optimal direction vector. After convergence is achieved the
final pair (D*, F*) provides an F* with rank(F*) < n, if it
existed in C. We stress that iteratively solving FP; and FP»
gives an equivalent representation [4] of the original problem
FP instead of a relaxation and a solution of rank-n or less is
obtained if it exists in C.

B. Incorporation of “Convex Iteration” in Ps

As mentioned above, the relaxed version of P can be
efficiently solved by performing a bisection search. Such
a search involves solving a convex semidefinite feasibility
program for a particular value of ¢ and then, depending
on whether or not the program is feasible for that ¢, the
search interval for the next step is updated accordingly [4].
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Fig. 1. CDF of the interference due to the CR BS at the first PU for different

values of €, 9.

In contrast, we execute the convex iteration described above
together with the bisection search. This avoids the need for any
relaxation. This modified procedure is detailed in Algorithm
1. I/p, O/p represent input and output of the algorithm
respectively, comments are indicated by the symbol ‘>’, while
the symbol ‘x’ represents the optimum value. The Boolean
condition true for the inner while loop indicates that the
loop keeps on executing until we break out of it. £ denotes
the iteration index and W) ¢(¥) represent the values of W
and ¢ in the kth iteration, respectively. The sets Hy, and H;
are used to collect the values of W and ¢, respectively, for
each iteration. For implementation purposes the set Hy can
be updated with special matrices (for example, zero matrices)
when the problem is found to be infeasible. Furthermore, in
Algorithm 1, SINRmax and SINRmin represent the upper
and lower limits on the SINR of the system and we iterate
the bisection search until the difference between these limits
is less than or equal to some threshold, ‘thresh.1’. To solve
the rank constrained problem exactly, we replace the convex
feasibility problem for some iterate, ¢, with the equivalent
convex iteration. This is shown in lines 9-12 of Algorithm
1. Similarly, the second convex program giving the optimal
direction vectors is included in line 16 of the algorithm. Note
that we terminate the convex iteration when either we have
obtained all precoders of desired rank (line 17) or once we
have determined that the value of the objective has become
sufficiently small i.e., smaller than some threshold, ‘thresh.2’
(line 20) to deduce that no such rank matrices are available.
We remark that the precoding matrices and the corresponding
to can be obtained from Hy and H; respectively, by observing
the last entries of these sets for which the problem was found
to be feasible. Algorithm 1 does not contain any procedure for
handling stalls as these were not observed in the simulations.
Various computational issues related to the convex iteration
approach are presented in the expanded journal version.

V. RESULTS

In order to validate the proposed scheme, numerical sim-
ulations are performed. To conduct these simulations it is
assumed that the CR BS is equipped with a uniform linear
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array having Ncr = 5 elements spaced half a wavelength
apart. Further, the BS serves 3 CR devices located at an-
gles 01 = 20°,0; = 45° and 03 = 60° with respect to
antenna broadside, respectively. Similarly, 2 PU devices are
assumed to be located along the directions of ¢; = 40° and
¢2 = 7H° respectively. At the CR receivers the noise is taken
as CN(0,1). Unless otherwise stated, the maximum tolerable
interference-to-noise ratio level at the PU RXs is assumed to
be (,, = ¢ = —10 dB. With these assumptions, the channels
from the BS to the CR and PU RXs, for o = 1... N¢gpg, are
respectively given by the following simple model [15]:

~ 32

(hi)o —e 7d (0—1) COS(ei)’ i=1,2,3,

N j2rd

(hin, Jo = e 3 (07D e0s(@m) -y — 9 2, (11)

where d and \ represent antenna separation and wavelength
(we have taken d/\ = 0.5) respectively and j = /—1.
For each true channel realization, the corresponding CSI
error vector is normally distributed, truncated to lie within
a sphere of radius 0; = 0, Vi and din,, = €, Vm for
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the CR and PU channels respectively. While implementing
Algorithm 1 ‘thresh.1’ and ‘thresh.2’ are taken as 0.05 and
le—-10 respectively. In addition to this, it is assumed that
SINRmin = 0 dB, SINRmax = 13.01 dB and the average total
transmit signal-to-noise ratio (SNR) is Pjsq1/No = 13.97 dB.
To make a comparison, results for the non-robust case have
also been plotted. In the non-robust case, the beamformers
are obtained based on the estimated channels by ignoring the
uncertainty regions. The optimization problems (SDPs) are
solved using CVX [16]. First of all we compare the ranks of
the beamforming matrices obtained using the proposed method
and the ranks of the beamforming matrices obtained using
the algorithm presented in [2]. To do so, we implement [2,
Egs. (16a) and (16b)] in [2, Algorithm 1]. Furthermore, [2,
Algorithm 1] is slightly modified by noting the rank of the
final solution only. With the implementation details outlined
in the expanded journal version of this work, it is observed
that Algorithm 1 in [2] always returns full rank matrices in
the final iteration for all values of € and 0 considered. In
contrast, unit rank beamforming matrices are obtained using
the proposed method.

In a second experiment the cumulative distribution function
(CDF) of interference at the first PU RX is obtained for
different values of ¢ and 0 (see Fig. 1). The CDF is taken
over the distribution of possible channels which lie in the ball
uncertainty regions for the given channel estimates. Results
for the case of a non-robust design are also plotted. It is clear
from Fig. 1 that, as expected, the non-robust design performs
the worst. In fact, it exceeds the interference threshold (—10
dB) around 64% of the time. Furthermore, the interference
in Fig. 1 shows an interesting trend. For small values of ¢, ¢
the CR TX is able to direct a sharp null in its beam pattern
towards each PU RX as the channel is precisely known. As
€, 0 are increased, at first the CDFs spread out since the range
of possible channels is the uncertainty ball increases and most
of these channels lie in a deep null. As ¢, are increased
further the channel knowledge decreases and the TX has to
use a broad null which is less deep to cater for a wide range
of possible channels. Hence, the beam pattern flattens out in
the direction of the uncertainty region and the interference
values become less variable. This is shown in Fig. 1 where
the spread of the CDF increases from ¢ = ¢ = 0.01 to
e = 6 = 0.06 but then decreases for ¢ = § = 0.11. This
observation has another implication. For small ¢, the sharp
nulls mean that the interference constraint can be attained by
beamforming and then full transmit power can be used to boost
the CR-CR SINR. However, for larger ¢, values the beam
pattern does not have sharp nulls and power back-off may
be required. For example, in Fig. 1 full transmit power was
used for e = § € {0.01,0.03,0.06} but a 20% back off was
required for e = § = 0.11.

In Fig. 2 the CDF for the SINR at CR RX 1 for different
values of €,§ is plotted. As in Fig. 1, the CDF is over the
possible channels in the uncertainty region. It is seen that, as
expected, higher €, results in a decrease in the mean SINR
as decreased channel knowledge limits the ability of the TX to
direct strong beams towards the CR RXs while simultaneously
directing nulls towards the PU RXs. The non-robust design



Algorithm 1 SINR balancing with rank-1 precoders

1: T/p: SINRmax, SINRmin, by, by, , Bpi, 6, Gint,, » 7, Protai
2: 0/p: top(max-min SINR), p}

3 Hw «— 0, Hy < 0,k <0 > Initialization
4: while (SINRmax — SINRmin) > thresh.1 do

5: k—k+1

6: t <« (SINRmax + SINRmin)/2

7: D, 0 > Initialize direction vectors
8: while true do

9: minimize ), Tr(W;D;) > 1st cvx
10: subject to  SINR; constraints

11: IP,,, constraints

12: TI'(Zl W’L) < Ptotal

13: if above program infeasible then

14: break

15: end if

16: D, « argming<p, <1 Tr(W?D;) > 2nd cvx

Tr(D;)—Ncpg—1

17: if >, rank(W7) equals C' then

18: break > Rank-1 obtained with some tolerance
19: end if
20: if Tr(W?D7) < thresh.2 then
21: break > No rank-1 precoder available
22: end if
23: if program solved then > Bisection is performed
24: SINRmin « ¢
25: else
26: SINRmax «<—¢ > The program is infeasible
27: end if
28: Hw — Hw U {WP} H, — H 0 {t0)
29: end while

30: end while

31: We obtain tg and W having unit rank.

32: To recover p; obtain eigenvalue decompositions (EVDs)
Wi = TiEiTj, where T'; are unitary and E; contains the
eigenvalues of W on its diagonal. Then, p} = Tz-Eg 2,

provides higher SINR, however, as seen in Fig. 1, such non-
robust beamformers perform poorly in terms of maintaining
interference below the threshold at the PU RXs. For example,
in this case the interference at PU RX 1 exceeded its threshold
64% of time.

Finally, in Fig. 3 we explore the effect of interference
due to the presence of PU TXs. However, as mentioned
above mathematical details supporting these results have been
omitted due to space reasons. We assume there are 5 single
antenna PU TXs and the interfering channel vector estimate
experiences Rayleigh fading with corresponding error vector
normally distributed, truncated to a sphere of radius J. In the
“Std. Ray. Int.” case the interfering signals are unit power and
the powers are halved in the “Half power Int.” case. Hence,
the values of Piotq1/(I + Np) are 6.2 dB, 8.5 dB and 13.97
dB for the 3 curves in Fig. 3 where I represents the total
interference power. To model channel uncertainties we have
taken € = 0.04,6 = 0.05 in Fig. 3. It is seen that standard
Rayleigh interference results in the worst performance. If the
power of each of the interfering signals is halved, the mean
rate of CR 1 increases from 2.45 bps/Hz to 3.07 bps/Hz.
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However, as is evident from Fig. 3, the best performance
(mean rate of 4.5 bps/Hz) is obtained in the absence of any
such interference. This clearly shows that ignoring interference
from the licensed users can drastically over estimate the
quality-of-service expected to be provided by CR devices.

VI. CONCLUSION

In this paper we have studied the the problem of maximizing
the minimum SINR in the downlink of a multiple input single
output CR network. The beamformers obtained also satisfy
interference constraints at the PU RXs and total transmit power
constraints at the CR BS. The optimal beamforming problem is
tackled by exactly solving a SDP, to within a certain acceptable
tolerance, without relaxing the rank-1 constraints. A low
complexity algorithm implementing the proposed approach has
been presented. Numerical simulations have been presented
that show the effectiveness of the proposed procedure.
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