Supporting Collaborative Work through Flexible
Process Execution

Stefan Jablonski Michael Igler Christoph Giinther
Chair for Applied Computer Science IV Chair for Applied Computer Science IV Chair for Applied Computer Science IV
University of Bayreuth University of Bayreuth University of Bayreuth
Bayreuth, Germany Bayreuth, Germany Bayreuth, Germany

Stefan.Jablonski@uni-bayreuth.de

Abstract— In this paper we present how a combination of
declarative and imperative process modeling constructs facilitate
compact presentation of complex process based applications. We
show how to effectively implement such constructs in Prolog.
Since our concept implicates a new way of interaction between
process management system and user we also present our new
concept of a worklist. It guides process executors through the
execution of complex processes. Through this flexible way of
executing processes collaborative work is much better supported
than in traditional process management systems.

Keywords: Flexible Process Execution, Declarative Modeling,
Logic in Conceptual Modeling

L INTRODUCTION

Process management has been accepted as adequate method to
describe complex business applications and to support their
enactment. Deliberately we focus on complex applications
since there the benefits of a process based approach are of
particular importance. Process models illustrate nicely how
complex applications are structured and describe what has to
be done by what persons using which tools. However, we
believe that process management approaches still do not cope
with complexity well. In order to substantiate this proposition
we want to analyze the causes of complexity.

We focus the discussion of complexity on two situations. A
process based application is complex if it consists of a huge
number of different process steps (step complexity). It is not
so easy to reduce this kind of complexity. Such an application
can be structured by creating sub-processes through de-
composition. Then process models are at least easier to
comprehend. However, it is hard to eliminate process steps
such that the application gets "smaller". Step complexity is a
kind of an inherited feature. There is a chance that domain
experts recognize that some process steps are not necessary;
then this complexity can be reduced partially.

A second sort of complexity arises when a huge number of
execution paths exists (path complexity). In this case the
number of process steps might even be moderate. However,
through the flexibility of many different execution paths
complexity escalates. For example, consider three process
steps A, B, and C

* which must be executed “as fast as possible”
« which all have to be executed exactly once, and
* whose executions must not overlap.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

Michael.Igler@uni-bayreuth.de

Christoph.Guenther@uni-bayreuth.de

In Figure 1. a solution to this scenario is depicted. We regard
this process model as complex: although only three different
process steps are involved, the process model consists of 15
process steps (repetitions of the three basic steps A, B, and C),
29 arcs, and 8 flow constructs (XOR) for splitting and joining
control flow. In this context it is not so relevant how to count
steps and arcs; the message is that there are a lot of modeling
elements although the application is rather small. The most
severe drawback of this process model is that its pragmatics
(what it means from an application point of view) is totally
camouflaged, i.e. users do not comprehend the meaning and
purpose of the process. We state that path complexity is

partially avoidable when powerful process modeling
constructs are applied.
®—0©
— @ [T :. ECR
©O—®

RO Ch w R NI o
g

Figure 1. Example process model

o

There are two reasons for path complexity. One of it is a
pragmatic one, the other a technical one. The pragmatic one
refers to the need of collaboration. The process management
approach mainly fosters coordination. However, in many
(process based) applications collaboration is a main
requirement. How does collaboration affect process
execution? In collaborative scenarios the flow of work often
bounces from one user to another. For example, one user
prepares a piece of work, needs some contribution from
another user and then can continue his work. To model such a
scenario with conventional process modeling means leads to
highly complex process models, i.e. is one of the pragmatic
reasons for path complexity. Together, compact process
modeling capabilities and powerful process execution
guidance provides an add-on to conventional process
management that is heavily requested in literature [8], [9] and
[10].

What is the technical reason that still path complexity is not
dealt with adequately? We see one of the major reasons in the
adoption of execution rules from imperative programming



languages like sequential execution, alternative execution (if-
then-else; XOR between execution paths) or independent
execution (parallel execution paths). It is not that we blame
(pure) imperative programming languages it is just that we
state that this programming style is not adequate for process
modeling. The fact that programs are going to become
complex is not that bad since programs are just read by
programmers, i.e. software experts that are able to cope with
that complexity. In contrast to that process model complexity
is problematic. Process models must also (besides professional
process modelers) be comprehended by end users like medical
doctors or nurses, who are not so familiar with formal process
modeling techniques. Thus, when process models are
becoming too complex, these people cannot interpret them
anymore. That also means that they cannot assess their quality
anymore and therefore cannot improve them. As a
consequence we really want to promote applying process
modeling techniques which reduces complexity such that
complex applications can be described by comprehendible
process models and can therefore be understood much easier.
We propose to apply a completely new process modeling
techniques that specifically reduce path complexity. In
contrast to imperative modeling — here the path how to go
through a process is defined explicitly — declarative modeling
concentrates on describing what has to be done and the exact
step-by-step execution order is not directly prescribed.
However, since pure declarative approaches often lack clarity
(users do not see the process flow any more) we remain aloof
from pure declarative process modeling and foster a combined
approach out of declarative and imperative process modeling.
Our second focus lies on the support for the user during the
execution of process models. Through the gained flexibility
concerning the choice of different executable process steps
there is a need for improved process navigation software that
guides the user through a process model. This guidance can
i.e. be to let him simulate that a process step has been done
and offer him a look ahead what lies behind this situation
(what is next). Sometimes it is desired to know what cannot be
done any more if a certain step is executed. This information is
also delivered by our planning component and helps the user
to avoid decisions he will later regret.

In the following paper we describe on the one hand solutions
for new modeling constructs of enriched semantic that helps to
model processes much easier and more comprehensible. On
the second we offer the user a planning component that helps
him during the execution of a process model to keep the
overview of his work and task.

II. RELATED WORK

DECLARE [1] is a constraint based system developed by the
University of Eindhoven that is focused on modeling
constraints between processes. It supports the behavioral and
the functional aspect of the perspective oriented process
modeling (POPM) [2]. It can be combined with the workflow
management system YAWL to support a decomposition of
procedural and constraint based models. DECLARE provides
a promising approach to declarative process modeling.
However, the directly adopted declarative style of constraint
based languages prevents the users and modeler to get a

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

feeling of the standard flow through a process model. The
empirical way of how a workflow should be executed is lost
and cannot be modeled with this framework.

EM-BrA’CE (Enterprise Modeling using Business Rules,
Agents, Activities, Concepts and Events) is a Framework for
unifying vocabulary and execution models for declarative
process modelling [3]. The vocabulary is described in terms of
the Semantics for Business Vocabulary and Rules (SBVR)
standard and the execution model is presented as a Colored
Petri Net (CP-Net). EM-BrA’CE also follows the same
concept we use in this paper to specify a state space transition
relation based on rules. In particular, it does not make use of
control flow modeling to indicate when and how business
rules are to be enforced. Instead, it is left to the execution
semantics of the declarative process models to define an
execution model in which different kinds of business rules are
automatically enforced. We think that there is still a demand
for process modeling in a graphical way that is slightly along
the lines of well known procedural modeling; this is necessary
in order to get user acceptance. However, we agree with the
authors of EM-BrA’CE to switch to a more declarative style.
Sadiq et al. [4] show that it can be advantageous to combine
both declarative and procedural aspects in a process model.
They present a foundation set of constraints for partial process
modeling. A process model can contain, in addition to
predefined activities and control flows, several so-called
pockets of flexibility. Such pockets consist of activities, sub-
processes and so-called order and inclusion constraints. Each
time during enactment when a pocket of flexibility is
encountered, the elicitation of the work within the pocket is
done by a human end-user through a so-called “build” activity.
Although such a combined approach has advantages we think
that a framework should be designed in a way whether it uses
the declarative style or the procedural style.

III. NEW ELEMENTS FOR COMPACT PROCESS MODELING

This section presents three new modeling elements which
form the basis of our approach to declarative process
modeling. Since we focus on the reduction of path complexity
we introduce three new modeling elements, special arrows
(with two different semantics), boxes (to group processes), and
quantification (to define the number of executions of a
process). Besides these new modeling constructs we rely on
the typical modeling elements of the perspective oriented
process modeling method [2]. However, in this paper we
mainly focus on the functional perspective and the behavioral
perspective, whereas we neglect the data, operational and
organizational perspectives.

A. Two Different Types of Arrows

The first modeling construct that will be associated with a new
semantics is the arrow. The semantic of the well known arrow
symbol in process modeling is that if an arrow goes from
process A to process B then process B has to be performed
after process A. Accordingly, if process B is connected with
an arrow to process C then C may start after process B has
finished (Figure 2. ). We also say: B requires the execution of
A before it can run; C requires the execution of B (and
consequently of A, too) before it can run. We want to keep this



very common construct and put it in our modeling toolbox.
We present this modeling construct as a solid line.

OnaOngO

Figure 2. Sequential process flow

Beside this arrow construct depicted by a solid line we want to
add an arrow depicted by a dashed line; this dashed arrow
holds a different meaning. Two processes that are connected
through a dashed arrow can be executed in any order. For
instance, if process A and process B are connected by a dashed
arrow A can be performed before B or vice versa, B can be
performed before A. Nevertheless, having defined a dashed
arrow from process A to process B expresses a preference
(recommendation) that process A should be performed before
process B. This feature can be utilized when processes are put
on a work list for execution. If more than two processes are
connected through a dashed line then a permutation of all
process executions is feasible, e.g. ABC, BCA, CBA. This
scenario is modeled in Figure 3.

®-+Er+©
Figure 3. Model of flexible scenario

It is certainly possible to combine the solid and dashed arrows.
In Figure 4. process A and B are connected through a dashed
arrow; process B and process C are connected through a solid
arrow. This means that there is flexible ordering between
processes A and B while process B must always be executed
before process C. This semantics results in the following three
execution orders: ABC, BAC and BCA.

ORaOngO

Figure 4. Combination of solid and dashed arrows

B. The Box Modeling Element

The box modeling element ensures that all the processes inside
a box are regarded as a unit. Thus a box can substitute a
process. That means that instead of executing a single process
A or B the box must be performed, that means the processes
within the box must be executed. For instance, in Figure 5. the
box must be executed completely before process D can be
started. Executing the box means to execute processes A, B,
and C in an arbitrary order. This execution results in the
following sequences: ABCD, BCAD, CABD, CBAD, ACBD
and BACD. D is always the last step that requires the
completion of all previous steps respectively the box in which
the steps are contained.

®- -0

Figure 5. Box which is requirement for process D

C. Quantification

Often it is necessary to specify that a process can be executed
several times. For that purpose we add a quantificational

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

aspect to process steps. Every process gets a minimum and
maximum counter that indicates how often a process may be
executed. We call them domain. If it shall be executed exactly
a certain number of times then minimum and maximum are
equal. To express that a process step is not essential for the
whole process but can be done in the sense of “possible but
not necessary”, then a minimum quantification of zero should
be selected. Now let’s consider a simple process example that
is set up with the upper modeling constructs and quantification

and is presented in Figure 6. :
(o o )-»(E 23)

(2 (G ro) (e w7)

Figure 6. Process model with new modeling constructs

A J

When we take a look at the overall process of the referred
Figure 6. that the process modeler has developed, then at a
first glance the two boxes attract attention. They are connected
through a dashed arrow, meaning that it is possible to start
with one of the boxes no matter which one. Inside the left box
there is a connection between process A and B, indicating that
process B requires the completion of process A. Process C is
dashed connected so it can be executed before A or before B if
it is not desired to start with A. In the right box processes D
and E are also dashed connected meaning it is not relevant
from the modeler’s point of view which process shall be
executed first. Concerning the quantification of the upper
process steps then the following dot list gives an overview
how often each process shall be executed:

e Process A: minimum = 1, maximum = 2
e Process B: minimum = as often as A, maximum =3
e Process C: minimum = 1, maximum = 1 (exactly once)

e Process D: minimum = 0, maximum = * (optional, any
repetition)
e Process E: minimum = 2, maximum = 3
As an introduction to the correlation between the
quantification and the arrows we’d like to exemplify that on
two process steps A and B which are connected through a
solid arrow. As already mentioned this connection models that
B requires the completion of A to be executable. Completion
means that step A is in its domain, which means it is done
once or twice (indicated by 1...2). The quantification in B
means it has to be done at least as often as A, but maximum
three times. Having executed A once, it is not possible to do A
again, after having executed an instance of B, although
process step A can be done twice in general. This is important
to ensure a valid solution, because otherwise a valid solution
could get invalid afterwards. This would be the case if A is
executed once, B has to be executed at least as often as A, so
once would be a valid value also. If we allowed A to be
executed afterwards, incrementing the counter of A would
make the formerly valid solution invalid. By assuming a
encapsulation of steps, we can guarantee a valid solution
whilst allowing dependent domain borders. Another example
for a correlation between process steps are D and E which are
connected through a dashed arrow. The user has the flexibility
to start with one of the two processes. Now let’s assume the



process executor has executed E twice, so it can be seen as
done. After starting the execution of process D, he must be
aware that E cannot be executed anymore afterwards. The
restrictions, not being able to jump back again (i.e. in this case
or in the case when B is done and process A executed once)
are fundamental rules in the system which cannot be
influenced by the modeler. We’d like to mention that there is
not much effort to change these rules to another desired
semantic. The described structure offers a huge field of
application for producer-consumer scenarios. They could
model situations like: A may produce an arbitrary amount of
parts; B has to check all of them. This of course is very
interesting for collaborative work, as the tasks of every party
can be defined precisely and even considering the exact count,
which is determined on runtime.

IV. PROCESS PLANNING

Taking the process model form Figure 6. we can talk about
process planning. Why do we have to talk about process
planning at all? In contrast to conventional process models
which typically rely on imperative modeling our modeling
approach combines declarative and imperative modeling
principles. We did this in order to provide flexible process
execution, i.e. many alternative paths for executing a process
are offered. However, this feature also comes with a
challenge: sometimes it is hard for users to see what processes
can still be performed and what processes cannot be
performed any more. Further on it is hard to know who has to
execute a certain step. In imperative process models, it’s
usually clear which steps have to be performed after each
other, as they only describe a few different cases. Providing
the described flexibility of step execution in imperative
process models makes it much more difficult to figure out,
who in a collaboration has to perform a certain step and when.
In order to support users in this respect we offer a planning
component. This planning component provides an "overview"
to users: they know which steps can/cannot be executed and
which consequences the execution of process steps has. For
example, executing a specific step prevents other process steps
to be executed. In the example of Figure 6. this is the case
when the user decides to begin with one of the boxes.

There are a few basic questions that can be asked in every
phase of process execution that helps the executor of a process
model to assess what to do next. We’d like to mention that for
collaboration between process executors the organizational
aspect [2] has to be implemented in ESProNa, which is
currently under research. With this aspect it is possible to add
a “Who” to the question “What is executable next?”
presenting the process executor the information if he can
execute this process or which person he needs to contact to
execute it. In the following subsections we assume different
situations in which a user is supported by our system. This
supports refers to the following three issues: how the user can
continue process execution, how he can simulate things, and
how he is guided to achieve the execution of a specific process
step.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

A. What can I do at the beginning?

This question aims at the feasible process steps that can be
executed in the actual state of process execution. Assuming
nothing has been done yet in example [Figure 6. ] the system
would deliver the steps A, C, D and E. As the two boxes are
connected by a dashed arrow and the execution order of A and
C as well as the one of D and E is arbitrary the upper delivered
process steps are possible to execute. This provides an
overview of the initial doable working steps to the user.

B. Simulate the execution of steps

As soon as a user clicks onto a possible process step, the
system simulates its execution and delivers the consequences
of his choice. The consequences are presented in three
different lists, named after, somewhen and not_after. As the
names do already suggest, the first list displays the steps that
can be executed after the execution of the selected process
step. The second one displays process steps that will never be
allowed to be executed after having finished the selected
process step. The last list displays all steps that still will have
to be executed to finish all process steps successfully.

If we now assume the user preselected process step C as initial
process step for execution then the system delivers the
following information:

after somewhen not after
A A C

B

D

E

Figure 7. The three planning lists

The after list displays process step A, as the whole box would
have to be executed first, before being allowed to execute one
of the other steps in the right box. This is because of the rule
that there is no jumping between the boxes allowed as long the
content of the box is not completed. The somewhen list would
display the steps A, B, D and E, as those will have to be
executed some when. The not_after list would display only C,
as it is the only process step that will never be allowed to be
executed anymore. This provides a full overview of the
consequences of the user’s decision. The decision if the
previously selected process step is really executed is taken by
the executor himself. But with the consequences we offer him
through after, not_after and somewhen we support him in his
decision whether to start the selected process step or to choose
another one.

C. How to achieve the execution of a specific process step

For example, the only process that has been done is step E.
The system will now displays D as next step as it is contained
in the box. Now assume that the user could be interested in the
fastest possibility to execute a certain process step i.e. process
B. Therefore he navigates over one of the processes in the
somewhen list. The system displays all process steps he will
have to execute before he will be able to execute the desired
process step (see Figure 8. ). In our case if the user navigates
over B, the system would display steps D and A. He would
first need to finish the execution of the box and it is necessary



to execute A before B, as they are connected by a solid arrow,
meaning B depends on the completion of A.

somewhen

Do first: D, A

Figure 8. Displayed required process steps for B

V. IMPLEMENTATION OF ESPRONA

In the following section we will have a look at the
implementation of our system which is called Engine for
Semantic Process Navigation (ESProNa). We use declarative
programming, namely Prolog [5] and Logtalk [6], [7] to
implement the described functionality. Declarative
programming on the one hand is not like the usual imperative
one, where you have to specify which operations are
performed (What?) in a specific order (How?). Instead, only
rules (What?) are defined leaving the aspect how things are
done unspecified as long as no rules are violated. Consider a
simple statement like:

test () :- between(1,5,3).

This means the system checks if the value of a given variable
A is between one and five. If so, the system returns frue. But
things are getting really interesting if we leave the variable 4
unspecified. Then the system looks for valid solutions:

This means we get all solutions of a statement, one at a time. It
is obvious, that this approach is very applicable for a highly

L
[ I I T
(SN ]

flexible approach like ours. We submit the rules of
interpretation to the system. It generates statements that have
to be fulfilled by any order of executed process steps and then
checks which orders are valid, i.e. satisfy the previously
generated statements.

In the following subsection A we will show how we generate
the answers to the questions we posed in section IV using the
techniques of the previous paragraph. Therefore we use a
predicate called getDeps/2. Its importance will be described in
the following sections. Afterwards we will have a look at the
process model we generate and its interpretation to generate
static (subsection C) and dynamic (subsection D)
dependencies. Finally we will describe the systems behavior
on runtime in subsection E.

A. Navigation features

Now we can ask which process steps can be executed next in a
certain state. Therefore we call the predicate executable/2
which takes two arguments. The first one is the state; the

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

second one is a process step. As we use Prolog, the predicate
succeeds if the given process step is executable in the current
state. But we can also leave the second argument unspecified.
Then the predicate will deliver a list of process steps, for
which the called predicate would have succeeded. This is the
information we were looking for, as this means we get all
process steps that could be executed in the current state.

Inside executable/2 we use the simulation of a state transition
to determine if the tested process step is allowed to be
executed in the current state. It tests several factors.

1) Is the process step still to do?
This is tested first, as it is the cheapest operation. This is
especially important, when we ask without specifying a
process step. It simply tests if the process step is already
marked as done in the current state.

2) Are all dependencies already done?
This operation gets all dependencies from the process object,
using getDeps/2. Then it checks if all process steps, the current
step depends on, are already done. This is a quite special
behavior and can easily be changed into arbitrary rules, like if
a step is started, worked on, etc.

3) Does the state transition deliver a valid result?
This checks if the new state provided as an argument is
reachable regarding the given state and process step. If all of
those three queries succeed, the given process step is
executable in the current state and will create a transition into
the new state, given as an argument.
If we leave some of the arguments unspecified, the predicate
will deliver pairs of arguments which would succeed, i.e. all
feasible process steps and the resulting new state after their
execution.
This leads to the second question we asked in section IV.
What happens if we would do a certain step? We can use the
described predicate to simulate more than one execution. Thus
we can provide all consequences of starting the execution of a
process step as a decision support. We could do this up to
arbitrary depth, but offer it only for one step at the moment
because otherwise we could get an overwhelmingly huge
number of possibilities, which means lots of computational
complexity as well as possible confusion of the user.
That is why we take the resulting new state we get from the
state transition simulation and ask again for processes that
could be executed, couldn’t be executed after the current
process step and a general roadmap.

executable (NewState, ProcessStep) .
€

with the new state. It’s important to mention, that we calculate
the possibilities not before the user selected a process step.
This keeps the computation low, as we have only one state. If
we precomputed the possibilities, we would need to calculate
the corresponding possibilities for all elements in the list,
which would mean quadratic complexity.

We get the additional information for free, as the new state
already contains information about the process steps that are
marked as done as well as the ones that are still marked as
todo.



The third question is a more complex one. To determine which
process steps would have to be made to be able to perform a
certain step, we need to ensure that all dependencies are
already satisfied.

We call the corresponding predicate what to/3.

what_to(_, [1, [1).

what_to([done:Done|_], [X|R], B) :-
what_to([done:Done|_], X, Bef),
what_to([done:Done|_], R, Bef2),
subtract (Bef2, Bef, Result2),
append (Result2, Bef, B).

what_to([done:Done|_], X, []) :-
X::getDeps (Done, Deps),
subset (Deps, Done),!.
what_to([done:Done|_], X, Before):-
X::getDeps (Done, Deps),
subtract (Deps, Done, Result),
what_to([done:Done| []1], Result, Todo),
subtract (Todo, Result, Result2),
append (Result2, Result, Before),!.

)
procedures. We will start with the second two, which handle
the dependencies of a single process step in a certain state.
This is the default case that is called if the user navigates over
a process step in the roadmap. The first one is a trivial case: It
askes for all dependencies of the given process step X and
checks if all of them are already done. If so, we don’t need to
do anything before being able to execute X.

The second one handles if there are dependencies that are not
yet done. So we subtract all the dependencies that are already
done and call what_to with the remaining dependencies, stored
in the Result list. This delivers a list of process steps that are
still zodo. In the last two lines we combine the two lists.

The call of what to with the result list is realized in the first
two procedures. The first procedure again realizes a trivial
case that we need as final statement because we want to
realize the walk through the list recursively. It just says, that if
we look at an empty list, we don’t have to do any steps. The
second case is used to handle a not empty list. It calls the
what_to predicate for every element in the list, and combines
the resulting dependencies.

This means that we check the dependencies of the given
process step X, check which of them are not already done and
check if the remaining process steps have further dependencies
we need to satisfy first. Using this kind of backtracking, we
ensure to only check the process steps a preceding step
depends of. This again reduces complexity.

B. Process model

All of the previously described predicates rely on a predicate
getDeps/2 offered by every process object. It delivers the
dependencies of every process step in the current state, which
are also saved in Logtalk objects. The function takes the
current state as an argument, as the dependencies differ
accordingly to the state, because of dashed connections and
boxes (Figure 6. ). It delivers all dependencies of the process
step in the current state, according to the aspects that are
important for the current process. Like this we can easily add
functionality or make the navigation faster, depending on the
application domain requirements. We will describe the aspects
in section VI. To generate those dependencies we need to

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

interpret the drawn process model in a way the system can
understand. To do this we convert the arrows into a
description of connections. Like this we can convert the
graphical process model into a textual descriptive one. This
will be our general approach. The connections in Figure 6.
Figure 4. are shown in the following listing after the
conversion.

solid_arrow(a,b).
dashed_arrow(b,c) .
dashed_arrow(box 1,box_2).
dashed_arrow(d,e) .

. y

we use process steps. The process steps are named with small
characters here, because Prolog does not allow to use
uppercase, unless for variables.
Now we can start interpreting this system in our described
way. There will be two different kinds of dependencies, static
dependencies which are independent of the current state and
dynamic dependencies which are not independent. We will
describe both types in the following subsections.

C. Static dependencies

As a solid arrow holds only information about one direct
connection (i.e. the connected element), no further
interpretation is needed. We now want to use the modeled
behavior to build dependencies for the process steps. This
happens in the initialization phase. To model the dependencies
out of solid connections, a simple rule is enough, as every
perspective is checked separately.

require (X,R) : -
sconn(W,X) -> depList (W,R);
sconn(W,Y), rec_box(Y,X) ->
depList (W,R) ;
R = [].

i i ot
would trigger dependencies. The first line checks whether X is
object of a solid connection and determines thereof
dependencies through depList/2, which will be described later.
The second line checks if X is member of a box that is object
of a solid connection and again calculates dependencies out of
this, using depList/2. The last line just says that there are no
dependencies if the first statements failed.

depList (X,R) : -
xor ( (box (X, List)
depRList (List,R)), R=[X]).

depRList ([], [1) .

depRList ( [X|List], RList) :-
depList (X, DL), depRList (List, DRL),
union (DL,DRL,Rlist) .

A X . a
given element W. If the connected element X is a process step,
we write X into the dependency list and finish. If the linked
element is a box we need to put every element inside the box
into our dependency list. As boxes may contain nested boxes
in arbitrary levels, we need to call depList/2 recursively for
every element in the box and combine the resulting
dependency lists. This is what depRList/2 does.



D. Dynamic Dependencies

As a dashed arrow is not in fact an arrow, it is connected to all
elements within a dashed sequence. To give a rule for this
behaviour, we write:

dconn (X, Y):- dashed_arrow(X,Y).
dconn (X, Z):- dashed_arrow(Y,2),

dconn (X,Y) .

S

steps within one dashed sequence are interpreted as directly
dashed connected; this means they are arbitrarily swappable in
their execution order.
Dynamic arrows between process steps don’t determine a
fixed execution order, so they don’t imply dependencies. But
we need to ensure the encapsulation of boxes, as we are not
allowed to jump between them, before every nested element
got executed. This is why we need a special technique, which
we will refer to as dynamic dependencies. We use the state to
trigger dependencies to ensure the encapsulation. This means
as soon as one element of a dashed linked box is executed, all
nested elements A of the box become a dependency of the
dashed connected element. If the dashed connected element is
a box A becomes dependency of the all its nested elements.
This models exactly what we described in section III. As the
two rules of findDyn/2 already suggest, this can easily be
modified, extended or changed, accordingly to the current use
case.

dyndeps (X, DL) :-
findall (D, findDyn(X, D), DL).

findDyn (X, D) :-
rec_box(Y,X),
(dconn (Y, 2) ;dconn (Z,Y))
-> depList (Z,BList), !,
list_to_set (BList, Box),
D=Box:Box.

findDyn(X, D) :-
(dconn (X,Y) ;dconn (Y, X))
-> depList (Y,BList), !,
list_to_set (BList, Box),
D=Box:Box.

The first rule asks if a process step X is a nested element in a
box Y. The procedure rec_box/2 is used to find nested
elements in boxes in arbitrary depth. Afterwards we determine
whether there is a dashed connection between the box Y and
an element Z. Using our former predicate depList/2, we don’t
need to care about Z being a box or a process step. We grab
the list BList, remove duplicates and generate a
ThiggsthBrependedayeceaktsiataghisth thve fetverse case. If the
element X is directly connected to an element Y, we again use
depList/2 to gain the dependencies, not taking care of the type
of element Y represents. After removing duplicates, we return
constructs of the same shape as dependencies.

This gives us the possibility to adopt dependencies to a

certain state, which means that we can ensure encapsulation of
boxes.
In fact, dynamic dependencies could be used to interpret
arbitrary modeling constructs arbitrarily. This makes them a
very powerful tool regarding scalability, adaptability and
flexibility.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

After extracting the static and the dynamic dependencies
out of the model we create a new dependency object using
Logtalk to save them. After linking the object to our process
object, we can simply access its dependencies calling
getDeps/2. So we do not need to parse the process model on
runtime.

We generate some other objects in the initialization phase.
Right now there is one domain-object created for every
process step. This takes care of the cardinality of the process
step, offers predicates to check if it is in its domain and takes
care of dependent domains. Dependent domains are needed to
model a producer consumer relation (do A at least as often as
B, or vice versa). Outsourcing this functionality simplifies the
process step objects and lets us concentrate on the three states
of a process.

E. States of processes and runtime

The three states of a process step are fodo, active and done.
This abstraction is possible as we don’t care about the domain
of the process step, but use the domain objects predicate
inDomain to determine whether a process step is executed a
valid number of times regarding its domain.

This abstraction allows us to take the cardinality out of the
generated state space. This makes the space smaller keeping a
domain validity check, because we rely on the predicates the

domain object provides.
Done:
Todo:a, b, ¢, d, e
e
Done: ¢ Done: d Done: e
Todo:a, b, d, e Todo:a, b, c, e Todo:a, b, c, d
Done:a, ¢ Done: d, e
Todo:b, d, e Todo:a, b, ¢
b <
Done:a, d. e Done:c,d e
Todo:b, ¢ Todo: a, b
Done:a, b, c. e Done:a, b, d. e Done:a, c,d. e
Todo:d Todo: ¢ Todo: b
Done:a, b, c.d. e
Todo:

Figure 9. The state machine representing all possible execution orders

Done:a
Todo:b, ¢, d, e
Done: a, b
Todo:c,d, e

Done:a, b, c. d
Todo: e

Like this we can use a kind of deterministic state machine, to
execute a process. We have a well defined start state, where no
process step is executed and a well defined final state, where
all steps are executed. We don’t need to look at optional steps
separately, as the function inDomain returns true even if we
didn’t execute a single instance of the step. That is why we
can assume a single final state.

Start state and final state are connected with lots of paths
through lots of states. All those paths represent all valid
execution orders. As this is a tremendous number for fairly
small processes, we do not precompute them. We also do not



define a fixed state transition relation, as this would take way
more memory and time than just combining all process steps
(O(N?), as the transitions depend on the current state. That
means we would have to combine all process steps and the
states with each other. The number of possible states can be at
most N! which makes this approach impractical.

We use an implicitly defined state transition relation that is
already given through the dependencies. This allows us to
determine a valid transition very fast. And as we do not need
to look at more than one transition at a time, we simplify our
complexity significantly. Listing all possible paths through a
state space would be of complexity O(N!). Navigating through
it, using implicitly defined state transition relation and a look
ahead of one takes O(N%/2) at maximum, because the steps we
have to check are reduced by one at a time.

Like this the calculation effort as well as the storage space
needed for navigation, can be reduced from exponential order
to polynomial one.

VI.  CLASSIFICATION OF PLANNING QUERIES

A process is way more than an array of executed steps.
Especially in ESProNa, it is absolutely necessary to guide a
user through process execution since so many alternative
execution paths are available. To get grips of the huge amount
of information stored in a process model, we offer a
classification of two categories. The first one is called
Navigation and handles issues that aim at finding one or more
process steps that fulfill a certain criteria. Questions as
discussed in Section IV fall into this category. We distinguish
between constructive questions, which aim at process steps
that can or should be done and destructive questions aiming at
process steps that cannot yet or anymore be done.

To answer those questions we rely on the predicate
getDeps/2 of a process object to obtain dependencies between
process steps. It interprets the information of different
perspectives of process steps to determine dependencies
between them. The method Perspective Oriented Process
Modeling (POPM, [2]) provides a useful classification of
dependencies. There, process steps are composed of so called

according to POPM to classify reasons for dependencies. We
want to emphasize that the sets of proposed queries grouped
according to the perspectives are not complete and
more/alternative questions can be integrated easily.

A. Functional perspective

This perspective handles technical information about process
steps. Typical dependencies that are generated out of this
perspective might be the following: Assume we want to model
that a process step B has to be done at least as often as A. This
again means, B is dependent of A.

B. Behavioral perspective

This perspective encompasses questions that aim at the current
execution state of a process step. A typical question is: “Is the
process step active right now?” Other questions could ask if
the process step is still to do, or if it has already been done.
The dependencies contained in this perspective are the ones
usually drawn in process models. Every solid arrow between
process steps, directly triggers a dependency. So there is no
need for interpretation.

C. Organizational perspective

The operational perspective handles information about
executing agents. We need to be able to answer questions like:
“Who should perform this step?”. A dependency triggered by
the organizational perspective might be that process B has to
be performed by the supervisor of that person who was
executing process A. This is often the case if a document hast
to be reviewed or a transaction affirmed. But this triggers a
dependency, because we first have to know who did A, before
we can determine the corresponding supervisor.

D. Data perspective

The data perspective finally handles input and output of a
process step. Questions that aim at required data or produced
data can be placed here. We even handle real objects as data,
because they are represented by documents or data sets in our
system. For example, a process step B needs a specific data
item that is produced in step A. This causes a dependency
from B to A.

Perspective

Dependencies . .
s Navigation

getDeps

: l [ [ | e
( Functional ) (Behavioural) (Organizational) ( Data ) Interpretation (Constructive) (Destructive)
: [ [ [ [ : : [ [

- | inDomain active who needed next not_after
Min done produced how_to not_before
: | Max todo what_if

: somewhen

Figure 10. Classification of possible questions respecting the Information and the Navigation view

perspectives. We use the perspectives of a process step

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299



All perspectives are cumulated by the getDeps/2 predicate.
It interprets the contained information applying the predefined
semantics of the current use case. The output is a set of
dependencies. There is no subdivision of the set, because we
don’t need to distinguish the perspectives anymore. A
dependency means that the dependent step can’t be executed
before his dependencies finished. It is sufficient if one
perspective triggers a dependency. Only if there isn’t any
dependency to be fulfilled anymore, the process step becomes
executable.

VII. USABILITY STUDIES IN THE FORFLOW PROJECT

ESProNa is part of the ForFlow Process Navigator [11]. This
system is developed in the joint research project ForFlow [12]
among 4 Bavarian Universities and about 30 industrial
partners. The Process Navigator (Figure 10. Figure 10. ) is
divided into a worklist (left side), where the executable work
steps are displayed, and a planning component (right side),
which offers information concerning the processing of all
work steps. When we relate to the process model of Figure 6.
and assume that we are in the initial state where no process
step has been executed yet, then the ForFlow navigator would
display the information that is displayed in Figure 11. On the
worklist (shown as “possible steps”) all possible process steps
are displayed that are in principal executable (A, C, D and E).
Furthermore the user of the system has preselected process A
and he has the opportunity to start this process through the
button “Start”. On the planning side a general overview is
displayed: “Next step after A” displays information that
informs the user which set of steps are directly executable
after the user has done step A. In our case he can decide
between the process steps B and C. In the column “Roadmap
after step A” the user is informed about what steps still have to
be done to complete the process model. Notice that here also
D and E are displayed which are not directly available in the
left column of the planning component (“Next step after A”).

Process Navigator

The reason is that D and E are in the right box of the process
model and for executing these two processes, the left box
where A is inside has to be completed first. Now imagine the
user is interested in exactly this process D that is not directly
available (but later) with the selection of step A. When he
places the mouse pointer on the process D in the list
“Roadmap after A”, then a small popup window appears, as
described in section IV.C, telling the user which processes
need to be completed first in order to be able to execute
process D. With this information the process navigator not
only displays processes that are in principal executable or still
to do up to the finalization of the process model. It also
supports him when he needs information that lies in between
two assumptions (step A preselected and the possibility of
executing D). This feature influences his decisions in a very
positive way. It can be seen as if an expert who has done this
exact process model many times will give him advices and
supports him when he is uncertain. Through the possibility to
preselect steps before really executing them and querying
information concerning the whole process scenario we have
noticed that in evaluations with the Process Navigator users
really appreciate this feature.

Further on there is a huge amount of additional functionality
on the Process Navigator ([11]) like document management,
multiuser and task management as well as additional
navigation levels. Those levels depend on the desired amount
of flexibility of the process execution. The strict mode only
provides the next step of a reference (default) workflow. The
next level is the one described in this paper, which ensures
valid process execution even though users have the possibility
to change the order of the steps. The last one is a fully free
order, without any validity check. We want to provide a
system that provides maximum flexibility of the process
execution, as well as guaranteed validity, regarding the
previously modeled behavior.

A
Tasks Products Search
=] Possible steps
(ol
Starts i
. c

D

m g g a@

g

lame: 'A' State: READY

Administration

Figure 11. The ForFlow Process Navigator based on ESProNa

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299



VIII. CONCLUSION AND OUTLOOK

Through the combination of declarative and imperative
modeling styles, the ESProNa system can effectively support
collaborative work: Typical collaborative situations when the
flow of work often bounces between work steps can be
modeled in a compact way. Also process execution supports
this kind of collaboration. So ESProNa extends traditional
coordination capabilities of process management to
collaboration features. The practical application of ESProNa in
diverse projects in the context of the ForFlow project proofs
the applicability of the concept.

One of the next phases in the ESProNa project will be to
revisit the definition of the execution semantics. So far, we
heavily rely on deriving this semantics from the semantics of
the underlying Prolog implementation. However, we aim at
separating semantics off the program implementation and
describe it in a more general, more formal way. Another step
is the implementation of additional perspectives and views,
using the new separated semantics.

REFERENCES

[1] Pesic, M., Schonenberg, H., and van der Aalst, W. M. 2007. DECLARE:
Full Support for Loosely-Structured Processes. In Proceedings of the
11th IEEE international Enterprise Distributed Object Computing
Conference (October 15 - 19, 2007). EDOC. IEEE Computer Society,
Washington, DC, 287.

[2] Jablonski, S.: Functional and behavioural aspects of process modelling
in workflow management systems. In: G. Chroust and A. Benczur (eds.):

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8299
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8299

31

[4]

[5]
[6]

7
(8]

[9]

[10]

(1]

(12]

Proceedings of CON'94, Workflow Management: Challenges, Paradigms
and Products, Linz, Austria, R. Oldenbourg Miinchen, pp. 113-133, 1994

Goedertier, S., Haesen, R., Vanthienen, J. (2007). EM-BrA2CE v0.1: A
vocabulary and execution model for declarative business process
modeling. FETEW Research Report KBI_ 728, 74 pp. Leuven:
K.U.Leuven.

Sadiq, S. W., Orlowska, M. E., and Sadiq, W. (2005). Specification and
validation of process constraints for flexible workflows. Inf. Syst.,
30(5):349-378.

http://www.swi-prolog.org

Paulo Moura. Logtalk - Design of an Object-Oriented Logic
Programming Language. Department of Computer Science, University
of Beira Interior, Portugal. 2003. http://logtalk.org/papers/thesis.pdf

Paulo Moura. Logtalk 2.6 Documentation. University of Beira Interior,
Portugal. DMI 2000/1. http://logtalk.org/files/trdmi20001a4.pdf.gz

Petra Heinl, Stefan Horn, Stefan Jablonski, Jens Neeb, Karin Stein,
Michael Teschke: A Comprehensive Approach to Flexibility in
Workflow Management Systems. Proc. WACC’99, San Francisco,
02.1999

Rinderle, S.; Reichert, M.; Dadam, P.: Correctness Criteria for Dynamic
Changes in Workflow Systems - A Survey. Data and Knowledge
Engineering, Special Issue on Advances in Business Process
Management 50(1), pp. 9-34, 2004

Wil van der Aalst, Stefan Jablonski: Special Issue on ,Flexible
Workflow Technology Driving the Networked Economy*. International
Journal on Computer Systems Science & Engineering (CSSE), Vol. 15
(2000), No. 5

M. Faerber, S. Meerkamm, and S. Jablonski, "The ProcessNavigator -
Flexible process execution for product development products," in
International Conference on engineering design, ICED'09, Stanford, CA,
USA, 2009

Meerkamm, H.; Paetzhold, K.: Bayerischer Forschungsverbund fiir
Prozess- und Workflowunterstiitzung zur Planung und Steuerung der
Abldufe in der Produktentwicklung, ISBN 978-3-9808539-7-2



