
Multi-user Multi-account Interaction in Groupware
Supporting Single-display Collaboration

Bastian Steinert", Michael Grunewald", Stefan Richterl, Jens Lincke*, and Robert Hirschfeld*
Software Architecture Group

Hasso Plattner Institute
University of Potsdam

http://www.hpLuni-potsdam.de/swa
*Email: {firstname.lastname}@hpLuni-potsdam.de

tEmail: michael.gruenewald@student.hpLuni-potsdam.de
+Email: stefanc.richter@student.hpLuni-potsdam.de

Abstract-Combining support for single display collaboration
with support for asynchronous and remote collaboration in one
groupware challenges some basic assumptions of application
design and brings up new requirements for application platforms.
While user accounts are central in many kinds of groupware, they
are not respected in groupware support for multi-user single
screen interaction. Current support for this interaction paradigm
does not allow users to act on their own behalf; they have to act
on behalf of a host user.

We suggest an approach to distinguish the interactions with
different users in multi-user single-screen scenarios. Our ap
proach enables applications to link actions to the acting user's
account. We describe the integration of suggested concepts in the
groupware ProjectTalk, an application for managing XP projects
that supports multi-user single-screen interaction. All interacting
users are allowed to work with ProjectTalk on their own behalf.

I. INTRODUCTION

User accounts are central to many kinds of groupware, for
example, to asynchronous groupware such as Wikis [1] or
project management applications. These kinds of groupware
usually support collaboration amongst individuals contributing
at different times and from different places [2], [3]. Typically
users are required to log in first-enabling personalization
of content, access restriction, or tracing a user's activities.
However, these groupware system rely on single-user single
display interaction, that is, application clients are used by one
user at a time.

This assumption does not hold true for Single Display
Groupware (SDG) [4] or screen sharing technologies such as
Virtual Network Computing (VNC) [5]. The former supports
close collaboration of co-present users by allowing them to
interact with an application on a single display simultaneously.
The latter allows remote users to look at the same screen from
another computer desktop. In the following, the term multi
user single-screen interaction refers to interaction scenarios
where multiple users interact with the same screen, shared
either locally or remotely.

We gratefully acknowledge the financial support of the Hasso Plattner De
sign Thinking Research Program for our project "Agile Software Development
in Virtual Collaboration Environments".

Digital Object Identifier: 1O.4108/1CST.COLLABORATECOM2009.8290

http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8290

Combining support for single display collaboration with
support for asynchronous and remote collaboration in one
groupware challenges some basic assumptions of application
design and brings up new requirements for application plat
forms. While many groupware systems typically build on a
user account concept, current approaches to support multi-user
single-screen interaction do not allow users to act on their own
behalf. Users rather act on behalf of the user who logged on
before. As one important consequence, users are not allowed
to perform the same set of actions as they would be when
acting on their own behalf.

In this paper, we suggest an approach for supporting both
paradigms adequately. We present concepts to distinguish
actions of different users and describe how these actions can
be linked to the acting user's account. The suggested approach
was successfully employed in a groupware called ProjectTalk
illustrated in Fig. 1, which supports both synchronous and
asynchronous collaboration scenarios. We designed and de-

Open Stories

Cards s hf,L_o..;;.g_i n~~~~_<Oiii1Ilo...':.'!:':..~~
reslzable Login.

'"-f;::IF:)==~

Ok Cancel

c:=: 13.1

n
files

Write access denied!

0.0

Figure 1. Two users are interacting with ProjectTalk where each of them
is represented by a mouse cursor. One of the users (right mouse cursor) is
reque sted to initially provide usemame and password . The other user (left
mouse cursor) is informed about missing privileges to change a user story.

(a) (b)
mouse 1 mouse 2 mouse 3 Amy

~ ¥~ ~
o

o

Ben
(c)

Amy Ben Christine Doug Emily

~ ~~ ~~(----- ! !
o 10(--.::::::::::~~~::::l::::::L -_., I

o

® ®
® = Platform

® = Application

® = s erver

Figure 2. Different concepts of multi-user software: (a) In classic SDG applications, multiple input devices are available but without user details; (b) in
client-server applications, user information are available to the server but users cannot share an application instance; (c) with our approach user information
are transported from input devices to the server.

veloped ProjectTalk to support team activiues of Extreme
Programming (XP) projects [6] such as writing user stories
or planning iterations. As these activities require close co
operation of all participants, our application supports multi
user single-screen interaction. Remote team members can join
ProjectTalk sessions by using screen sharing technology. In
ProjectTalk, all collaborators either co-present or remote can
act on their own behalf.

Section II describes ProjectTalk as a sample groupware sup
porting multi-user single-screen interaction. By means of cov
ered scenarios, we describe limitations of current approaches
to support multi-user single-screen interaction. In Section III,
we introduce our approach to distinguish interactions with
different users and present required extensions to the Squeak
application platform. Section IV describes how actions can be
linked to the acting user and how this approach is integrated
into ProjectTalk. In Section V, we discuss existing SDG
frameworks and related remote collaboration approaches.

II. MERGING CHARACTERISTICS OF ASYNCHRONOUS

GROUPWARE AND SINGLE DISPLAY GROUPWARE

ProjectTalk is an asynchronous groupware (Fig. 2b,c) that
we designed and implemented in the course of our research
activities. It facilitates collaborative activities in XP teams. To
enable spontaneous interaction, ProjectTalk was also designed
to support single-display multi-user interaction (Fig. 2a,c). The
application was built in Squeak Smalltalk utilizing Morphic as
the standard GUI framework.

A. ProjectTalk: A Case Study

Close collaboration and communication among team mem
bers and the customer is vital In XP projects. All team
members and the customer regularly reflect on the project's
status and plan future releases. Participants discuss feature

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8290
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8290

requests and develop a common understanding of the required
functionality.

Traditionally XP teams heavily rely on physical tools for
communication and organization like index cards, whiteboards
and post-it notes. Their main tool is the user story card,
a small index card with a short, textual description of an
application feature. These cards are pinned on a whiteboard
and form the basis for a common understanding. Bringing
all these information from the physical whiteboard into the
digital world would enable a multitude of new possibilities,
such as having unbounded space or support for full text
search. Additionally it enables remote collaboration, because
virtual whiteboards, unlike physical ones, can be shared over
computer networks.

By employing SDG concepts, we provide XP teams with
interaction characteristics similar to working with physical
tools (Fig. 3). By using physical tools such as whiteboards
and index cards, team members are able to act independently
of one another without the need to synchronize on pens,
for example. Traditional applications, however, only support
interaction with one user at a time. The need to synchronize
on application control impedes spontaneous interaction and
reduces social dynamic in comparison to a physical white
board. Therefore we enable multiple users to interact with the
application independently. To further increase the dynamic of
a session, users are able to join or leave a session at any time.

We also incorporated screen sharing technology to support
distributed XP teams (Fig. 2c). Remote team members can
share planning sessions, for example, and interact with the
same shared screen. Screen sharing technology such as VNC
is a simple approach to support synchronous remote collabo
ration. Still, it allows participants to see others interacting and
does not require modifications to the application.

Open Sto ries

Iterati on 3. _

Iteration 2

Iterati on 1

y

y

Cards should be
reslzable by halos

Keyboa rd Support for Transport class

Set ¢ oio§ Mac OS X comments with

ItRed rnarku-ups via MC

~m,~
~

~
CodeTa lk Speedu ps

SW~Green
'-- FMultiple card placem

Cyan (Caching Markups in <JViJTT Red
should be avail able

Orange(views?) Blue ComplledMe thodl
Magenta I-u,Gray

0 -
WMe

o T Fin Blue STfrom
oth Magenta ntatlan

Gra y

~
Wh~e

28.C

Submit Feedback:; !21 0

Keyboard support for
Windows

16.(

Figure 3. Screenshot of the application: Multiple users, represented on the screen by colored mouse cursors, interact with a virtual whiteboard. Every user
may open its own context menu.

B. Issues concerning User Accounts

Traditional applications assume that only one user interacts
with one computer at a time. This assumption results in well
know login screens requiring users to log in before they can
use provided functionality. After having logged in, all further
actions of users are associated with their respective digital
identity.

When multiple users interact with a single screen, the appli
cation is unable to distinguish acting users. These restrictions
of current concepts lead to issues concerning authorization and
traceability. Fig. 4 depicts a typical multi-user single-screen
scenario. In this scenario, the application is unable to make a
reasonable decision whether the user is privileged to perform
the desired action as the application does not know who the
the currently acting user is. By using current approaches, all
users actually act on behalf of a host user, the one who logged
in before. This gives all acting users the same privileges in
the described scenario . The inability to distinguish multiple
acting users does not only lead to undesired modifications, but
also to unintended restrictions of users. When, for example,
users want access to previous projects for analysis purposes,
they might be unable to open the projects as the host user
is not privileged for accessing this information. As another
consequence of application actions not being linked to the
acting user, tracing data of user action become unreliable.
It is impossible to find out who modified certain important
information.

The examples described above show that it is necessary
to distinguish users concerning their security context and to
execute every action users want to perform in their respective
context. In particular, the following questions come up:

• How might an application be designed to allow multiple
interacting users logging in and logging out?

• How should the user credentials be managed?

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8290
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8290

• How might VI events be distinguished by acting users?
• How might the application make use of this distinction

and link application actions to users?
• How should applications be designed to deal with multi

ple interacting users having different privileges?

III. PLATFORM SUPPORT FOR MULTI-USER

MULTI-ACCOUNT INTERACTION

An application featuring multi-user single-screen interaction
requires special support in the application's platform such
as handling the events from multiple , similar input devices
independently from each other. In addition, if multiple remote
users should be able to work in same way as local users, and if
VI actions should be linked to the users, an adequate concept
representing the users and their actions is needed.

A. Using Hands to Represent User Input

Morphic [7] is a completely object-oriented Gill frame
work. First implemented for the Self programming language ,
it was later adopted by Squeak Smalltalk. In applications
implemented with Morphic, every visible element on the
screen is represented by an object in the code, even the mouse
pointer. These objects used by Morphic are called Morphs,
according to this the object representing the mouse pointer
is called HandMorph. The concept of hands allows having
multiple hands that can be controlled by different sources.

Every hand object is responsible for communication with
the respective input source and generates corresponding VI
framework events. The default hand communicates with the
operating system and processes default streams of mouse and
keyboard events. Hand object are also able to determine the
ill element (the Morph) that is currently focused (keyboard
event) or that is directly below the mouse pointer. With that
knowledge they trigger the corresponding application event
processing for each incoming event.

Userstory 3

Iteration 1

Iteration 2

~,eate»
~.--- ...,~~L-_-_...J

(c) .------...,

\ D\
Iteration 1

...

..................... D
Iteration 2

(b)
mouse 2

mouse 1

(a)

Figure 4. A participant moves a user story from one iteration to another. Due to the missing user context, the application cannot determine the user who
initiated the action, and is unable to check whether the acting user is privileged to perform the desired action.

B. Controlling Hands via Multiple Input Devices or VNC

When multiple users interact with a single-screen, it is
usually desired that they can work with the application inde
pendently. This is comparable to a physical whiteboard, where
multiple users can draw at the same time. This requirement
can be achieved by using the concept of hands. Hand objects
obtain their event data from the corresponding input stream
autonomously. By using this concept, additional input streams
can be integrated; multiple hands, that is, mouse pointers and
cursors, can be controlled by different input source.

Common operating systems can activate multiple input
devices, but support only one system cursor. Input events from
these different devices are merged into one input event stream.
Thus, it makes no difference whether the connected mouse or
the built-in touchpad is used to control the system cursor. To
bypass the operation system's behavior, we developed special
support for Squeak's virtual machine (VM). The VM plugins
access separate streams of input event data using special lower
level operating system APIs. Details of this approach are
described in [8], [9]. The design of our VM extensions allows
attaching and detaching input devices during the application's
run-time.

Screen sharing or terminal server technologies, such as VNC
or the Remote Desktop Protocol (RDP), also support only one
cursor per session over all participants. The applications and
underlying protocols expect only input stream of one user. In
addition, the host user and the remote user share control over
the application using a single mouse pointer and cursor. The
selected application platform Squeak Smalltalk already has
integrated screen sharing support providing a VNC viewer and
server. We extended Squeak's VNC implementation, so that
client-side input events of different hands are transmitted to
the server in separate conceptual event streams. The platform
sharing the application manages dedicated hand objects for the
different event streams.

Hand objects abstract from concrete input sources and pro
vide a defined interface to applications. Thus, it is transparent
to the application, whether they are controlled from a local

device or via a VNC connection.

C. Impersonating Hands

Until now multiple local or remote users can interact with
the application simultaneously and independently, because
users have their own hands. However, there is no relation
between the user and a cursor on the screen, that is, the
application does not have any information about the source
of events.

To provide this link between users and their hand, we
suggest to impersonate hands. Subsection III-A describes that
hand objects trigger the application's processing of UI frame
work events. We argue that every event processing should
be performed on behalf of the corresponding users. As we
describe below, hand objects are therefore required to manage
digital identities of acting users.

According to the suggested concept, hand objects have to
manage user credentials. When, for example, a new input
device is attached, a corresponding hand is created, not yet
providing any credentials. When the applications requires
credentials of the acting user, it has to ask the acting hand for
this information. Based on that request, the hand object opens a
dialog asking the user to provide username and password. This
information is then stored in the hand object for further use. To
avoid misuse of the dialog, only the user who wants to perform
the action can interact with the dialog. After completing the
login, the hand represents the user and every action performed
by this certain hand can be performed on behalf of the user.
The next section describes how an application can use this
information to link application actions to user accounts. When
a user logs out, the user's credentials are removed from the
hand.

When remote users connected via VNC also work with
the Squeak platform, their credentials stored in the their local
hand can be reused in the replicated hand. The hand morphs
replicating a remote user's hand subtype the standard hand
morphs. This subtype has a special behavior and can reuse
credentials transmitted via VNC, which is supported by our
extension to the VNC protocol. If users prefer VNC clients

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8290
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8290

that do not support our extension to the VNC protocol, the
implementation will fall back to the dialog-based query. Event

Handler

1: setActiveHand : aHand

IV. ApPLICATION SUPPORT FOR MULTI-USER

MULTI-ACCOUNT INTERACTION 2: event

Figure 5. An exemplary processing of an event where the acting user has
not the necessary privileges for the action

User Story ~4: setProperty: #description
___----'-------. Proxy +---J toValue: aValue

Discard
changes and
inform user

• Who is the user that initiated the action to be performed?
• Is the user the one he pretends to be?
• Is the user allowed to perform the action?
If provided user credentials are valid and the user has

sufficient privileges, the requested actions will be performed.
Otherwise, the server will respond with an appropriate error
message.

B. Linking Users to Actions

The ProjectTalk client is required to provide the credentials
of the corresponding user for each server request. However, a
ProjectTalk client potentially interacts with many users simul
taneously. Consequently, the client must provide information
about the user that initiated the currently processed action.
This requires the ability to distinguish performed actions by
users.

The platform concepts provided so far are not sufficient to
link application actions to users. A hand represents a user in
teracting with the application and stores the user's credentials.
Interacting with a graphical user interface (Gill) results in
framework events such as MouseUp that are handled by the
application. These events are linked with the corresponding
hand. So, an application method handling a Gill framework

3: setDescription : aText

Hand
Morph

6: getCredentials

User Story
View

HTTP

Server

~

8: HTTP 403 7: HTTP Request
,if

9: NotAuthorized 5: putRequest:
Exception

The section above introduces an extension to the hand
concept for representing individual users in a groupware
supporting multi-user single-screen interaction. Users can dy
namically share and leave collaboration sessions; they can log
in and log out. A hand may represent either co-present users
or remote users connected via screen-sharing. With that, the
application platform provides the prerequisites to enable users
to act on their own behalf in targeted collaboration scenarios.

An application such as ProjectTalk can use the platform's
capabilities so that actions can be performed in the name of the
corresponding user. With that, users are able, for example, to
access all data they are allowed to. The application has to link
actions to user accounts, which is described in this section.
This results, however, in additional authorization issues. We
describe these issues and our approach to handle them. To ease
understanding of descriptions, we introduce the overall design
of ProjectTalk first.

A. Design of ProjectTalk

ProjectTalk is a client-server application. Similar to other
collaborative client-server applications such as wikis, Pro
jectTalk has a central server component that allows different
members of a team to contribute at different places and times.
A single server handles the request of multiple clients. As all
data merges at the server, it is typically also responsible for
authenticating users and checking their access rights.

The client side of ProjectTalk consists basically of two
conceptional layers: a view layer and a model proxy layer.
Different views are bound to proxy objects in the model layer.
They get notified in case of updates leading them to request up
to-date data and to render them again. The model proxy layer's
main concern is communicating with the server part of our
application and synchronizing all modifications to the model
proxy objects. Additionally, the model proxy layer provides a
repository of the root objects as the main entry point for view
specific application code. Starting from this, view code has
access to all objects of the model.

The client requests the server for data and is responsible for
keeping requested data in sync with the server. A user action
that modifies data results in request/response communication
between client and server. For example, changing a user story's
description (view object) results in a change of the story
object's description property (model object) which in tum
results in an update request to the server. The left side of
Fig. 5 depicts involved objects and their collaboration.

The server is designed to process every request on behalf
of a certain user. A client sending a request has to provide the
required information about this user. Similar to other server
applications, the request processing chain tries to answer three,
security-related questions at first.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8290
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8290

event has access to the corresponding user information. But,
an event handler method typically uses other objects of the
application that do not have access to the original GUI event.
For example, the handling of a MouseUp event, originated by
a button confirming changes of a text edit field, can result in a
change of a model object, updating the description of a story
object (as depicted in Fig. 5).

Thus, the application requires a general concept of accessing
information about the acting user. In ProjectTalk, for instance,
the HTTP communication component is required to provide
the acting user. When a model object in the client gets
changed, the client sends an update request to the server; the
HTTP component augments the request by putting the user
credentials in the corresponding request header.

To our knowledge, there are three basic possibilities to
provide all parts of an application a general way to access
the information about the current user information. Current
user refers to the user that initiated the action leading to the
execution of the program fragment interested in these user
data.

• Passing an additional parameter around. Information
about the current user can be passed as an additional
parameter through the application, starting from the
framework providing hooks for applications to the code
that wants to access these data. Thus, developers have
to maintain the additional parameter for many methods
although these methods are not related to user specifics.

• Thread-local storage. Application servers typically pro
vide the current user to application via thread-local
storage. For each incoming request, they pick a thread
out of a pool. This thread may than process the request
concurrently. At the beginning of the request processing,
the user is stored in thread-specific storage. Application
logic can access this data where ever necessary.

• Global variables. Global variables are another option to
share information between application parts independent
of message flow and parameter passing. It is, however,
an inadequate option if multiple threads are executed
concurrently accessing the same variable.

Other approaches, such as dynamic variables, have charac
teristic similar to those listed above and are thus not discussed
separately.

In ProjectTalk, the global variable ActiveHand is used to
share the current user among the application. As depicted in
Fig. 5, the event handler of the GUI framework puts the hand
that signaled the current event in the ActiveHand variable.
The use of this global variable does not cause problems,
because Squeak's GUI framework Morphic is single-threaded,
as most GUI frameworks are. If concurrency is required, for
instance, to realize asynchronous client-server communication,
the user information has to be handed over to additional
threads explicitly.

By accessing ActiveHand and putting the user credentials
in the HTTP request header, ProjectTalk links all actions to
users and enables them to thereby perform all actions on their
own behalf.

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B290
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B290

C. Handling Client-side Authorization Issues

In groupware like ProjectTalk that supports both syn
chronous and asynchronous collaboration, additional autho
rization issues occur on the client-side. They need to be
handled by the application explicitly. We discussed that many
groupware systems typically build upon a user concept. When
a groupware provides role-specific behavior, it is often de
signed in a way that users see only the functionality they have
access to. In a project management software, for example,
only administrative users are able to create new projects;
users without these privileges cannot see this functionality. If
multiple users interact with a single screen at the same time,
the different users might have different privileges.

Groupware supporting multi-user single-screen can handle
this mismatch in three different ways. One way is displaying
the collective set of functionality all users have access to.
Unfortunately, users would be limited and could not use all
features they are allowed to. Another approach is presenting
every feature available to at least one user. As a result,
users can activate actions they are not allowed to perform.
Applications have to handle denied access explicitly and be
able to recover from this error. The last possibility is to (re
)design the application so that, for instance, users are provided
with menus specific to their privileges.

The application design of ProjectTalk combines the second
and the last option. For example, some users will not be
allowed to modify user stories or move them between iter
ations. Still, all users have read access to these user interface
components; users unprivileged to perform a modification will
experience a failure and receive a corresponding message, as
presented in Fig. 1. The menu for opening projects exemplifies
the last option. For each user accessing the menu, it provides
specific content-only projects the user is a member of.

The handling of denied access gained special attention in
ProjectTalk, so that this concern is not scattered over the entire
application code. A typical user interface action results in one
or more HTTP request to the server. If the acting user is not
authorized to read or write specified resources, the server will
return with an unauthorized error. In the example depicted
in Fig. 5, the user tries to change the description of a user
story card. A HTTP error is responded and converted into an
application specific NotAuthorized exception. The exception
is handled in the implementation of the model proxy objects.
The proxy objects provide application specific interfaces that
are implemented generically. The proxy objects store object
properties and synchronize modifications with the server. If
the server processes the request successfully, the modification
will be applied to the corresponding description property of
the user story's proxy object, and bound views will get notified
about the change. Otherwise, the modifications are discarded,
the stories will show the old description, and the user will
receive an error message.

The implementation of both handling denied access and
linking actions to users is integrated well in the design of
ProjectTalk. Both concerns are well-separated from application

Figure 6. Classification of ProjectTaik in the computersupportedcooperative
work matrix.

specifics and the extensions can be integrated easily into other
applications.

V. RELATED WORK

The term groupware generally refers to a broad set of
applications, with different kinds supporting different collab
oration scenarios. The computer supported cooperative work
matrix shown in Fig. 6 provides a classification for groupware
solutions according to the context of use; the matrix was
originally introduced in [3]. Following the argumentation in
[2], most groupware solutions do not belong to exactly one
category or another because most work activities do not
strictly adhere to this classification. ProjectTalk, for example,
belongs to all four categories as it supports asynchronous and
synchronous collaboration scenarios, and allows co-present as
well as geographically dispersed team members to contribute.

While many groupware solutions support more than one
collaboration scenario, according to our knowledge, previous
research has not yet addressed the combination of multi-user
single-screen interaction with other collaboration scenarios.
Groupware with a focus on asynchronous collaboration is
widely used and well-known, but it relies on the assumption
that only one user works with one client at a time. This
kind of groupware typically follows the classical client-server
architecture. Since many years researchers have investigated
into groupware solutions that support synchronous remote col
laboration. Several different approaches were developed, some
are built upon a centralized and others upon a replicated ar
chitecture [10]. However, none of the current approaches meet
the needs of multi-user single-screen collaboration. Benefits of
using a single display by a co-present group simultaneously
were, for example, described in [11].

A. Single Display Groupware

Reference [4] introduces the term Single Display Group
ware referring to applications that allow co-present users to

1------------ -----------,, ,, ,, ,, ,, ,
I----~: ProjectTalk :-i -----i

, ,
L J

contribute simultaneously. This and other works [1l]-[I4] also
provide empirical validation that working together on a task
has positive effects concerning motivation and efficiency. SDG
concepts become more important due to recent developments
in multi-touch displays [15], in Microsoft Surface or Diamond
Touch [16].

One of the first SDG applications developed is the Multi
Device Multi-User Multi-Editor (MMM) [17]. It presents a
platform for different kinds of editors, for example a text editor
facilitating co-present multi-user interaction. MMM already
features dynamically joining a session and the authors present
a first analysis of user interface design techniques.

To simplify the development of SDG applications, re
searchers have developed application frameworks that support
processing of events from multiple input devices. The first
attempt to provide such a framework was Multiple Input
Devices [18] for the Java platform. It utilizes Microsoft Direct
Input to gather data from connected mice and provides these
data as Java events. However, DirectInput no longer supports
some of the used functionality in Microsoft Windows 2000 and
later versions. In reference [9], the authors present the SDG
Toolkit for developing Microsoft .NET Framework applica
tions. The SDG Toolkit, which is built on the Windows Raw
Input interface, was the first application framework supporting
separate input and control by multiple keyboards. It further
provides developers with special SDG user controls forming
the building blocks for new applications.

Reference [8] presents an extension to the X Window
System that enables single-display collaboration in control
room scenarios. Up to seven users can interact with a shared
XII screen acting from there own workstation, but only one
user at a time. The authors of [19] describe the design and
implementation of Multi-Pointer X Server (MPX). It allows
multiple users to control different applications on the same
physical screen simultaneously. All users are provided with
their own mouse pointer.

However, none of the reported approaches to multi-user
single-screen interaction has been combined with support
for other collaboration scenarios. Current SDG solutions and
technological concepts do not allow users to act on their on
behalf as they distinguish only input from different devices;
applications have not been prepared for linking actions to
users.

B. Groupware Supporting Remote Collaboration

When the primary purpose of a groupware is asynchronous
collaboration, such as in Wikis and project management ap
plications, any kind of synchronous remote collaboration is
usually not well supported. The need for remote collaboration
in general, is addressed by many groupware technologies.
Some of them were also specifically designed for synchronous
remote collaboration scenarios. Such groupware systems typ
ically enable awareness of collaborators interacting with the
application at the same time.

To collaborate with remote sites synchronously using unpre
pared applications, screen sharing technologies are commonly

Remote
Interactions

Different Place

Communication and
Coordination

Same Place

Face to Face
Interactions

Ongoing Tasks
Different

Time

Same Time

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8290
http://dx.doi.org/10.4108//CST.COLLABORATECOM2009.8290

used, often in connection with audio or video conferencing.
Virtual Collaboration Environments [20] such as such as
Open Croquet [21] leverage screen sharing technology for
integrating ordinary desktop applications and allow remote
participants to interact with them. However, only one user can
interact with the shared application at a time, and all users act
on the account of the host user. The concepts suggested in this
paper remove these restrictions. Participants can interact with
the shared application simultaneously and are also allowed to
act on their own behalf.

Apart from screen sharing, many other approaches to
synchronous remote collaboration have been investigated. In
contrast to centralized screen sharing setups, other approaches
are based on replicated architectures where low level [22] or
high level events [23] are exchanged between all participants
and executed on every participant's host. References [24],
[25] present frameworks that simplify the development of
replicated groupware for synchronous remote collaboration
scenarios. The framework described in [26] eases constructing
groupware that support synchronous as well as asynchronous
collaboration. However, reported approaches to supporting
remote collaboration have not yet incorporated concepts of
multi-user single-screen interaction.

Problems discussed in this paper are to be expected when
ever a groupware that supports different collaboration scenar
ios such as asynchronous and synchronous remote collabora
tion, and that also relies on user accounts, should incorporate
multi-user single-screen interaction concepts. We argue that
the concepts suggested here are an adequate answer to these
problems. All groupware applications that do not support
multi-user single-screen interaction explicitly, rely on the
assumption that only one user interacts with a workstation at a
time. As a consequence, the software is unable to distinguish
between multiple acting users. Extensions to current concepts
as we suggest in this paper are required to enable applications
to link actions and users.

VI. SUMMARY AND OUTLOOK

In this paper, we argue for extending concepts to support
multi-user single-screen interaction in groupware applications.
Limitations of current concepts are described. Applications are
unable to distinguish actions of different users, which, in turn,
prevent users from acting on their on behalf. By using our
groupware ProjectTalk, we describe different scenarios that
require the distinction of acting users.

We present our extension to Morphic's hand concept that
allows to distinguish UI events by acting users. We describe
how applications can make use of this distinction and link
application actions to user accounts. The suggested concepts
unify the interaction with remote and local users as the inter
faces can abstract from concrete input sources. Our approach
to impersonate hands further allows to manage the credentials
of all users interacting with the same screen.

The suggested concepts are integrated into ProjectTalk, a
groupware we developed to support collaborative activities in
XP teams. All co-present team members can interact with a

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B290
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B290

single screen simultaneously. Groups of remote team members
can join via screen sharing technology. We extended the VNC
protocol enabling remote users to interact with the same shared
screen independently. Our approach allows co-present and
remote users to interact with ProjectTalk on their own behalf.
The integration of our concepts into the design of ProjectTalk
are described.

We also discuss issues that emerge when multiple users with
different privileges interact with the same screen. We present
multiple design options to handle these issues and describe
our solution for ProjectTalk.

For future work, we plan to revise user interface concepts
for our approach to multi-user multi-account single-screen
interaction. We will investigate into providing a new kind of
feedback to the users concerning their privileges. For example,
it would be handy if users know whether they are allowed to
perform a certain action before triggering it.

The concepts suggested in this paper allow distinguishing
events of different users and thus enable applications to link
actions to the acting user's account. Our presented approach
to multi-user multi-account single-screen interaction allows
users to interact with the same screen on their own behalf.
By integrating the concepts in ProjectTalk, all users are now
able to perform the set of actions they are privileged for, in
particular in multi-user single-screen collaboration scenarios.

REFERENCES

[1] B. Leuf and W. Cunningham, The Wiki way: quick collaboration on
the Web. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2001.

[2] J. Grudin, "Computer-supported cooperative work: History and focus,"
Computer, vol. 27, no. 5, pp. 19-26, 1994.

[3] R. Johansen, Groupware: Computer support for business teams. The
Free Press New York, NY, USA, 1988.

[4] J. Stewart, B. B. Bederson, and A. Druin, "Single display groupware:
a model for co-present collaboration," in CHI '99: Proceedings of the
SIGCHI conference on Human factors in computing systems. New
York, NY, USA: ACM, 1999, pp. 286-293.

[5] T. Richardson, Q. Stafford-fraser, K. R. Wood, and A. Hopper, "Virtual
network computing," IEEE Internet Computing, vol. 2, pp. 33-38,1998.

[6] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[7] J. H. Maloney and R. B. Smith, "Directness and liveness in the morphic
user interface construction environment," in UIST '95: Proceedings
of the 8th annual ACM symposium on User interface and software
technology. New York, NY, USA: ACM, 1995, pp. 21-28.

[8] G. Wallace, P. Bi, K. Li, and O. Anshus, "A multi-cursor x window
manager supporting control room collaboration," Princeton University,
Computer Science, Technical Report TR-707-04, Tech. Rep., 2004.

[9] E. Tse and S. Greenberg, "Rapidly prototyping single display groupware
through the sdgtoolkit," in AUIC '04: Proceedings of the fifth conference
on Australasian user interface. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2004, pp. 101-110.

[10] J. M. A. Begole, "Flexible collaboration transparency: Supporting
worker independence in replicated Application-Sharing systems," Ph.D.
dissertation, Department of Computer Science, Virginia Polytechnic Inst.
and State Univ., Blacksburg, VA., 1998.

[11] J. Stewart, E. M. Raybourn, B. Bederson, and A. Druin, "When two
hands are better than one: enhancing collaboration using single display
groupware," in CHI '98: CHI 98 conference summary on Human factors
in computing systems. New York, NY, USA: ACM, 1998, pp. 287-288.
[Online]. Available: http://doLacm.org/10.1145/286498.286766

[12] K. I. Joanna, J. Mcgrenere, K. S. Booth, and M. Klawe, "The effect of
turn-taking protocols on children's learning in mouse-driven collabora
tive environments," 1997.

[13] L. J. Bricker, L. J. Bricker, and L. J. Bricker, "Cooperatively controlled
objects in support of collaboration," in in Multimedia Applications, in
Extended Abstracts of CHI'97 (Atlanta GA. ACM Press, 1998, pp.
313-314.

[14] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz, "Tivoli: an
electronic whiteboard for informal workgroup meetings," in CHI '93:
Proceedings of the INTERACT '93 and CHI '93 conference on Human
factors in computing systems. New York, NY, USA: ACM, 1993, pp.
391-398.

[15] M. Morris, A. Cassanego, A. Paepcke, T. Winograd, A. Piper, and
A. Huang, "Mediating group dynamics through tabletop interface de
sign," IEEE Computer Graphics and Applications, vol. 26, no. 5, pp.
65-73, 2006.

[16] P. Dietz and D. Leigh, "Diamondtouch: a multi-user touch technology,"
in UIST '01: Proceedings of the 14th annual ACM symposium on User
interface software and technology. New York, NY, USA: ACM, 2001,
pp. 219-226.

[17] E. A. Bier, S. Freeman, and K. Pier, "Mmm: The multi-device multi
user multi-editor," in CHI '92: Proceedings of the SIGCHI conference
on Human factors in computing systems. New York, NY, USA: ACM,
1992, pp. 645-646.

[18] J. Hourcade and B. Bederson, "Architecture and implementation of a java
package for multiple input devices (mid)," HCIL, Tech. Rep., 1999.

[19] P. Hutterer and B. H. Thomas, "Groupware support in the windowing
system," in AUIC '07: Proceedings of the eight Australasian conference
on User interface. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2007, pp. 39-46.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B290
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B290

[20] S. Benford and L. Fahlen, "A spatial model of interaction in large virtual
environments," in ECSCW'93: Proceedings of the third conference
on European Conference on Computer-Supported Cooperative Work.
Norwell, MA, USA: Kluwer Academic Publishers, 1993, pp. 109-124.

[21] D. A. Smith, A. Kay, A. Raab, and D. P.Reed, "Croquet - a collaboration
system architecture," Creating, Connecting and Collaborating through
Computing, International Conference on, vol. 0, p. 2, 2003.

[22] J. Begole, M. B. Rosson, and C. A. Shaffer, "Flexible collaboration
transparency: supporting worker independence in replicated application
sharing systems," ACM Trans. Comput.-Hum. Interact., vol. 6, no. 2, pp.
95-132, 1999.

[23] D. Li and R. Li, "Transparent sharing and interoperation of heteroge
neous single-user applications," in CSCW '02: Proceedings of the 2002
ACM conference on Computer supported cooperative work. New York,
NY, USA: ACM, 2002, pp. 246-255.

[24] M. Roseman and S. Greenberg, "Building real-time groupware with
GroupKit, a groupware toolkit," ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 3, no. 1, pp. 66-106, 1996.

[25] A. Prakash and H. Shim, "DistView: Support for building efficient
collaborative applications using replicated objects," in Proceedings of
the 1994 ACM conference on Computer supported cooperative work.
ACM New York, NY, USA, 1994, pp. 153-164.

[26] P. Dewan and R. Choudhary, "A high-level and flexible framework
for implementing multiuser user interfaces," ACM Transactions on
Information Systems, vol. 10, no. 4, pp. 345-380, 1992.

