
A Scale-free And Self-organized P2P Overlay For Massive Multiuser Virtual
Environments

Markus Esch
University of Luxembourg

Faculte des Sciences, de la Technologie et de la Communication
Luxembourg, Luxembourg

Email: markus.esch@uni.lu

Ingo Scholtes
University of Trier

Department of Computer Science
Trier, Germany

Email: scholtes@syssoft.uni-trier.de

Abstract-Massive Multiuser Virtual Environments have
recently grown popular, and commercial virtual online worlds
like Second Life or World of Warcraft attract a lot of attention.
In this context, for the research on distributed systems, espe
cially the idea of a 3D Web as a global scale virtual environment
is very interesting, since it poses severe technical challenges to
the underlying infrastructure. It is generally accepted, that the
realization of such a global scale scenario can not be realized
in a traditional centralized fashion. For this reason in the
course of the HyperVerse project we have developed a two
tier Peer-to-Peer (P2P) architecture as basic infrastructure for
a federated and scalable 3D Web. Our approach relies on a
concept, that incorporates a loosely-structured P2P overlay of
user clients and an overlay that connects a federation of reliable
server machines constituting a reliable backbone service. This
paper proposes a self-organized and scale-free network overlay
for the reliable backbone in the HyperVerse architecture. The
overlay incorporates advantages of scale-free networks, self
organization and epidemic aggregation in order to tackle the
severe challenges of the scenario in a fully distributed fashion
without any central control.

Keywords-MMVE, DVE, P2P Overlay, Self-organization,
Complex Networks

I. INTRODUCTION

The popularity of Massive Multiuser Virtual Environ
ments (MMVEs) like Internet communities (e.g. Second
Life) or Massive Multiplayer Online Games (MMOGs) (e.g.
World of Warcraft) is constantly increasing. This surge of
interest influences also the research on distributed systems,
since a lot of work is done in the field of distributed
virtual environments. In this context, especially the idea of
a 3D Web as combination of MMVEs and today's WWW
attracts a lot of attention and provides a variety of interesting
opportunities. One may envision a fusion of today's Web
content and avatar based interaction. A user can move with
an avatar through a 3D Online world in order to meet friends,
undertake a sightseeing tour, shop and so forth. Provided on
a global-scale and in combination with foreseeable advances
in human interface technologies, such a 3D Web allows for
instance for virtual mass events and immersive interaction.
While the opportunities of such a scenario sound promis
ing, its realization on a global-scale poses severe technical

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B279
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

challenges. The central question is how scalability and
interactivity along with consistency and persistency can be
reached in a way that potentially all 3D Web users are able to
use the same instance of the virtual world at the same time.
The commercial precursors of a 3D Web, for the most part
rely on centralized client/server architectures and the parallel
provision of hundreds of separated world instances, each
supporting at most a few thousand concurrent participants.
While this has advantages in terms of manageability and
controllability for the providers, these approaches can not
reach the envisioned global-scale user number of a 3D Web.
It is however generally accepted that realizing a global-scale
MMVE based on a traditional client/server architecture with
a centralized server farm is not practicable.

In a current research project called HyperVerse, we aim at
the provision of a federated infrastructure that supports such
a scenario on a global-scale while retaining the decentral
ized nature and reliability of the WWW.In [4] we have
presented the concept of a two-tier Peer-to-Peer network
as an infrastructure for a global-scale MMVE. The basic
idea is to combine a loosely structured Peer-to-Peer network,
that interconnects the user clients for a Torrent-based data
distribution with a highly-structured Peer-to-Peer overlay of
reliable server machines (so-called Public Servers) in order
to provide a reliable and persistent backbone service. Tasks
of the federated backbone service involve avatar tracking as
well as object-hosting and indexing. For their interconnec
tion, we have developed a overlay network, allowing for the
particular properties of MMVEs, like high avatar dynamics
and non uniform load distribution. This overlay utilizes the
expected scale-free distribution of Public Server capacities
to form a network, that emerges in a self-organized fashion
into a scale-free state with a power law degree distribution.
By this means, the overlay benefits form the particular
advantages of scale-free networks like short average path
length and robustness. This paper presents the concept of
this self-organized and scale-free P2P overlay network, that
was especially designed for our setting of a global scale
Distributed Virtual Environment (DVE).

In section II a brief introduction of the HyperVerse archi-

tecture is presented in order to enable a better understanding
of the entire concept. In the subsequent section III objectives
as well as the idea of the concept is presented, before
section IV describes the actual realization of the scale-free
P2P overlay network in a self-organized fashion. Section
V compares our work to other approaches in this field. The
paper concludes with a discussion of our main contributions,
open issues and future work in section VI.

II. THE HYPERVERSE INFRASTRUCTURE

In this section we give a brief introduction to the Hy
perVerse project. Figure I presents a schematic overview of
the architecture. Our concept distinguishes between reliable
peers, so-called Public Servers, and relatively unreliable user
clients. Public Servers are machines that resemble today's
Web Servers and they are not required to be under control
of any centralized authority. Similar to today's Web for their
provision we rely on the incentive of being able to publish
information in the HyperVerse. The federation of these
Public Servers constitutes the backbone of the HyperVerse
and provides the huge amount of data in an efficient and
most important - reliable manner to clients. This is required
since the huge amount of world data in our scenario is
highly dynamic, due to fact that world objects can be added,
modified and removed at any time by users or content
providers. For this reason a predistribution of world data,
like it is done in today's MMOGs, is not feasible.

Due to the fact that the clients' bandwidth is constantly
increasing, it is mandatory to engage the clients in the data
distribution. Since it is foreseeable that the clients exhibit
high churn rates we propose a loosely structured peer-to
peer overlay to interconnect them. Our approach is based on
a scheme similar to the BitTorrent protocol [6]. Each client
makes cached data accessible in a Torrent-like manner, i.e.
data are split into individually addressable pieces. By this
means it is possible to download object and world data in
parallel from a set of clients. In order to figure out which
clients hold data of interest we can utilize the fact that clients
in virtual proximity need to possess a similar set of data,
since they have to render more or less the same objects.
Hence a client can always download the required data from
other users in its virtual proximity once client density is
high enough. Taking advantage of the supposed, primarily
continuous movement through the virtual world we can en
hance this mechanism by applying prefetching and caching
strategies. A detailed description of the Torrent-based data
distribution mechanism in HyperVerse is presented in [4]
and [19]. One main advantage of this Torrent mechanism is
that it implicitly tackles the problem of flash crowds. Due
to the rise of available bandwidth for data distribution with
increasing user numbers in a given region, the flash crowd
problem can be handled in a self-organizing manner.

Each Torrent system relies on a tracker service that
enables the clients to find the required data pieces. In

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8279

HyperVerse the Torrent tracking can be realized as piggy
back mechanism to the avatar interaction. Because clients
in virtual proximity have with a high probability the same
object data and these clients anyway need to be informed
about each other in order to allow mutual rendering and
interaction. In our setting the backbone service is responsible
for the interconnection of clients in proximity. For this
the clients have to send periodical position updates to the
backbone. In order to keep the update frequency low we
utilize a scheme that differentiates a client's Field of View
(FoV) and its Area of Interest (AoI), which is also described
in detail in [4]. Receiving frequent movement updates of
the clients, the backbone service is able to interconnect two
clients when their AoIs intersect.

Figure 1. Overview Of The Two-Tier HyperVerse Infrastructure

In addition to the avatar tracking further tasks of the
backbone service involve object hosting and object indexing.
As mentioned, world objects are distributed in a Torrent
based fashion whenever possible. However in order to
provide a persistent and reliable world and to realize the
initial distribution of the object data, the backbone hosts
all world objects and acts as initial seed for these objects.
Hereby an object is hosted by its publisher. For this reason
someone who wants to publish an object in the HyperVerse
has to run or have access to a Public Server that hosts this
object and constitutes a part of the backbone overlay. This
is similar to today's WWW where publishing information
at least requires access to some Web server. To enable a
client to load the objects in its proximity the HyperVerse
backbone works as indexing service mapping an object's
position to the Public Server that hosts this object. Summing
up, a Public Server has two independent tasks, at first hosting
of world objects and second being a part of the backbone
overlay that is responsible for avatar tracking and object
indexing. An avatar entering a certain region first obtains a
list of avatars and objects in proximity from the backbone
and thereupon starts downloading the object data from the
providing Public Server or, if possible, in Torrent fashion.
For this purpose the whole surface of the world needs to
be distributed among all Public Servers, each managing
a certain area of the world. Moreover the Public Servers
need to be interconnected by any scheme in order to allow

efficient routing as well as node and object lookups on
the backbone overlay. For this purposes, of managing the
federation of Public Servers constituting the HyperVerse
backbone, the scale-free overlay described in the subsequent
sections has been developed.

III. OBJECTIVES AND BASIC CONCEPT

This section presents our concept for a dynamic backbone
overlay utilized to interconnect the Public Servers of the
HyperVerse infrastructure presented in the previous section.
This overlay forms the second tier of the architecture and
is responsible for the reliable and persistent hosting of the
virtual environment.

Our concepts relies on two basic assumptions about the
properties of a virtual online world:

• Unequally distributed avatars and objects: It can not
be expected that objects and avatars in a virtual world
are uniformly distributed in the world. Rather hotspots
with a high object and avatar density are likely to
emerge. While the object distribution is relatively static
and is expected to change slowly, the avatar distribution
is very dynamic and can change fast and unexpectedly.

• Varying Public Server capacities: It can not be as
sumed that all Public Servers of the overlay have the
same capacity in terms of bandwidth and computational
power. For this reason, each Public Server is able to
host a different fraction of the world. Like in today's
Web, the capacity basically depends on the popularity
of the hosted content. Today, the providers of Web
content need to make sure that the servers, hosting a
Website, are able to handle the incoming traffic. For this
reason, very popular and frequently used Websites, for
example Google, are hosted by powerful server farms,
while small private Websites can be hosted by less
powerful single machines. Translating the principle,
that the content provider needs to provide sufficient
server capacity, to the HyperVerse scenario, the object
providers have to care for the required server capacity.
Often visited and used objects in the world need to
be hosted by more powerful servers than less popular
objects.

We argue, that any feasible concept for the backbone
infrastructure of the HyperVerse scenario, needs to consider
these two basic assumptions. On the one hand, problems
like high avatar dynamics need to be tackled. On the other
hand, properties of the environment have to be considered in
order to utilize the full potential of the available resources.
A scheme, equally and statically distributing the virtual
world among the Public Servers has little prospect for
success, because of the avatar dynamics, the unequal avatar
distribution and the inhomogeneous servers. Our concept
for the backbone infrastructure considers these points by
enabling a dynamic reorganization of servers based on the

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B279
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

current avatar and object distribution while distributing the
load according to the server's capacities.

Our concept relies on the advantages of scale-free net
works, like resilience against node failures and small diam
eter, for this reason section ITI-A gives a brief introduction to
this topic. The subsequent section 111-B describes the basic
idea of our scale-free backbone overlay.

A. Scale Free Networks

Studying large and complex networks, describing the
exact state of each vertex in the network implies huge
efforts, due to the large number of nodes and their dynamics.
Fortunately, it has been shown, that statistical information
and macroscopic properties of the entire network can also
be used to characterize such complex systems. Since not
all nodes in a network have the same degree, the node
degree distribution is one important property characterizing a
complex network. Typically large scale networks have been
described by the random graph theory of Erdos and Renyi.
While for these Erdos/Renyi graphs the degree distribution
is a Poisson distribution and the degree of all nodes is close
the average degree, in [2] it has been shown that in reality
the degree distribution of large complex networks emerges
to a power law distribution. The probability P(k) that a
random node has exactly k edges is given by: P(k) rv k",
If the power law exponent 'r is in a certain range (typically
2 < 'r < 3), such networks are called scale-free networks.
For many large networks it has been shown that they exhibit
a scale-free degree distribution. Be it constructed networks
like the World Wide Web [1] and the Internet [9], social
networks like the graph of scientific collaborations [16] or
cellular networks like the metabolic network [14].

The question, which fundamental mechanism leads to
emergence of scale-freedom in large networks has first been
answered by the Bardbasi/Albert model [3]. This model
mimics the two basic mechanisms responsible for the emer
gence of scale-freedom: growth and preferential attachment.
The basic idea is to constantly add new nodes to the network
and connect these nodes to existing nodes in the network
with a probability equivalent to the existing nodes' degree.
This means a new node is connected to a node with high
degree with a higher probability, resembling the principle
the rich get richer.

It has been shown that scale-free networks generated
by the Barabasi/Albert model have a lot of advantageous
properties in terms of reliability as well as performance.
Important for the performance of a network is the distance
between nodes in the network, since a small path length
allows fast routing. In [7] it has been proven that scale
free networks with power law exponents 'r E (2,3), exhibit
an ultra-small network diameter d ex In(ln(N)). Thus
the average path length grows very slow with increasing
network size, allowing fast routing even in huge networks.
The resilience against random node failures of a network

totally distributed and self-organized. For this reason we
are using epidemic aggregation to enable peers to obtain
certain information about the network state. The aggregation
mechanism is explained in section IV-C.

With mo being a constant rest mass equal for all entities,
and v(x) being an entities velocity. Using these masses, a
Public Server can calculate the absolute mass of the objects
in its cell as well as the center of mass. While the absolute
mass of a cell is just the sum of the masses, the center of
mass C of a cell is calculated by the following formula:

IV. REALIZATION OF THE SCALE-FREE P2P OVERLAY

This section describes how the concept presented in the
previous section can be realized. The self-organized plane
distribution based on the application of a set of rules is
explained in section IV-A. Section IV-B explains how links
between nodes can be established in a distributed fashion,
so that a scale-free node degree distribution emerges. The
epidemic aggregation mechanisms used to gather certain
information required for the algorithm are presented in
section IV-C.

A. Plane Distribution

As already mentioned virtual positions of Public Servers
need to be assigned in a way that crowded regions are man
aged by machines with high bandwidth and computational
power, while less powerful machines are responsible for
less crowded regions. Public Server apply several simple
rules to adjust their virtual position to the current load
distribution in a way that ensures this requirement. We
distinguish so-called local rules and global rules. The local
rules require information about the own state and the state
of the bordering nodes and have only local effect. Their
purpose is to adapt the local world distribution to local
load variances. The global rules are applied to equalize
global imbalances in the load distribution detected based on
aggregated information.

1) Local Rules: Using the local rules each Public Server
balances the load distribution between itself and its border
ing neighbors. For the application of subsequent rules a mass
is assigned to each object or avatar, its mass reflecting the
load it induces on the server backbone. As the backbone's
purpose is object and avatar tracking and indexing rather
than actual data hosting, an object's mass is independent of
the transmission size and depends on its velocity. This is
because faster moving items induce a higher load, due to
the required position tracking. The mass m of an entity x
is given by:

(2)

(1)m(x) = mo + v(x)

L~=l Pi . m(i)
C= n

Li=l m(i)

is determined by the tolerance against node failures. Here
two different scenarios need to be distinguished. Random
node failures and targeted attacks against the network. It has
been shown that scale-free networks are very robust against
random node failures, since the probability that a high degree
node fails is extremely low. But, since attacks are targeted on
the most important nodes, scale-free networks are less robust
against selective attacks compared to Erdos/Renyi random
networks.

B. Concept

This section presents our concept for a scale-free P2P
overlay incorporating advantages of scale-free networks,
epidemic information aggregation and self-organization. The
overlay has been built considering the above mentioned
assumptions of unequal load distribution and different server
capacities. The basic idea is to build an overlay, that self
organized emerges to a scale-free state in order to benefit
from the particular advantages of this network type.

The task of the backbone is indexing of world objects, as
well as interconnecting clients in virtual proximity in order
to allow interaction and mutual rendering. For this purpose
the world surface gets subdivided into small cells, each cell
managed by one Public Server. For subdividing the plane we
are using a Voronoi diagram. To define a Voronoi diagram
distributing the plane, a virtual position on the world surface
is assigned to all Public Servers. In the resulting Voronoi
decomposition each Public Server manages the Voronoi cell
surrounding its virtual position. To allow for the assumptions
about the particular properties of an MMVE, servers handle
regions with a object and avatar density equivalent to the
own capacities. By this means hotspots get managed by
machines with high capacities, while less crowded areas can
be handled by less powerful machines. In order to be able
to adapt the overlay to dynamic load shifts in the online
world, the virtual positions are not fixed. Rather, the servers
modify their position according to the load induced by the
users of the online world. The virtual positions are managed
in a self-organized fashion, based on a set of rules applied
by each server as described in section IV-A.

In addition to the distribution of the world surface, it is an
important issue how the Public Servers are linked together.
In first place all nodes have links to the nodes managing the
bordering Voronoi cells. Additionally links to other nodes in
the network are established in order to get a scale-free degree
distribution and to allow fast routing to all positions in the
virtual world. To get a network, that emerges into a scale
free state, links are established by a preferential attachment
scheme, based on bandwidth and computational power. This
mechanism is described in section IV-B.

For the management of both, the virtual positions and
the link structure, the servers require certain aggregated
information like e.g. load distribution and network size. But,
a global system view is not existing, since the system is

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B279
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

With PI, ... ,Pn being the positions of entities 1, ...i in
the cell. Depending on its bandwidth and computational
power, a maximum payload P (indicating the mass it can
handle) is assigned to each Public Server. Based on these
information, Public Servers adjust their position according
to the following local rules:

I) Centering: Subdividing the world surface into cells
managed by different Public Server implies traffic on
the backbone overlay if peers cross cell borders. For
this reason our goal is to minimize the number of cell
crossing. Hence the Public Servers adjust their virtual
positions so that their position is close to the cell's
center of mass.

II) Keeping The Mass-Order: As already mentioned the
load of a server should correspond to its payload. In
order to assure this in the vicinity of each node, the
Public Servers modify their positions accordingly. For
this purpose each node monitors the mass of its own
as well as bordering cells and compares these masses
to the maximum payloads. If one of the neighbors
has a higher payload but a lower cell mass, or vice
versa, this imbalance needs to be adjusted. For this
purpose the node with the lower payload moves away
from the node with the higher payload, in order to
increase the cell size and with it the cell mass of the
node with higher payload. This is depicted in figure
2. In this example node A has a lower payload but
a higher mass than node B. For this reason, node A
moves away from node B, to keep the mass order. The
direction of A's movement, is given by the normalized
vector B11 and the speed is defined by the cell mass
difference between A and B. If a node has to move
away from several neighbors at the same time, the
direction of movement is given by the sum of the
movement vectors. This is illustrated in figure 3. In
this example node A moves away from Band F. The
resulting motion vector iJ is the sum of the vector b
and f, being the vectors pointing away from Band F
respectively.

III) Unload Neighbors: If a Public Server detects that one
of its neighbors is overburdened (Le. its cell mass being
larger than the maximum payload), this Public Server
moves towards the overburdened node in order to
unload it. This is depicted in figure 4. In this example
node B is overburdened and for this reason node A
moves towards B. As above the direction is given by
the normalized vector AB between the nodes and the
speed is defined by the amount of B's overload. If
several neighbors of a given node are overburdened
the resulting movement vector is again given by the
sum of all vectors.
Since an overburdened Public Server negatively affects
the operativeness of the backbone service, neighbors

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B279
http://dx.doi.org/10.41OBI/CST. COLLABORATECOM2009. B279

have to move towards nodes running the risk of getting
overburdened before they are actually overburdened.
It is future work to find out what is a good tradeoff
for the reserve capacity a Public Server keeps, so that
the utilization of the available resources is as good as
possible while the danger of overburdening a server is
as low as possible.
As also depicted in figure 4 the motion of one node to
wards an overburdened neighbor may result in pulling
other nodes, like node E (also D and F) in the
example. E is a neighbor of A. Since A moves towards
B the load for A may rise, resulting in the risk of
overburdening A. This causes E to follow A. By this
means server capacities are automatically concentrated
around regions with a high mass.

IV) Swapping: It makes no sense to shrink a Public
Server's cell by any order, since this would imply an
extraordinary overhead by avatars that constantly cross
cell borders. For this reason we define a minimum
cell size. If this size is reached neighbors can not
move closer to a node. Thus in scenarios with very
high density hotspots, the mass in a certain cell may
become too high for the managing Public Server,
while neighbors can not move closer to this node in
order to unload it. To handle this issue, not only the
absolute mass of cells (as done by the local rule I I),
but also the positions of high density hotspots need
to be considered. For this, Public Servers detect the
hotspot within their own cell, a hotspot being defined
as the position in the cell with the highest mass within
a certain radius around this spot. This radius can
be adjustable and further evaluations are required in
order to investigate appropriate values. Based on the
hotspot masses, the Public Servers are organized in a
way, that server payloads correspond to the hotspot
masses within the managed cell. For this purpose each
Public Server compares the own hotspot mass with the
hotspot masses of its bordering neighbors. If one of the
neighbors has a heavier hotspot but a smaller payload,
Public Servers swap their cells. For this operation, it
is required, that the server with lower payload is able
to handle the current cell mass of the other server. If
this is not the case, the cell size of the server with
higher load first needs to be downsized in order to
reduce the mass. An example for the application of
the swapping rules is shown in figure 5. In order to
avoid a permanent swapping of cells, an appropriate
threshold is required that prevents thrashing and at the
same time guarantees that the nodes manage hotspots
corresponding to their payload. A study of different
threshold values is ongoing research.
Since all nodes in the concerned cells need to change
their managing Public Server, swapping is a compara
tively expensive operation. We argue that this can be

(3)

• D
p: 95o• E

p: 50

G

•

•

p = payload ; m = ce ll mass; iz = overlo aded

• E
p:30
m:lO

•

•

Figure 4. Applying The Local Rule Unload Neighbors

Figure 5. Applying The Local Rule Swapping

p = payload ;0 = hotspot wit h mass x; It = co nflict

•

m of a Public Server can be calculated by the following
formula:

With P being the current posinon , LI, .. ., Ln being the
nodes with reversed mass order, i , being the speed away
from L i , 0 1, . .. , On being the overburdened neighbors and
Oi being the speed towards Oi.

For the adjustment of the algorithm it may be useful
to weight a certain rule more than others. For this reason
we introduce weights WI, W2 and W3 that can take values
between a and 1. Using the weights the motion vector is

• DA p:l00
m:80

p:30
m:lO

•

M • E

p: 120
m: 100

p = payload ; m = ce ll mass; iz = confli ct

p = payload ; m = cell mass; iz = conflict

•

justified by two reasons: At first this rule essentially
contributes to the stability of the overlay since heavy
hotspots are always managed by the most powerful
machines available. Second, it can be expected that
swapping will be necessary quite infrequently, due to
the threshold and the relative stability of hotspots.
That means, popular and crowded regions are expected
to remain hotspots for quite a while and due to the
rule Centering, a hotspot once managed by a powerful
server remains in this cell.

•

•

Figure 2. Applying The Local Rule Keeping The Mass-O rder

Figure 3. Applying The Local Rule Keeping The Mass-Order For Several
Neighbors

It is likely that the rules I , I I and I I I need to be applied
at the same time. For this reason the absolute motion vector

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8279

given by:

_ n LP m POi
m= Wl . PC +W2 . L~ ·Ii +W3 . L -_- .0 i (4)

i=l ILiPI i=l WOil

To avoid constantly moving and oscillating Public Servers
it may be necessary to introduce a notion of inertia damping
the motion of the Public Servers. Finding an appropriate
damping function that on the one hand guarantees a good
load distribution and on the other hand keeps the dynamic
in the backbone overlay as low as possible needs to be
considered future work.

2) Global Rules: The local rules described above manage
the load distribution based on local information in the
neighborhood of each node. By this means, a collective
behavior, distributing the load according to the server's
payload, emerges in a self-organized fashion without any
central control.

Figure 6. Emergence Of Local Maximums By The Application Of Local
Rules Only

In addition to the local rules, some global rules have
been defined. These are required to balance global inequal
ities in the load distribution, that can not be detected and
solved solely based on local knowledge and rules. Because,
situations can occur where all nodes remain stable and
balanced around local load maximums. Since they only have
local knowledge, they don't know about any global load
maximums bigger than the known local maximum. Such a
situation is depicted in figure 6. In this example the nodes
A and B remain at their hotspot, being a local maximum,
and the condition is fulfilled in the surrounding of A and
B. But since A and B have only local knowledge, they can
not become aware of the global maximums at C and D. For
this reason, to overcome the border of the local maximums
some global rules utilizing aggregated information need to
be used. In order to apply the global rules, the following

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8279

global information needs to be aggregated using gossip
based aggregation as described in IV-C:

• Density Distribution: The Public Servers require in
formation about the distribution of the avatar and object
density in order to be able to adjust their positions
accordingly. It is obviously not possible to determine
the position of all objects and avatars in order to get
an exact map of the density distribution. Because this
would on the one hand imply a unjustifiable overhead,
and on the other hand it is likely to be impossible due to
the avatar dynamics. For this reason only information
about the biggest hotspots is required. However, in a
growing and scalable environment it is not possible
to define a constant number of hotspots for which
information is aggregated. For this reason, a fixed
preview radius r is defined, and all nodes aggregate
only information about this preview area. Since this
area has a fixed size, we can define a constant value
n, and aggregate the n most crowded hotspots within
this area. For the hotspot aggregation we are using the
same definition of a hotspot as applied in the local rule
Swapping .

• Payload: Along with information about the hotspots,
the maximum payload of the nodes currently managing
the Voronoi cell surrounding the hot spots is aggre
gated.

Using these information, the following global rules are
used by the Public Servers:

I) Jumping: Based on the aggregated hotspot informa
tion a Public Server can detect if there is a position
within its preview radius suiting better to its payload.
For example consider figure 7, here node A becomes
aware of the hotspot h-i- Since A has a much high
payload than required at its current position, it sets
the hotspot h l as new position. Node B is thereupon
pushed aside by the application of the local rules. The
nodes previously bordering A than have to manage its
old cell and may be moved towards A's old position
by local rules in order to handle the load. Here again
a threshold needs to be defined in order to avoid
constantly jumping servers. By application of this
rule the most powerful server machines concentrate
around the heaviest hotspots and the payload of the
Public Servers decreases with increasing distance from
hotspots. After jumping to another position, the Public
Servers have a new preview radius. Hence, the jumping
may recursively proceed until the servers have found
their global optimum.

II) Active Search: If a Public Server with a high excess
payload can not find an appropriate hotspot within
its own preview area, it can start a active search for
a hotspot matching its payload. For this purpose the
server sends requests to other world regions outside

the own preview radius to find heavier hotspots. Due
to the scale-free link structure of the network and the
associated small path length (see section III-A), this
hotspot search can be performed very efficiently. If an
appropriate hotspot with a managing server having a
lower payload is found , a swapping is performed. A
threshold has to ensure that always the rule Jumping
is applied first before executing this rule. Only, if no
hotspot using the server to full capacity can be found
the active search is started .

III) Active Pull: If a Public Server managing a hotspot
region is running into the risk of getting overburdened
and the minimum cell size is already reached and
no server with higher payload is available within the
own preview area, it can actively pull more powerful
machines. Like for the Active Search rule, a search
outside of the own preview area is started and if a
Public Server with higher payload , managing currently
a less crowded region, is found these two servers can
swap their cells.

Figure 7. Applying The Global Rule Jumping

These global rules enable that the condition, that Public
Servers remain at positions with a load corresponding to
their payload, can be achieved globally. Because applying
the local rules only, could lead to a situations where the
condition is fulfilled locally in the surrounding of each node,
but not globally, since information about the density in other
regions is missing. Applying the global rules in the example
shown in figure 6, the nodes A and B can get aware of the
global hotspots and change their position if necessary.

B. Scale-free link structure

As mentioned above the aim is to construct a overlay net
work with a scale-free link structure, in order to benefit from
the advantages of scale-free networks in terms of reliability,
resilience and short path length . In order to reach this, our
concept proposes two basic steps. At first, establishing links

Digital Object Identifier: 10.4108I/CST. COLLA BORA TECOM2009.8279

http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8279

to newly added nodes by a preferential attachment scheme
similar to the one proposed in [2]. Second, monitoring the
power-law exponent in the network and adjusting it by using
local rules, as described in [20).

The algorithm presented in [2], specifies two ingredients
leading to the emergence of a scale-free networks : growth
and preferential attachment. The preferential attachment is
realized by connecting a new node with probability II to an
existing node i , depending on the degree ki of i :

ki
II(k i) = I:

j
k

j
(5)

With k, being the degree of node i . This means , new nodes
are connected to existing nodes with a high node degree
with a higher probability.

Due to the Web like scenario in which new information
provider appear one after another the prerequisite growth
is presumably fulfilled automatically. In order to adopt also
the preferential attachment scheme to our scenario we have
to resemble the way preferential attachment evolves in real
networks like the WWW. In the WWW one can assert, that
the number of links to popular Web-sites increases faster due
to their high profile. At the same time, the providers take
care for allocating sufficient server capacities. That means,
the scale-free link structure and the existence of hubs with
sufficient capacities emerges in a self-organizing manner
from the different popularity of Web sites. Transferring this
observation to our scenario of a virtual online environment,
it means, that Public Servers hosting very popular world
objects automatically exhibit higher capacities, since this
is automatically ensured by the object providers. Since the
scale-free capacity distribution thus emerges automatically,
we just have to construct the link structure accordingly. For
this reason , we establish links to Public Servers with high
capacities, with a higher probability. Hence a new node is
connected to an existing node i with probability II depending
on the payload Pi of i :

p '
II(Pi) =~ (6)

L.jPj

Now the question is, how such a link distribution can
be realized in our fully distributed scenario without global
knowledge about the capacity of all nodes. For this, we need
to aggregate the average node payload as well as the number
of nodes in the network. Based on this information, a joining
node can establish its links to other nodes in the network.

If a new node joins the network , the following steps, have
to be taken:

• A new node v first has to connect to a node i already
part of the overlay. This initial node redirects the new
node to a random node r in the network, by choosing
a random position in the world and forwarding the
new node to the Public Server hosting the surrounding
Voronoi cell.

• Based on the information of r about the density distri
bution in its preview area, the appropriate initial posi
tion x for v in this preview area is identified. Thereupon
v is inserted at this position and gets connected to all
bordering node bI , ... , bn .

• Utilizing the neighbors lI' ... , lk of n's bordering nodes,
it is possible to establish m (m is a fixed value,
independent of the network size) links to other nodes in
the network. In order to avoid that v has the same links
as its bordering neighbors, the neighbors of lI' ... , lk
are used as potential links. We denote this set of
potential links with s. Thereupon v establishes links
to the nodes in s with a probability corresponding to
equation 6, until the required number of m links is
reached. The sum of the node capacities in equation 6
can be estimated by using the aggregated information
about the network size and the average density. The
basic idea of the algorithm is that each node maintains
a list of the n heaviest hotspots within its preview
area. In periodical time intervals the node selects a
random neighbor and exchanges the hotspot list with
this neighbor. Both nodes thereupon update their local
lists by merging it with the list received from the
neighbor. It has been shown, that using this algorithm
it is possible to aggregate global information very fast
after only few intervals. Moreover the overhead of the
algorithm is constant since each node per time interval
communicates with just one neighbor.

Using this algorithm a power-law network is constructed
based on the preferential attachment paradigm of Barabasi
and Albert. Once having established a power-law network,
the algorithm presented in [20] can be used to adapt the
properties of the network by influencing the critical power
law exponent. This algorithm uses a gossip scheme to make
nodes aware of the power law exponent of the network,
and applies reconnection rules to adapt the exponent. This
is important, since the power law exponent has crucial
influence on the topological properties of the network.

Routing and node lookup in our overlay can most effi
ciently be realized using geographic routing. This way the
virtual geography existing in our MMVE scenario is in some
sense utilized as scheme for identifying nodes. Since all
entities in the virtual world, like objects, avatars and Public
Servers have virtual positions, routes can always be targeted
to the virtual position of an entity. Applying well studied
geographic routing algorithms [10], known mainly from the
field of mobile ad-hoc networks, routing can be performed
in an efficient and robust manner. Moreover, due to the short
average path length of power-law networks, routing on this
overlay can expected to be very efficient.

C. Information Aggregation

For inserting a new node into the network as well as for
the application of the global rules described in the previous

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B279
http://dx.doi.org/10.41OB/ICST. COLLABORATECOM2009. B279

sections, information about the network state needs to be
aggregated by the nodes. It has been shown, that epidemic
aggregation is very useful for the fast and efficient aggrega
tion of information in large, highly dynamic networks. Our
epidemic aggregation scheme is similar to the one described
in [13]. We are using a push-pull anti-entropy [8] protocol,
because this scheme has properties advantageous for our
scenario. It is extremely reliable even under high dynamics
and the overhead for the aggregation is constant.

Summing up the requirements from the previous sections,
the following information about the network state needs to
be aggregated:

• Hotspots within a certain preview radius, along with
the payload of the nodes hosting the hotspots.

• Average server payload.
• Network size.
In order to retrieve an estimation for the network size and

the average server payload, the algorithm described in [13]
can be utilized without any changes. For the aggregation of
the hotspots within the preview area, this basic algorithm
needs to be slightly adjusted. These adjustments have been
presented in [19]. Basically the algorithm is adopted with
respect to the avatar dynamics and the fact that nodes require
only information from a certain preview area.

V. RELATED WORK

The impracticality of centralized approaches for the pro
vision of a global scale 3D Web scenario is well recognized.
Hence several P2P-based approaches for Massive Multiuser
Virtual Environments exist. Since most of them rely on a
pure P2P scheme without a backbone infrastructure, the
avatar tracking in this systems is implicitly handled in a pure
P2P fashion. This contrasts to our HyperVerse approach,
where we propose the utilization of a federated backbone
service in order to guarantee the reliable and persistant
provision of the online environment.

A well-known approach in this field is the Solipsis project
[15], providing a virtual online world in a pure P2P fashion.
To allow avatar tracking and interaction, a mesh-like overlay
interconnecting clients is applied. Due to the estimated
high churn rates of user clients, high maintenance costs for
the mesh overlay must be expected. FLoD [12] provides
a framework for pure P2P-based 3D scene streaming that
is build upon VON [11], a Voronoi-based P2P overlay
network distributing the virtual world among peers. Since
leaving nodes may result in extensive reorganizations of
the Voronoi overlay, this approach is also vulnerable to
high churn rates. In [17], an architecture similar to PLoD
is described that uses super peers, so-called connectivity
peers, to interconnect the peers. VastPark [21] also utilizes a
highly-structured user client overlay in order to form a P2P
virtual environment. Here a quadtree in combination with a
Chord overlay is applied. In order to find other peers, the
Hydra [5] architecture provides a central tracker service that

can be realized as a single server or as a Distributed Hash
Table (DHT).

VI. CONCLUSION AND FUTURE WORK

This paper presented the concept for a self-organized and
scale-free backbone overlay for the HyperVerse infrastruc
ture. The overlay allows for non-uniform object and avatar
distribution as well as for the high avatar dynamics expected
in an MMVE scenario. The world surface is distributed
among the Public Servers by a Voronoi diagram, each server
managing one Voronoi cell. Thereby the load is distributed
in a fashion that the load of a server depends on its
payload. This is reached by assigning hotspot regions to
powerful machines and less crowded regions to less powerful
servers, using a self-organized scheme that defines a set of
rules applied by each node. In order to establish a scale
free link structure among the Public Servers the scale-free
distribution of server capacities, that automatically emerges
in our scenario, is utilized. This way we benefit from the
advantages of scale-free networks in terms of resilience
against random node failures and short path length.

The presented concept defines a number of adjustable
threshold values influencing the overall characteristics of
the network. It is future work to study the behavior of the
network using different threshold values, in order to find
appropriate values for different scenarios and requirements.
Moreover performance measurements in terms of scalability,
routing performance as well as churn resilience need to be
performed. In order to enable these studies, we are currently
implementing the proposed overlay network for evaluations
using the complex network generator and simulator TopGen
[18].

REFERENCES

[1] R. Albert, H. Jeong, and A. L. Barabasi. Internet: Diameter of
the world-wide web. Nature, 401(6749):130-131, September
1999.

[2] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509, 1999.

[3] A.-L. Barabasi, R. Albert, and H. Jeong. Mean-field theory
for scale-free random networks, July 1999.

[4] J. Botev, M. Esch, A. Hohfeld, H. Schloss, and I. Scholtes.
The hyperverse - concepts for a federated and torrent-based
"3d web". The 1st International Workshop on Massively
Multiuser Virtual Environments (MMVE), 2008.

[5] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan. Hydra: a
massively-multiplayer peer-to-peer architecture for the game
developer. In NetGames '07: Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support for
games, pages 37-42, New York, NY, USA, 2007. ACM.

[6] B. Cohen. Incentives build robustness in bittorrent, 2003.
citeseer.ist.psu.edu/cohen03incentives.html.

[7] R. Cohen and S. Havlin. Scale-free networks are ultrasmall.
PHYS.REV.LEIT, 90:058701, 2003.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B279
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In PODC
'87: Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 1-12, New York,
NY, USA, 1987. ACM.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM '99:
Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication,
pages 251-262, New York, NY, USA, 1999. ACM.

[10] S. Giordano, I. Stojmenovic, and L. Blazevic. Position based
routing algorithms for ad hoc networks: A taxonomy. In Ad
Hoc Wireless Networking, pages 103-136. Kluwer, 2001.

[11] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: a scalable peer
to-peer network for virtual environments. IEEE Network
Magazine, 20(4):22-31, 2006.

[12] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R.
Jiang, and B.-Y. Chen. Plod: A framework for peer-to
peer 3d streaming. In The 27th Conference on Computer
Communications (IEEE INFOCOM '08),2008.

[13] M. Jelasity and A. Montresor. Epidemic-style proactive aggre
gation in large overlay networks. In ICDCS '04: Proceedings
of the 24th International Conference on Distributed Comput
ing Systems (ICDCS'04), pages 102-109, Washington, DC,
USA, 2004. IEEE Computer Society.

[14] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L.
Barabasi. The large-scale organization of metabolic networks.
Nature, 407(6804):651-654, October 2000.

[15] J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. In PDPTA, pages 262-268, 2003.

[16] M. E. J. Newman. The structure of scientific collaboration
networks. PROC.NATL.ACAD.SCI.USA, 98:404, 2001.

[17] J. Royan, P. Gioia, R. Cavagna, and C. Bouville. Network
based visualization of 3d landscapes and city models. IEEE
Comput. Graph. Appl., 27(6):70-79, 2007.

[18] I. Scholtes, J. Botev, M. Esch, A. Hohfeld, H. Schloss, and
B. Zech. Topgen - internet router-level topology generation
based on technology constraints. In SimuTools, page 30, 2008.

[19] I. Scholtes, J. Botev, M. Esch, and P. Sturm. Minimizing
load delays in distributed virtual enviornments using epidemic
hoarding. In Proceedings of the 4th International Conference
on Collaborative Computing Networking, Applications and
Worksharing (CollaborateCom), Orlando, FL, USA, 2008.

[20] I. Scholtes, J. Botev, A. Hohfeld, H. Schloss, and M. Esch.
Awareness-driven phase transitions in very large scale dis
tributed systems. In SASO '08: Proceedings of the 2008 Sec
ond IEEE International Conference on Self-Adaptive and Self
Organizing Systems, pages 25-34, Washington, DC, USA,
2008. IEEE Computer Society.

[21] E. Tanin, A. Harwood, and H. Samet. Using a distributed
quadtree index in peer-to-peer networks. The VLDB Journal,
16(2):165-178,2007.

