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Abstract

Operational transformation (OT) is an established op
timistic consistency control method in collaborative appli
cations. Most existing OT algorithms are developed under
a well-acceptedframework with a condition that cannot be
formally proved. In addition, they generally support two
character-based primitive operations, insert and delete, in
a linear data structure. This paper proposes a novel OT al
gorithm that addresses the above two challenges as follows:
First, it is based on a recent theoreticalframework with for
mal conditions such that its correctness can be proved. Sec
ondly, it supports two string-basedprimitive operations and
handles overlapping and splitting ofoperations. As a result,
this algorithm can be applied in a wide range ofpractical
collaborative applications.

1. Introduction

Operational transformation (OT) [1, 10] is an optimistic
consistency control method that lies in the heart of many
collaborative applications such as group editors [11] and
Google Wave. 1 The method replicates the shared data at
cooperating sites. Local operations are always executed as
soon as they are generated by the user. Remote operations
are transformed before execution to repair inconsistencies.
As a result, local responsiveness is not sensitive to com
munication latencies, which makes the method particularly
appealing to collaborative applications running over wide
area networks with high and nondeterministic latencies.

A plethora of OT algorithms have been proposed over
the past two decades, e.g., [4, 9, 10, 11, 12]. There are
two open challenges: First, most of them are developed
under the framework of Sun et al [11], which includes an
informal condition called "intention preservation". As a
consequence, their correctness cannot be formally proved

1http://www. waveprotocol.org/whitepapers/operational-transform
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and counterexamples are often reported, as confirmed in
[4, 7, 5, 8]. Secondly, except for [11], all other OT al
gorithms only consider two character-based primitive op
erations. Although this simplification is theoretically ac
ceptable, there is a practicality gap when applying those al
gorithms to real collaborative applications in which string
based operations are common. The handling of string oper
ations is very intricate, as confirmed in [11].

To address the above two challenges, this paper proposes
a novel OT algorithm called Admissibility-Based Transfor
mation with Strings (ABTS): First, it is based on the ABT
framework [6, 5] which formalizes two correctness condi
tion, causality and admissibility preservation. Conceptu
ally, admissibility requires that the execution of every op
eration not violate the relative position of effects produced
by operations that have been executed so far. As a result,
the original ABT algorithm and the derived ABTS algo
rithm can be formally proved. Secondly, ABTS supports
two string-based primitive operations and their overlapping
and splitting when concurrent operations are transformed.
As a result, the algorithm can be directly applied in a range
of collaborative applications that require string operations.
Moreover, the design of ABTS will provide a new starting
point when extending OT algorithms to support composite
and block operations that semantically must be applied to
gether, such as cut-paste and find-replace.

Section 2 gives the background of this research. Sec
tion 3 introduces notations. Section 4 presents the ABTS
algorithm. Sections 5 and 6 analyze its correctness and
complexities, respectively. Finally, Section 7 concludes.

2. Background and Related Work

To illustrate the basic ideas of OT, consider a scenario
in which two users, A and B, collaboratively edit a shared
document which includes a list of guests to invite for a
party. The document is replicated at the two sites when the
users discuss about it online. Suppose that the list is ini-



tially "Tom" and the first position of a string is zero. User
A extends the list to "Karen.Tom" by operation OA = in
sert(O, "Karen,"). At the same time, user B extends the list
to "Tom,Sarah" by operation OB = insert(3,",Sarah"). The
two sites diverge before their results are merged.

When A receives 0B, if the operation were executed as
is, the wrong result"Kar,Sarahen,Tom" would yield in the
list of A. The intuition of O'T [1] is to transform remote
operations to incorporate the effects of concurrent local op
erations that have been executed earlier. In this scenario, for
example, A transforms 0 B into a form o~ such that o~ can
be correctly executed in current state "Karen.Tom" of site
A. Considering the fact that A has inserted a string of six
characters on the left side of the intended position of 0 B, we
must shift the position of 0 B by six to the right, yielding o~

= insert(9, "Sarah"). Execution of o~ in state "Karen.Tom"
results in the right list of "Karen,Tom,Sarah". On the other
hand, when user B receives 0 A, the operation can be exe
cuted as-is in current state of B because the target position
of 0 A is not affected by the execution of 0 B. This results in
list "Karen,Tom,Sarah". Now the two sites converge.

The philosophy of O'I' is to avoid operation overwrit
ing so as not to lose user interaction results. To reduce
chaos in the result as caused by concurrency, Sun et al [11]
propose three conditions to constrain the output, namely,
convergence, causality and intention preservation. Unfor
tunately, although intuitive and widely accepted, intention
preservation is not a well-formalized condition. As a con
sequence, O'I' algorithms developed under their framework
(e.g., [10, 11, 9]) are not completely proved and counterex
amples are often reported [4, 7, 5, 8].

Our work has established formal, provable correctness
conditions [4, 7, 6]. In particular, the Admissibility-Based
Transformation (ABT) framework [6, 5] proposes an alter
native constraint called admissibility, which conceptually
requires that the execution of any operation not violate the
character order established by previous executions in the
system. However, they mainly serve theoretical purposes
and only consider two characterwise primitives. The pre
sented stringwise ABTS algorithm is a significant exten
sion to its characterwise version ABT [6, 5]. Specifically,
when transforming two stringwise operations, the algorithm
is greatly complicated by the handling of position relations
between the operation regions because operations may be
split cascadingly during transformation.

In the literature, only the GOT algorithm [11] sup
ports stringwise operations. In their follow-up work (e.g.,
[10, 12]), new algorithms are proposed to replace GOT. We
believe that they have implemented stringwise operations.
However, in their publications, they have not addressed how
to prove the correctness of their algorithms and how to sup
port stringwise operations in their new algorithms. Note
that this is not to say that their algorithms are incorrect.
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Nevertheless, GOT converges by maintaining a prede
fined total order of operations and using a do/undo/redo
based control procedure integrated with O'I. In order to uti
lize the do/undo/redo mechanism, GOT requires that all
operations be reversible. To ensure reversibility, a "lost
and found" mechanism is employed to save and restore the
object relations between two operations in transformation.
Hence its space complexity is O(IHI2), where H is the his
tory buffer. By comparison, ABTS requires neither a total
order of execution nor reversibility of operations; correct
ness is ensured without saving the object relation; its space
complexity is O(IHI). We prefer not to compare the time
complexity of GOT before all its details are presented, e.g.,
their solutions to the counterexample identified in [4].

3. System Model and Notations

A system consists of a number of collaborating sites.
The same version of the shared data is replicated at all sites
when a session starts. For local responsiveness, each site
submits operations only to its local replica which are exe
cuted immediately. In the background, local operations are
propagated to remote sites.

The shared data is abstracted as a linear string of atomic
characters. Objects are referred to by their positions in
the string, starting from zero. For simplicity, we con
sider two primitive operations, namely, insert(p, s) and
delete(p, s), which insert and delete a string s at position
p in the shared data, respectively. Any operation 0 has the
following attributes: o.id is the unique id of the site that
originally submits 0; o.type is the operation type which is
either insert or delete; o.pos is the position in the shared
data at which 0 is applied; o.str is the target string which
the operation inserts or deletes. We use established nota
tions [2] happens-before (---+) and concurrent (II) to denote
the temporal relations between operations.

Note that, for any operation 0, o.pos is always defined
relative to some specific state of the shared data. Follow
ing notations in [10], the definition state of 0, denoted as
dst(0), is the state in which o.pos is defined. Given any
two operations 01 and 02, we say that they are contextually
equivalent, denoted as 01 U 02, if dSt(Ol) = dst(02); they
are contextually serialized, denoted as 01 1---+ 02, if 02's
position is defined in the resulting state of applying 01 (but
no other operation). For example, in the scenario given in
Section 2, we have 0A II 0B, 0A U 0B, and 0A 1---+ o~.

A list is an ordered collection of objects, denoted as
[e1, ... , en]. An empty list is denoted as []. For any list
L, notation ILl denotes the number of objects in L and I[] I
= 0. Borrowing notations from Prolog, if ILl> 0, L.head
refers to its first element L[O], and L.tail refers to remain
ing list L[1..ILI-1]. For example, if Leja.b,c], then L.head
= a and L.tail = [b,c]. Operator . concatenates two lists, or a



I Notation I Brief Description

o.id the id of site that originally generates 0
o.type the operation type of 0, either ins or del
o.pos the position of 0 relative to the data model
o.str the string inserted or deleted by 0
01~ 02 01 happens before 02
01 11 0 2 01 and 02 are concurrent
01 U 02 01 and 02 are contextual equivalent
011---+ 02 01 and 02 are contextually serialized
[01,02] an ordered list of two operations
< 01,02 > a 2-operation sequence in which 01 1---+ 02
ILl the number of objects in list/sequence L
L 1 · L 2 a concatenated list/seq of two lists/seqs

Table 1. A summary of the main notations.

list and an object. For example, for L = [a, b,c], we have L
= [a]· [b,c] = [a,b]· c.

A sequence is a special list in which all elements are
operations that are contextually serialized. A sequence sq
of n operations is denoted as sq =<01,02, ... , On>, where
01 1---+ 02 1---+ ••• 1---+ On. An empty sequence is denoted as
<>. The above list notations also apply to sequences, e.g.,
Isql = nand sq =<01> . <02, ... On>.

4. The ABTS Algorithm

We first overview the ABTS algorithm and then explain
the involved procedures in the following subsections.

4.1. Overview

A history buffer H is maintained at each site which logs
operations that have been applied to the data replica at that
site. For correctness reasons [6, 5], H is maintained as a
concatenation of of two subsequences, Hi and Hd' which
record the executed insert and delete operations in their
order of execution, respectively. That is, H = Hi . Hd. In
addition, each site maintains RQ, a list of operations re
ceived from remote sites in their order of arrival. Each site
j runs the following three concurrent threads:

Thread £ each time receives a local operation 0, applies
it to the data replica, calls algorithm updateHL to update
H and compute 0', a transformed version of 0, and propa
gates the resulting 0' to remote sites.

Thread N receives remote operations from the network
and appends them to RQ in their order of arrival.

Thread R scans RQ for a remote operation 0 at a time
that is causally-ready, i.e., all operations that happen before
o have been executed at site j. Then algorithm updateHR
is called to update H and transform 0 into a version 0' that
can be correctly executed in current state of site j. After
that, 0' is executed on the data replica at site j.
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4.2. Algorithm updateHL

By the way H is maintained, a new local insertion 0i
must be appended to Hi and a new deletion 0d to Hd. Note
that all operations that have been executed on the local data
replica are included in H; the new local operation 0 ( o; or
Od) is defined in the current state of the shared data. That
is, all operations in H happen before 0 (or H ~ 0); H
and 0 are contextually serialized (or H 1---+ 0). Hence, we
can directly append 0d to Hd because Hd 1---+ 0d also holds.
However, we cannot directly append o, to Hi because Hi 1---+

o; does not hold due to the existence of Hd.
We solve this problem by computing o~, some version of

o., such that Hi 1---+ o~. This is achieved by swapping Hd
and o.. Before the swapping, Hd 1---+ o.. As a result of the
swapping, they become H~ and o~, respectively, such that
o~ 1---+ H~. Then o~ can be appended to Hi.

To explain swapping, consider a scenario with initial
state "xy". First execute 01 = delete(1, 'y') to reach state
"x". Then execute 02 = insert(O, 'z') to yield state "zx".
The relation is 01 1---+ 02. If we swap 01 and 02, yielding
o~ and o~, respectively, such that o~ 1---+ o~, it must be that
o~ = insert(O, 'z') and o~ = delete(2, 'y'). As a result, o~ is
executed before o~ yet they produce the same effects.

Function updateHL(o) not only appends 0 to the right
subsequence but also its swapping process excludes the ef
fects of H d from 0 as if no deletions had been executed
before 0 at current site. In either case of 0 (o, or Od), after
swapping 0 and Hd , we obtain 0' 1---+ H~. As a result, none
of the deletion effects of H d are included in the definition
state of 0' when it is propagated to remote sites.

Algorithm 1 updateHL(0) : 0'

1: if o.type = ins then
2: (0', H~) f- swapDsqI(Hd, 0)
3: H f- Hi . 0' . H~

4: else
5: sq f- n;
6: (0', sq') f- swapDsqD(sq, 0)
7: H f- Hi . Hd . 0
8: end if
9: return 0'

Based on the above explanation, Algorithm 1 specifies
function updateHL, which works as follows: If the new lo
cal operation 0 is an insertion, we swap it with Hd and ap
pend the resulting 0' to Hi. Then we update the history to
Hi . 0' . H~. The resulting 0' is returned (line 9) and will
be propagated to remote sites. On the other hand, if 0 is a
deletion, we directly append it to subsequence H d (line 7)
and update the history to Hi . Hd· o. Meanwhile we exclude



the effects of Hd from 0 by swapping 0 with a copy of Hd
(lines 5-6). Then the resulting 0' is returned and propagated
to remote sites. The two swapping procedures, swapDsqI
and swapDsqD, will be presented later in Section 4.6.

4.3. Algorithm updateHR

Function updateHR(0) has two goals, where 0 is a
causally-ready remote operation: First, it appends 0 to Hi or
Hd depending on o.type. Secondly, it outputs 0', a version
of 0, such that 0' can be executed in current state.

When updateHR(0) is called in thread R, operation 0

must be causally ready. That is, all operations that happen
before 0 are already executed and included in the history
H = Hi . Hd. However, note that some operations that are
concurrent with 0 may also have been executed at current
site. That is, subsequences Hi and Hd include both opera
tions that happen before 0 and those concurrent with o.

The intuition of OT [1] is to transform an operation 0

with those with effects not included in 0 to incorporate their
effects. This process is called inclusion transformation or
IT [10]. For example, in the scenario in Section 2, by step
o~ = IT(OB, OA), operation OB is inclusively transformed
with 0 A to incorporate the effect of 0 A. The relationship
between the two operations is 0 B U 0 A before the IT step
and 0 A 1---+ o~ after. Then the resulting o~ can be correctly
executed in current state of site A.

In fact, we do not need to transform 0 with all operations
in H because the effects of some of operations in Hi that
happen before 0 are already included in o. To distinguish,
we must somehow transpose Hi into two contextually seri
alized subsequences sqh and sq., such that Hi = sqh . sq.,
where sqh contains all operations in Hi that happen before
o and sqc contains all operations in Hi that are concurrent
with o. Then history H is equivalent to sqh . sqc . Hd.

According to Section 4.2, before 0 is propagated, it has
excluded the effects of all deletions that happen before it;
however, it includes the effects of all insertions that hap
pen before it, which are exactly all the operations in subse
quence sqi; Hence 0 does not include any effects in subse
quence sqc . Hd. Then sqh 1---+ 0 and 0 U (sqc . Hd). If we
get 0' by inclusively transforming 0 with sqc . Hd, then 0'

can be executed in current state. After the transformation,
the relationship will be (sqc . Hd) 1---+ 0' and H 1---+ 0'.

Now consider the goal of how to add 0 to H. If 0 is
a deletion, then 0' can be directly appended to Hd. How
ever, if 0 is an insertion, we only need to transform 0 with
sqc to get 0" and append 0" to Hi. Nevertheless, we can
not naively add 0" between Hi and Hd because, although
Hi 1---+ 0", the relationship is 0" U Hd rather than 0" 1---+ Hd.
Therefore, we must first transform all operations in Hd to
incorporate the effect of 0", yielding H~, and then update
the history H to Hi . 0" . H~.
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Algorithm 2 updateHR(0) : 0'

1: (sqh' sqc) +- tromspoeeiiCt Hi, 0)
2: 0" +- ITOSq(o, sqc)
3: 0' +- ITOSq(o", Hd)
4: if o.type = ins then
5: H~ +- ITDtrjI(Hd,0")
6: H +- Hi . 0" . H~

7: else
8: H +- Hi . Hd . 0'

9: end if
10: return 0'

As in Algorithm 2, we specify function updateHR based
on the above discussions. In line 1, it first transposes Hi into
two contextually serialized subsequences, sqh and sqc, by
calling algorithm transposeHC. In line 2, it calls algorithm
ITOSq to get 0" by transforming 0 with sqc. Then in line 3,
it calls algorithm ITOSq again to get 0' by transforming 0"

with H d • If 0 is an insertion, it transforms H d to incorporate
the effect of 0". After that, 0" is added between Hi and
the resulting H~. If 0 is a deletion, it simply appends 0' to
H d • Finally, 0' is returned and executed by thread R in the
current state of the shared data.

Algorithm transposeHC is already well-understood [4, 6,
9, 10] and here omitted. The two IT functions, ITOSq and
ITDsqI, will be explained in Section 4.5.

4.4. Atomic and Composite Operations

To support stringwise transformation, we need to intro
duce a few more notations. Given any string s, notation lsi
is the number of characters in s. If 0 ::; i<j ::; lsi, nota
tion s[i:j] returns a substring of s starting from position i
to position j -1. If j is not specified, s [i:] returns a substring
from i to the end. For example, let s="abc", then Isl=3 and
s[0:2]="ab" and s[1:]="bc".

A stringwise operation can be denoted as a list of sub
operations that achieves the same effects. We use notation
o.sol to denote the sub-operation list of operation o. No
tation o.sol[i] is simplified as o[i], and lo.soll as 101. For
an atomic operation 0, its sub-operation list only includes
itself or 101=1. A composite operation 0 has more than one
sub-operation or 101 > 1. Operations in o.sol have the same
id and type properties (as well as timestamps) but different
positions. We extend operation relations such as ----+, II, U,

and 1---+ to composite operations without re-definition.
Here we are only interested in sub-operations of dele

tions. For example, given string "abc", delete(O, "abc") can
be denoted as a list of two sub-operations, delete(O, "a") and
delete(l, "be"). As another example, if for some reason we
need to delete 'a' and 'c' in conceptually one operation, we



may define a composite operation with two sub-operations
delete(O,'a') and delete(2, 'c'). Note that positions of all
operations in o.sol are defined relative to the same state,
dst(0). That is, they are contextually equivalent with regard
to dst(o). Hence, to achieve the same effects as 0, they must
be applied simultaneously to dst(o). It would be wrong to
apply them one after another like a sequence.

As will be shown in Sections 4.5 and 4.6, when a deletion
is transformed with another insert or delete operation, the
result could be a composite deletion with two or more sub
operations. Hence, the (delete) operations being propagated
or received could be composite operations.

Algorithm 3 specifies the function for executing (atomic
and composite) operations. In particular, to execute a com
posite operation 0, we need to do a special transforma
tion to o.sol before applying the sub-operations in o.sol in
tandem. Algorithm 4 specifies this special transformation,
called selfl'I',which only adjusts positions of sub-operations
that belong to the same composite operation o. Assume that
an atomic operation's sub-operation list only includes it
self. The algorithm first initializes sol with the given o.sol;
then for every sub-operation sol [i], subtract the total length
of substrings deleted by preceding operations ranging from
sol[O] to sol[i-l]. As a result, every sol[i] has accounted for
the effects of preceding operations in the list. Then, opera
tions in the resulting sol list (actually now a sequence) can
be executed one by one in dst(o).

Algorithm 3 execute(o)

1: sol f- selfIT(0)
2: for (i=O; i < Isoll; i++) do
3: apply sol[i] in shared data
4: end for

Algorithm 4 selftT(o): sol

1: sol f- o.sol
2: if o.type = del and 101 > 1 then
3: ~ f- Isol[O].strl
4: for (i=l; i < Isoll; i++) do
5: sol[i].pos f- sol[i].pos - ~
6: ~ f- ~ + Isol[i].strl
7: end for
8: end if
9: return sol

Based on selfl'I, we could define the following two
simple utility functions: getSubOpList(sq) collects a list
of sub-operations of all operations in a given sequence
sq, after applying selfl'I' on every sq[i]; and function
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combineSubOpList(ol) returns a sequence of composite op
erations by combining all their sub-operations in a given list
ole These two functions are inverse of each other. For space
reasons, we leave out their specifications in this paper.

4.5. IT Algorithms

In this subsection, we first discuss the most basic IT
functions and then discuss advanced IT functions that in
volve at least one list (sequence) of primitive operations.

4.5.1 Basic IT Functions

In the most basic form, function IT(OI' 02) transforms a
primitive operation 01 with another primitive operation 02
and outputs result o~. As will be shown shortly, the output
result is sometimes a composite operation. By the types of
the two involved operations, insert (I) and delete (D), we de
fine four functions, ITII, ITID, ITDI, and ITDD, as in Algo
rithms 5-8, respectively. According to [10], the precondi
tion of IT(01,02) is 01U02 and the postcondition is 02~ o~.

Intuitively, the positions of two operations must be defined
in the same state so as to be compared in transformation.
We will discuss the precondition further in Section 5.

Algorithm 5 /T//(OI' 02) : o~

1: o~ f- 01
2: if 02'POS < 01'POS then
3: o~ .pos f- o~ .pos + 102.strl
4: else if 02'POS = 01'POS and 02.id < oi.id then
5: o~ .pos f- o~ .pos + 102.strl
6: end if
7: return o~

Algorithm 6 /T/D(01, 02) : o~

1: o~ f- 01
2: if 01'POS > 02'POS then
3: if 01.POS 2 02.POS + 102.strl then
4: o~ .pos f- o~ .pos - 102.strl
5: else
6: o~ .pos f- 02.POS
7: end if
8: end if
9: return o~

Algorithm 5 transforms insertion 01 with another inser
tion 02 to incorporate the effects of 02. As shown in the
condition of line 2, if 02.POS is on the left of 01'POS, mean
ing 01'str is to be inserted after 02.str is inserted, then
01.POS should be shifted to the right by 102.strl characters.



If 01.POS and 02.POS tie, however, we use a priority scheme,
e.g., by comparing their site ids, to break the tie: the two
strings are ordered by their site ids in the result. That is, if
01.id is greater, 01.POS is shifted to the right. An intuitive
scenario is that two users concurrently insert two strings at
the same position in the same state. Using site ids to break
the tie is a reasonable resort in concurrency control.

In Algorithm 6, an insertion 01 is transformed with a
deletion 02. Let S be their common definition state. Since
02 deletes a substring that is already in sand 01 is to insert
a new string into s, the deletion affects 01'POS only when
01'POS > 02.POS, as shown in the condition of line 2. There
are two cases: 01'POS may fall out the right border of 02 .str

or within it. The condition in line 3 handles the former case,
in which 01'POS is shifted to the left by 102.strl characters.
Otherwise, 01 is to insert within a substring that is deleted
by 02. Note that, in this case, either policy is reasonable:
keep oi.str or remove oi.str. In this paper, we choose to
keep 01.str in the result and hence reset its new position to
be the same as that of 02, as shown in lines 5-6.

Algorithm 7 /TD/(OI' 02) : O~

1: O~ f- 01

2: if 02'POS ::; 01'POS then
3: O~ .pos f- 01'POS + 102.strl
4: else if 01.POS < 02.POS < 01.POS + 101.strl then
5: 0L f- on f- 01

6: oi-str f- 01.str[O : 02.POS - 01.pOS]

7: OR.POS f- 02'POS + 102.strl
8: oR.str f- 01.str[02'POS - 01'POS :]

9: o~.sol f- [OL,OR]

10: end if
11: return O~

Algorithm 7 specifies how to transform a deletion 01

with an insertion 02. Let S be their common definition state.
Since 01.str is already in sand 02 inserts new content into
s, we can use oi.str as the reference. As in the condition
of line 2, if 02 inserts on the left of 01'POS, we need to
shift 01'POS by 102.strl characters to the right. However,
if 02 inserts within the substring that 01 intends to delete,
as in the condition of line 4, we need to split oi.str into
two parts that are separated by 02.str. As shown in lines
5-9, the transformation result is a composite operation with
two sub-operations: 0 L deletes the substring up to the posi
tion pointed to by 02.POS (exclusively), starting at position
01'POS in s; and OR deletes the substring inclusively from
after 02'POS, starting at the position in S right after 02.str,

that is, 02.POS + 102.strl.
As shown in Algorithm 8, transforming two deletions is

more complicated. Both 01 and 02 are to delete an existing
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Algorithm 8 /TDD(01, 02) : O~

1: O~ f- 01

2: b1 f- 01.POS; el f- 01'POS + 101.strl
3: b2 f- 02.POS; e2 f- 02.POS + 102.strl
4: if b2 2: el then
5: return O~

6: else if e2 ::; b1 then
7: O~ .pos f- b1 - 102.strl
8: else if b1 2: b2 and el ::; e2 then
9: return ¢

10: else if b1 2: b2 and el > e2 then
11: O~ .pOS f- b2

12: O~ .str f- 01.str[e2 - bi :]
13: else if bi < b2 and el ::; e2 then
14: O~ .str f- 01.str[O : b2 - b1]

15: else if bi < b2 and e2 < el then
16: 0L f- on f- 01

17: oi-str f- 01.str[O : b2 - b1]

18: OR.POS f- b2

19: ot.-str f- 01.str[e2 - b1 :]

20: O~ .sol f- [OL' OR]

21: end if
22: return O~

substring in their definition state s. We need to consider the
following six cases regarding the relations between the two
target regions, R 1 = s[b1 : el] and R 2 = s[b2 : e2]'

1. (line 4) R2 is completely on the right of R1. Deletion
of R2 does not affect 01. Hence 01 is returned as-is.

2. (line 6) R 1 is on the right of R 2. After R 2 is deleted,
we shift 01'POS by 102.strl characters to the left.

3. (line 8) R 1 is included in R2. Hence after 02 is exe
cuted, R1 is already deleted. There is no longer need
to execute 01. We return an empty operation ¢.

4. (line 10) R2 partially overlaps with Rl around the left
border of R1. After 02 is executed, the left part of R1 is
already deleted. Hence, we need to reset 01.POS so that
it will start from b2 • And oi.str only needs to include
the right part that is not deleted by 02, starting from
e2 - b1 in the original oi.str.

5. (line 13) R2 partially overlaps with R1 around the righ
border of R1. This case similar to case (4). After 02

is executed, 01 only needs to delete the left part that is
not deleted by 02.

6. (line 15) R2 is included in Rl. This case is similar
to the case of lines 4-10 in Algorithm 7. The deletion
of R 2 within R 1 divides R 1 into three parts, among
which the middle overlapping part is already deleted
by 02. Hence 01 must be split into two sub-operations
that delete the two remaining substrings, respectively.



4.5.2 Sequence-Related IT Functions

Algorithm 9 /TOSq(o, sq) : 0'

1: 0' ~ 0

2: ol ~ getSubOpList(sq)
3: o'.sol ~ ITLL(o'.sol,ol)
4: return 0'

Algorithm 10 /TLL( Oll, Ol2) : ol

1: if oii = [] or Ol2 = [] then
2: ol ~ Oll
3: else
4: OlH ~ ITOL(oll.head, Ol2)
5: OlT ~ ITLL(oll.tail, Ol2)
6: ol ~ OlH ·OlT
7: end if
8: return ol

Algorithm 11 /TOL(0, Ol2) : ol

1: if Ol2 = [] then
2: ol ~ [0]
3: else
4: 0' ~ IT(0,ol2.head)
5: ol ~ ITLL(o'.sol, Ol2.tail)
6: end if
7: return ol

Now we specify the two functions, /TOSq and /TDsq/,
that are used in function updateHR (Algorithm 2). As
shown in Algorithm 9, function ITOSq(o,sq) transforms an
operation 0 with a sequence sq. To do that, we need to
transform 0 one by one with every operation sq[i]. How
ever, both 0 and sq[i] could be composite. To simplify pro
cessing, we first collect all sub-operations of sq in list ol by
calling function getSubOpList(sq). Then, we use another
algorithm to transform one list o.sol with another list ol.

The algorithm to transform two lists is implemented by
a double recursion of two functions, ITLL and ITOL. As
shown in Algorithm 10, ITLL(oll' Ol2) transforms one list
Oll with another list Ol2. In the simplest case, if Oll or
Ol2 is empty, just return Oll. Otherwise, we divide Oll into
two parts, its first element Oll.head and the rest of the list
ol.i.iail. Then we call function ITOL to transform operation
ole.head with list Ol2' yielding OlH, and call function ITLL
to transform list oli.tci! with list Ol2, yielding OlT. Finally,
we concatenate these two partial results, OlH and OlT, and
return OlH . OlT as the result of ITLL(oll' Ol2).
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In Algorithm 11, function ITOL(o, Ol2) transforms an
operation with a list Ol2. Given a non-empty list Ol2, we
need to transform 0 with operations in Ol2 one by one. De
pending on types of the two involved operations, we first
call some IT(o, ol2.head) to transform 0 with the first op
eration in Ol2' yielding intermediate result 0'; then we call
ITLL(o'.sol, Ol2.tail) to transform o'.sol with the rest of list
Ol2. Note that the intermediate list o'.sol may be a singleton
if the result is an atomic operation.

Algorithm 12 /TDsq/(sq, 0) : sq'

1: 01 ~ 0

2: ol i ~ getSubOpList(sq)
3: Ol2 ~ []
4: for(i=O;i < lolll;i++)do
5: 02~ 01

6: 01 ~ ITID(Ol,oll[i])
7: 0d ~ ITDI(oll[i],02)
8: Ol2 ~ Ol2 . (Od.sol)
9: end for

10: sq' ~ combineSubOpList(ol2)
11: return sq'

Next, we specify function /TDsq/(sq, 0) for transforming
a sequence sq with an operation 0 to incorporate the effects
of 0 into every operation in sq, as shown in Algorithm 12.
Since /TDsq/ is only called in Algorithm 2, we know that its
input sq is deletion-only and 0 is but an insertion. A pitfall
in implementing /TDsq/(sq,o) is to naively transform every
operation in sq with 0 one by one. The input precondition is
sqUo, or sq[O] Uo. Hence it makes sense to do IT(sq[O] , 0).
However, for the next operation, sq [1], the relation is not
sq[l] U o. Hence it makes no sense to do IT(sq[l], 0). The
fix is to first transform 0 with sq[0], yielding 0', and then
transform sq[l] with 0'. Following this idea, we first collect
all sub-operations of sq into list oli: for every operation
in Oll' we transform 0 with Oll[i], and then transform Oll[i]
with 0, yielding 0d. All sub-operations in os are collected in
list Ol2. Finally, we combine the sub-operations and return
a sequence of composite operations sq'.

4.6. SWAP Algorithms

We first present the basic swap functions for swapping
two primitive operations, and then discuss advanced swap
functions that involve sequences of operations.

4.6.1 Basic swap Functions

Given two operations 01 and 02, where 01 t---+ 02, func
tion swaptoi, 02) transposes them into o~ and o~ such that
o~ t---+ o~. Depending on their types, insert (I) and delete



02£ f- 02R f- 02
ou.-etr f- 02.str[0 : 0I.POS - 02.POS]
02R.POS f- OI.POS + 10I.strl
ozn-eir f- 02.str[OI.POS - 02.POS :]
o~.sol f- [02£,02R]
oi .pOS f- 02.POS

end if
return (o~, oi)

Algorithm 13 swapD/(OI' 02) : (O~, oi)

1: oi f- 01; O~ f- 02
2: if 02.POS 2:: 0I.POS then
3: o~.pos f- o~.pos+ 10I.strl
4: else
5: oi .pos f- oi .pos + 102.strl
6: end if
7: return (O~, oi)

Algorithm 14 swapDD(OI' 02) : (O~, oi)

1: oi f- 01; O~ f- 02
2: if 02.pos 2:: 0I.POS then
3: o~.pos f- 02.POS + 10I.strl
4: else if 02.POS + 102.strl ~ OI.POS then
5: oi .pos f- oi .pos - 102.strl
6: else
7:

8:

9:

10:

11:

12:

13:

14:

(D), we specify two basic swapping functions as in Algo
rithms 13 and 14, respectively. Function swap// is used in
function transposeHC (called in Algorithm 2) and omitted
altogether for space reasons. Function swap/D is irrelevant
because it is not used in our ABTS algorithm at all.

Algorithm 13 swaps a deletion 01 and an insertion 02.
The case of 02.POS 2:: 0I.POS means that, after 01 deletes
01.str, 02 inserts 02.str on the right side of the region
oc.str originally occupies. Hence, if they are swapped,
meaning that 02 inserts 02.str before 01 deletes 01.sir, then
02.pos should be shifted by 101.str I characters to the right
because oi.str is not deleted yet. The case of 02.POS <
0I.POS means that, after 01 deletes oi.str, 02 inserts 02.str
on the strict left of 0I.POS and there are at least one character
between 02.POS and OI.POS. Hence swapping the execution
order of 01 and 02 entails that OI.POS be shifted by 102.strl
characters to the right to account for 02.str.

As specified in Algorithm 14, function swapDD(oI' 02)
transposes two deletions 01 and 02. There are three cases to
consider: First, if 02.POS 2:: OI.POS, it means that 02 is to
delete a substring on the right side of the substring 01.str
deleted by 01. Hence, if we execute 02 before 01 instead,
then 02.POS should account for oi.str because it has not
been deleted yet. Secondly, if 02.POS + 102.strl ~ 0I.POS,
it means that 02.str is completely on the left side of OI.POS.

Digital Object Identifier: 10.410BI/CST.COLLABORATECOM2009.B271

http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B271

Hence, if we execute 02 before 01 instead, 0I.POS should be
shifted to the left because 02.str has been deleted. Thirdly,
as in lines 6-12, oi.str is completely covered by 02.str.
Then, if we execute 02 before 01 instead, 02.str is di
vided into three parts, among which the middle part is to
be deleted by 01. The remaining left and right parts, as di
vided by position OI.POS, are deleted by two sub-operations
02£ and 02R, respectively. Finally, 0I.POS should be set to
02.POS due to the deletion of 02£.str.

4.6.2 Sequence-Related swap Functions

Algorithm 15 swapDsq/(sq, 0) : (0', sq')

1: 0' f- 0

2: ol f- getSubOpList(sq)
3: for (i = loll - 1; i 2:: 0; i - -) do
4: (o',ol[i]) f- swapDI(ol[i], 0')
5: end for
6: sq' f- combineSubOpList(ol)
7: return (0', sq')

Algorithm 16 swapDsqD(sq, 0) : (0', sq')

1: 0' f- 0

2: ol f- getSubOpList(sq)
3: (o'.sol,ol) f- swapLL(ol, o'.sol, loll - 1)
4: sq' f- combineSubOpList(ol)
5: return (0', sq')

As in Algorithm 15, function swapDsq/(sq, 0) transposes
a deletion sequence sq with an insertion 0, where sq t---+ 0,
into sq' and 0' such that 0' t---+ sq'. We first flatten sq by
collecting all sub-operations of sq in list ol. Then we call
the specified function swapD/ to transpose every operation
in ol with 0 from right to left. Finally we merge all sub
operations in ol and return the resulting sequence as sq',

As in Algorithm 16, function swapDsqD(sq,o) trans
poses a deletion sequence sq and a deletion o. The process
is more complicated because swapping two deletions may
result in composite operations. Similarly to Algorithm 14,
we first flatten sq into list ol, then call function swapLL
to transpose list ol and list o.sol, and finally combine sub
operations in the resulting list. When calling swapLL, the
third parameter is the index indicating from which operation
in list ol we start the actual swapping.

The algorithm for transposing two lists is implemented
by a double recursion of two functions, swapLL and
swapOL, as specified in Algorithm 17 and 18, respectively.
Function swapl.Ltol-, Ol2, p) transposes two given list Oll
and Ol2, where Oll t---+ Ol2, into oli and ol~ such that



Algorithm 17 swapLL(oll,ol2,p) : (ol~,ol~)

1: if oii = [] or Ol2 = [] then
2: return (Ol2, Oll)
3: else
4: ol~ f- oi:
5: (Ol2H,ol~) f- swapLO(ol~,ol2.head,p)

6: (Ol2T, ol~) f- swapLL(ol~,Ol2.tail,p)
7: ol~ f- Ol2H . Ol2T
8: return (ol~, ol~)

9: end if

Algorithm 18 swapl.Otol-, o,p) : (ol~, ol~)

1: ifp = 0 then
2: (0', ol~ [0]) f- swapDD( Oll[0], 0)
3: return (o'.sol, ol~)

4: else
5: ol~ f- Oll
6: (o',ol~[p]) f- swapDD(ol~[p],o)

7: (ol~,ol~) f- swapLL(ol~,o'.sol,p-1)
8: return (ol~, ol~)

9: end if

ol~ ~ ol~. Due to Algorithm 16, the input Ol2 is a sub
operation list. That is, operations in Ol2 are defined relative
to the same state. Hence the ordering of operations in Ol2
is not important. Function swapLL works as follows: First,
we call swapLO(ol~, ol2.head, p) to transpose ol~ with the
first operation in Ol2' where ol~ is a copy of Oll. While
ol~ is transformed in place, operation ol2.head is trans
formed into list Ol2H. Then, we recursively call function
swapLL(ol~, Ol2.tail, p) to transpose ol~ with the remain
ing operations in Ol2. Again, while ol~ is transformed in
place, list Ol2.tail is transformed into list Ol2T. Finally, we
concatenate partial results Ol2H with Ol2T into ol~ and re
turn tuple (ol~, ol~). Because operations in Ol2 are all con
textually equivalent, operations in the resulting ol~ are also
contextually equivalent.

Function swapLO(Oll, 0, p) transposes list Oll and op
eration 0, where Oll ~ 0, into list ol~ and list ol~, respec
tively, such that ol~ ~ ol~. Parameter p points to the current
operation in Oll to be transposed with o. If p is zero, we call
swapDD to transpose Oll[O] with 0, yielding ol~[O] and 0',
and return the resulting 0' .sol and ol~. Otherwise, we trans
pose every operation in Oll with 0 from right to left, as in
lines 5-8. First, we call swapDD(ol~ [p], 0) to transpose the
last operation in ol~ and 0, transforming 0 into 0'. Note that
ol~ is a copy of Oll and all its operations are transformed in
place. As a result of swapDD, 0' could be a composite oper
ation. Hence we call swapLL(ol~, o'.sol, p -1) to transpose
ol~ with o'.sol, which transforms o'.sol into ol~.
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5. Analysis of Correctness

ABTS is based on a well-proved theoretical framework
called admissibility-based transformation (ABT) [6, 5],
which establishes that an OT algorithm is correct if the fol
lowing two formal conditions always hold:
(1) Causality preservation: whenever an operation 0 is

executed at a site, all operations that happen before 0

must have been executed at that site.
(2) Admissibility preservation: the execution of every

operation is admissible, i.e., it does not introduce in
consistent ordering of objects at different sites.

Condition (1) is satisfied by using vector timestamps. To
satisfy condition (2), our approach is to first establish suffi
cient conditions of the basic IT and swap functions and then
design a control procedure that satisfies those sufficient con
ditions while integrating local and remote operations. These
two conditions together imply convergence [6, 5].

According to [11], the precondition of IT(01, 02) is 01 U

02, and the precondition of swapioj , 02) is 01 ~ 02. In [6,
5], they are extended with the following proved sufficient
conditions for the basic IT and swap functions to produce
the correct results, Le., admissible operations, assuming that
01 and 02 are admissible:
(a) IT(Ol, 02) is admissible if 01 U 02 and, in the case they

are both insertions and their positions tie, 01 II 02 and
neither 01 nor 02 includes effects of any deletions.

(b) swaptoj , 02) is admissible if 01 ~ 02 and, in the case
01 is a deletion and 02 is an insertion and their posi
tions tie, 01 ---+ 02 and 02 is generated in state dst(02).

The presented ABTS algorithm has mainly two parts, up
dateHL and updateHR. The correctness of updateHL(0) for
integrating a local operation 0 (Algorithm 1) is ensured as
follows: when 0 is a deletion, it is only swapped with dele
tions in Hd. At every step (Algorithms 16- 18), as long as
01~ 02 is guaranteed for every swapDD(ol, 02), the result
is correct. By discussions in Section 4.6, this is ensured. On
the other hand, when 0 is an insertion, it is swapped with
deletions in H d. However, since 0 is a local operation that
happens after H d and generated in its definition state, the
above condition (b) holds for every swapDI function called.
Hence, updateHL(0) is correct.

The correctness of updateHR(0) for integrating a remote
operation (Algorithm 2) is ensured as follows: In line 1,
function transposeHC [10, 6] transposes an insertion-only
sequence Hi, which ultimately calls basic function swapll.
By the above condition (b), the result is correct as long as
01 ~ 02 is ensured every time swaplltoj , 02) is called. In
line 2, the result of ITOSq is correct by the above condition
(a) because, although IT happens between two concurrent
insertions, neither of them includes effects of any deletions
as a consequence of updateHL. In line 3, the result is correct
as long as two operations involved in every IT are contextu-



ally equivalent. Similarly the result of line 5 is also correct.
Hence, updateHR(o) is also correct.

6. Analysis of Complexities

Note that the double-recursion presentation of Algo
rithms 9 and 16 is only for the sake of conceptual clarity.
In the actual system, we rewrite them in a more efficient
way to avoid the runtime overheads of recursions.

The space complexity of the presented ABTS algorithm
is trivially O(IHI). The time complexity of ABTS is in the
same order of magnitude as that of its characterwise version
ABT [6, 3, 5], which is not counterintuitive.

For space reasons, here we only give the results: The
time complexity to integrate a local operation is o(IoldI .
[o.srrj), where old is the corresponding sub-operation list
of Hd. When m = [o.str] and the average length of deleted
strings in the history, c = loldl/IHdl can be considered as
small constants, the complexity is linear in the number of
deletions in the history, i.e., 0 (IH d I). The execution of a
remote operation 0 takes time O(IHiI

2 + (Isqcl + loldl) .
[o.srrj), where sqc is the operations in Hi that are concur
rent with 0 and old is the corresponding sub-operation list of
Hd. When m = [o.szr] and c = loldl/IHdl can be consid
ered as small constants, the complexity is O(IHiI

2 + IHdl),
roughly quadratic in the number of insertions in the history.

7. Conclusions

This paper presents a novel transformation based consis
tency control algorithm called ABTS that supports string
based primitive operations. The presented algorithm is the
first of its kind with stringwise operations and correctness
formally proved. For space reasons, we only sketched the
correctness proofs and the complexity analyses in this pa
per. Since operations are stored in their execution order in
the history H, the time complexity to integrate a remote op
eration is roughly O(IHI 2 ) , which is in the same order of
magnitude as its character-based precursor, ABT [6, 5]. Al
though ABTS is extended from ABT, the extension is theo
retically significant due to the complications in handling op
eration region overlapping and splitting. Moreover, the ex
tension makes it possible to apply OT techniques to a wider
range of practical collaborative applications.

In future research, we plan to extend this work specifi
cally for application domains such as collaborative software
development and study its usability. With support of string
operations as the new starting point, it will be interesting
to study techniques for conflicts detection and resolution in
the context of specific application domains [11]. Another
interesting direction is to optimize the algorithm to reduce
the time complexity for it to work more efficiently for both
real-time and asynchronous collaborative applications [3].
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