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ABSTRACT 
 
Monitoring human activities using wearable wireless sensor nodes 
has the potential to enable many useful applications for everyday 
situations. The long-term lifestyle monitoring can greatly improve 
healthcare by gathering information about quality of life; aiding 
the diagnosis and tracking of certain diseases such as Parkinson’s. 
The deployment of an automatic and computationally-efficient 
algorithm reduces the complexities involved in the detection and 
recognition of human activities in a distributed system. This paper 
presents a new algorithm for automatic segmentation of routine 
human activities. The proposed algorithm can distinguish between 
discrete periods of activity and rest without specifically knowing 
the activity. A finite subset of nodes can detect all human 
activities, but each node by itself can only detect a particular set 
of activities. For local segmentation we choose the parameters for 
each node that result in the least segmentation error. We 
demonstrate the effectiveness of our algorithm on data collected 
from body sensor networks for a scenario simulating a set of daily 
activities. 
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1. INTRODUCTION 

The development of small sensor platforms from relatively 
inexpensive, commercially available components has created 
fascinating new opportunities for data collection. The sensor 
nodes can communicate wirelessly, have limited storage 
capabilities, and are often deployed in networks. These sensor 
networks have been used for a wide variety sensing tasks from 
individual health monitoring to large-scale environmental sensing. 
The sensors measure environmental variables including 

temperature, humidity, force, acceleration, and heartbeat. In most 
applications, a light-weight embedded sensor node is expected to 
acquire physical measurements, perform local processing and 
storage, and communicate over a short distance. Sensor networks 
that understand human actions are expected to be useful for 
numerous aspects of everyday life. Human motion recognition 
using wireless sensor networks can employ data from either 
environmental or on-body sensing devices [1]. One method of 
using environmental sensors is video processing. The use of video 
streams in wireless networks to interpret human motion has been 
considered for assisted living applications [2]. In contrast, 
wearable sensor networks or body sensor networks (BSNs) are 
built of light-weight sensor platforms and can be used to 
recognize the actions performed by the person wearing them [3]. 
The sensors can be mounted on the human body or even woven 
into the clothing itself [4]. Unlike vision-based platforms, BSNs 
require no environmental infrastructures and they are less 
expensive. Moreover, the signal readings from on-body sensors 
are clearer and not biased by environmental effects such as light 
and the background. This makes BSNs potentially more accurate 
than vision frameworks for motion recognition. 

For clinical systems, BSNs offer the unprecedented ability to 
monitor patients in a natural setting for an extended period. For 
this application, data reduction is critical: a clinician or doctor 
cannot examine reams of data to asses the patient’s performance 
and health. Instead, the doctor might prefer a summary, such as 
“the patient ran three miles on Tuesday, but slept all Wednesday. 
She has poor balance in the morning, but after three o’clock her 
balance improves considerably. She fell 10 times last week.” This 
example suggests that the system should employ pattern 
recognition techniques to classify the data into a set of actions. 
The BSNs in these settings must operate for extended periods of 
time without communicating with a base station, therefore the 
signal processing and classification must be performed in situ. 
The limited storage and processing capabilities provide many 
challenges to architects of these systems.  

Pattern recognition typically involves four steps. First, the data 
from the sensors is sent through a series of filters to reduce noise, 
apply calibration to the data, etc. Subsequently, the data is 
partitioned into individual segments to be classified. An example 
is that an image of a page of text can be segmented into words or 
even letters without knowledge of which letters or words are 
present. After this, features are extracted from each segment. 
Features are chosen to reduce the volume of data without 
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eliminating relevant information. For instance, to recognize fruit, 
the color, shape, and size are relevant features, while the rotation 
and individual pixel values are irrelevant. Finally, the features are 
used to classify  the segments. These classes are labels which 
range from individual actions such as “falling,” “sitting” or 
“walking” to conclusions about health, such as “erratic heartbeat.”  

While image segmentation has been a much-researched topic, 
relatively little work has been done for segmentation of stream 
signals. The most popular approaches include fixed time slices 
and manual segmentation. Manual segmentation is acceptable for 
a twenty minute treadmill activity, but for a sensor network 
deployed for hours, days, or even weeks, automatic segmentation 
is required. Regions of interest in the data stream can be varying 
lengths, so a fixed time slice could contain part of an action, or 
potentially several actions. Certain classifiers, such as the Hidden 
Markov Model (HMM) can utilize fixed time slices effectively 
[5], especially when computationally expensive operations such 
as eigenvector extraction and Fourier transforms are used. 
However other classifiers popular for their low processing 
overhead such as k-NN and Adaboost cannot. Therefore, to 
enable use of the widest variety of classifiers, automatic 
classification capable of accurately segmenting sensor readings 
into discrete actions and non-actions is necessary. 

In this paper we introduce a segmentation technique based on the 
notion that regions of interest in a data stream correspond to times 
when the readings from a sensor change rapidly during a short 
period of time. A “rest” is defined as a time during which the 
sensor’s values remain relatively constant over an interval. 
Empirically this is true for even seemingly continuous actions, 
such as walking. We present a framework for automatically 
segmenting actions in a sensor stream. This framework takes 
advantage of correlation in the observation of an action between 
sensor nodes and sensors to increase accuracy. A new adaptive 
method of determining activity in a data stream is explored. It is 
based on standard deviation of sensor data. Finally, we 
experimentally verify these techniques by comparing the results 
to our manual segmentation. 

2. RELATED WORK 

BSNs with inertial sensors have been used in several applications 
such as fall detection, gait analysis, sport medicine and balance 
assessment, and have received much attention recently. Many 
recent wearable systems for activity recognition place a single 
type of sensor, typically accelerometers, in multiple locations 
(anywhere from two to 12) on the body [6, 7]. More recent 
systems prefer using multiple motion sensors [8-10]. In order to 
provide relevant information to mobile users, [9] focuses on the 
recognition of activities that are characterized by a hand motion 
and an accompanying sound using on-body sensing. Jafari et al. 
[10] propose a wearable movement monitoring platform. The 
system consists of lightweight wireless sensor nodes, each 
equipped with accelerometers and gyroscopes. Sensor readings 
are separated into primitive actions by manual segmentation in an 
offline manner. At the next stage, they are classified using a k-NN 
classifier. [11] introduces a system for activity monitoring using a 
clustering approach and hierarchical framework. They utilize 
unsupervised learning to categorize a dataset and subsequently 
construct a hierarchy of relationships between clusters. They 

segment the primary recordings by dividing the signal into fixed 
time slices with a 66% overlap. Renevey et al. [12] present a 
technique for activity classification which is used to improve the 
heart rate estimation in a system composed of optical probes and 
accelerometers. Feature vectors are extracted from autocorrelation 
matrices based on data from fixed size segments. In [13] and [14], 
Chambers et al. present classification results of human gesture for 
video annotation and retrieval. To perform segmentation, they 
examine stationary portions of the signal by employing a sliding 
window. The authors assume that the acceleration magnitude is 
very close to the magnitude of gravity for stationary portions; 
hence they assume a model of gravity plus Gaussian white noise. 
They measure the difference between log likelihoods of two 
adjacent windows. A sharp change in the log likelihood 
corresponds to the commencement of a new action/rest.  A 
gesture recognition platform composed of wireless inertial 
measurement units is proposed in [15]. The variance of the data 
over a fixed window is measured as the potential metric for 
activity detection. Periods of activity are determined where the 
variance is greater than a constant threshold value.  
Although all aforementioned techniques have been successful in 
providing a system of physical action classification, they may 
either use a manual segmentation approach to map original sensor 
readings to primitive actions (e.g. [10]) or utilize a special 
purpose auto-segmentation scheme. For instance, the fixed time 
slice techniques used in [11] and [12] provide excellent results 
while avoiding segmentation completely for certain classification 
schemes; but are not appropriate for others. We are investigating 
more general segmentation techniques that are capable of 
integrating with a wide range of classifiers. The technique in [13] 
and [14] does capture entire movements that occur over differing 
intervals, but it depends on specific sensor types and a relatively 
specific posture.  The segmentation scheme in [15] uses a hard 
threshold value and do not take the advantage of activity 
correlation between data streams and sensor nodes. 

Another platform for the classification of human movements is 
introduced by Mathie et al. [16]. Although they can reliably and 
easily distinguish between periods of activity and rest, the 
measurement device they use is selected very specifically. A 
similarity measure for segmenting and classifying motion streams 
is presented in [17]. Motion segments are generated by collecting 
data from primary stream and comparing with predefined 
reference motions by using some similarity measures.  

 

 
 Figure 1. Inertial sensor board attached to a mote 

3. SYSTEM ARCHITECTURE 

We are using BSNs for physical movement monitoring. Each 
sensor node, also called a mote, is equipped with a custom-
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designed sensor board with several inertial sensors as shown in 
Figure 1.  We use the TelosB mote, which is commercially 
available from XBow®. The mote has a microcontroller for 
processing and storage and a radio for communication. Our 
custom-designed sensor board features a tri-axial accelerometer 
and a bi-axial gyroscope. The mote and sensor board are powered 
by a Li-ion battery integrated with each node. The motes sample 
their sensors at 50 Hz and use a TDMA scheme to communicate 
all data to an off-body base station. This sampling rate is 
experimentally chosen to provide sufficient resolution while 
compensating for the bandwidth constraints of our sensor 
platform. The base station relays the information to a PC via USB 
for post-processing.  

  

Figure 2. Node placement of experimental subject  

We collect and synchronize the sensor and video data in 
MATLAB and perform further analysis off-line. Our system 
consists of four sensor nodes arrayed on the body as shown in 
Figure 2. 

4. MANUAL SEGMENTATION 

Manual segmentation can be performed using one of several 
approaches. Logging the time of each action is a form of 
segmentation. Signals can be segmented by synchronizing a video 
to the signals and dividing them based on actions observed on 
screen. It is also possible to segment into actions by directly 
examining the signals and utilizing knowledge of the 
experimental technique. 

 

Table 1. The scenario of daily activities  

Action (initial Position : Lying) 

1. Lie to sit  

2. Sit to stand 

3. Walk to a desk 

4. Grasp a plate  

5. Walk to a dining table 

6. Sit and leave the plate on the table 

7. Start eating  

8. Sit to stand 

9. Walk to a fridge 

10. Pick a glass from the fridge 

11. Drink and leave the glass on the fridge 

12. Walk to the bed 
 

Figure 3. Manual Segmentation: white is rest, gray is action 
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Figure 3 shows a portion of the sensor signals from the four 
sensor nodes for the daily activities and highlights the 
segmentation choices. Each plot in the diagram contains the 
signals from all the sensor nodes for a given sensor type (such Y 
acceleration and rotation around Y). Table 1 shows 12 different 
movements present in our scenario. The segments can be 
distinguished by looking at the video and at the rapid changes in 
the sensor values. 

We use manual segmentation as a ground truth with which to 
compare the results from segmentation. Where the automatic 
segmentation differs, it is considered to be in error. 

5. AUTOMATIC SEGMENTATION 

In the signal processing framework presented here, segmentation 
and classification are completely independent. Therefore for 
segmentation, the morphology of the signal for specific actions 
cannot be utilized, as it is not yet known. Furthermore, as it is 
important to limit inter-node communication, communicating the 
complete sensor readings between nodes is undesirable. We 
introduce a pure signal processing approach to this problem. 
Figure 4 shows the block diagram of our proposed method. It 
consists of three parts. First we calculate the activity level signal 
for each node and then put an adaptive threshold on it to compute 
the segmented signal which shows the activity vs. rest. At the end 
we remove the overly short rests and actions by a transient 
elimination technique. 

 xx

 

Figure 4. The block diagram of automatic segmentation 

5.1  Per-sensor Activity Level 
Each sensor data stream is filtered to provide a signal representing 
the level of activity at any given time.   

The “range” of change in a data stream for a short time interval is 
represented by the standard deviation over the interval:  
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 The window is of size n and is centered on point ix . 

5.1.1 Normalization of Activity level  

The human body is an imprecise machine, therefore even when 
movement occurs primarily on one axis; some activity is typically 
measured on every axis. The activity level is correlated so adding 
the activity levels observed by each sensor will raise Signal-to-
Noise Ratio (SNR), and improve the final segmentation. The 
maximum and minimum activity levels could vary significantly 
between sensors. Normalizing the activity levels will prevent one 
sensor from overly influencing the segmentation. This gain 
normalization should be actively controlled by the surrounding 
activity level to create a consistent normalization for more and 
less energetic actions. This leads us to normalize the activity level 
signal by dividing it by the mean of recent activity levels. This is 
shown in Figure 5. 

 

 

Figure 5. Standard deviation approach 

 

5.1.2 Per-node Activity level  

We calculate the standard deviation of each sensor (a tri-axial 
accelerometer and a bi-axial gyroscope) and add them up for each 
node. The result is a per-node activity level signal. Figure 6 shows 
the activity level signal from one of the sensor nodes for the daily 
movement, as described in Table 1. Corresponding manual 
segmentation has been highlighted on this figure to show that for 
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Figure 6. Activity level signal for the right wrist 
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a number of activities just by looking at the raw signal can detect 
the start and stop. But for some of movements such as movement 
7 and 11, it is difficult to detect the start and stop of the 
movement.  

5.2 Adaptive Threshold  
The activity level signal shows more changes and energy during 
activities. We use this property for our automatic segmentation. In 
human daily activities some actions have more energy than 
others, for example you can compare eating (movement 7) and 
walking (movement 9) in Figure 6. Therefore, a fixed threshold 
will fail to detect all activities. We propose an adaptive threshold 
method for solving this problem. This method is also a standard 
deviation-based approach. We calculate the standard deviation of 

the activity level signal in a window size,aZ , and multiply  byO , 

then compare the activity level signal with this adaptive threshold 
to segment the signal. If the activity level is above the threshold, 
it is considered as an activity, if it is below, it is considered as 
rest.  

5.3 Transient Elimination 
Valid rests and activities have a minimum duration. We use this 
fact to remove the steps with duration smaller than a transient 

time interval, tZ . It means that if the duration of activity in 

activity level signal is less thantZ , we consider it as rest and vice 

versa.  

As the diagram of Figure 4 shows there are three tunable 
parameters that can be adjusted for each node. The effects of 
changing each parameter are studied in the next section   

6. EXPERIMENTS 

In this section, we present our experimental validation of this 
segmentation technique by applying it to experimented data 
representing several daily activities. 

6.1 Experimental Procedure 
For the experiments, four right-hand subjects performed twelve 
movements that are shown in Table 1. The initial position and 
final are lying on the bed with about 2 minutes of activities in 
between. Each subject wore the sensor nodes described above in 

positions shown in Figure 2.  They were placed on the right wrist, 
one on the waist and one on each leg.  

The results were segmented in two ways: manually and using the 
localized standard deviation of sensor activity. Manual 
segmentation is used as the ground truth. Errors in the automatic 
tools are anything that differs from manual segmentation. As each 
node could detect a particular set of activity not all of them, the 
error has been defined only on detected movements for every 
node.  

6.2 Results 
The data collected by our base station were filtered first to 
remove the effect of noise. Manual segmentation was performed 
with the help of the video recorded during data collection. 
Activity  level signals were extracted by calculating standard 
deviation on a moving window of 10 samples over the set of 
sensor data for each node. For the adaptive threshold, we have 

changed the adaptive window size,aZ  , from 20 to 80 samples 

and the constant factor, O , took values of 1, 2, 3 and 4.  We 

considered the effect of the transient time interval, tZ , by 

changing it from 10 to 40 samples.  

Tables 2-5 show the segmentation error corresponding to 
variation of the above parameters for each node. The best choice 
for each has been highlighted. All nodes except right wrist missed 
some movements in detection. The node on the waist couldn’t 
detect movements 7 and 11, while the two legs missed the 
movements 4, 6, 7 and 11 (see Table 1 for the movement names). 
The error values are averaged over the detected movements. 
These values show the difference between the manual and 
automatic segmentation on detecting the start and stop of an 
activity that a particular node could detect. Figure 7 shows the 
segmented signal for the right wrist node. The stars show the start 
and stop of the manual segmentation. From Figure 7, it is obvious 
that the segmentation is accurate for many movements, but for 
others the error is significant. Some of the errors are from 
transients that had been too big for the transient elimination part, 
suggesting that the window size of that should be tuned more 
aggressively. Most of the other errors resulted from separating 
one movement into several movements. For instance, in 
movement 7:  “eating” sometimes the subject performed the 
movement fluidly, so it counted as one movement, and sometimes 
the subject paused, causing the movement to be recognized as 
several actions. The only reason manual segmentation recognized 
it as one action is because we knew it should be one action. If 
these types of errors are removed from the list, the overall error 
rate would be less than the values shown in the Tables 2-5. 

Figure 7. Segmented signal for node on right wrist 
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The sampling frequency is 50Hz, so every sample is equal to 20 
msec. We’ve shown the average errors in time scale and the 
average error percentage of detecting the start and stop of each 
movement in Tables 2-5, then Table 2 shows the best choice for 
parameters will result an average error of 9.1% in detecting a 
particular movement for right wrist. Given that features extracted 
from segmented movements are not significantly affected by 
small deviations of segment start and stop time, the error due to 
segmentation is not likely to cause serious classification error. 

 

Table 2. The error correspond to changing the tunable 
parameters for right wrist 

aZ  O  tZ  Avg. Error Avg.  % 

20 3 40  1.19 sec. 9.6% 

40 3 40  1.23 sec. 9.7% 

80 3 40  2.12 sec. 9.4% 

40 2 40  1.18 sec. 9.1% 

40 4 40 2.00 sec. 9.2% 

40 1 40  1.48 sec. 11.9% 
40 3 20  1.42 sec. 11.8% 

40 3 10 1.50 sec. 11.9% 
 

 

Studying the effects of changing parameters on our method’s 

efficiency shows that by increasing aZ each movement can be 

distinguished separately but it will cause a delay in detecting start 

and stop of each movement.O controls the sensitivity of the 

adaptive threshold. A largerO  will result decrease detection of 
small movements. For transient elimination, the assumption that 
human body can switch from activity to rest or vice versa in time 

interval larger than tZ  lead to failure to segment some small 

movements between main activities.  

For real-time applications, a delay is introduced equal to half of 
each window size. On the other hands increasing the window size, 
will increase computational complexity in each sample time. Thus 
there is a tradeoff between these tunable parameters. 

 
 

Table 3. The error correspond to changing the tunable 
parameters for waist 

aZ  O  tZ  Avg. Error Avg.  % 

20 3 40  0.77 sec. 6.4% 

40 3 40  1.04 sec. 8.3% 

80 3 40 1.78 sec. 10.4% 

40 2 40  0.76 sec. 6.4% 

40 4 40 1.44 sec. 11.5% 

40 1 40  0.80 sec. 6.4% 
40 3 20  1.24 sec. 9.9% 
40 3 10 1.39 sec. 10.7% 

 

 

Table 4. The error correspond to changing the tunable 
parameters for right leg 

aZ  O  tZ  Avg. Error Avg.  % 

20 3 40  2.48 sec. 17.5% 

40 3 40  3.24 sec. 19% 

80 3 40  3.74 sec. 19.6% 

40 2 40  2.12 sec. 17.3% 

40 4 40 4.00 sec. 20% 

40 1 40  1.54 sec. 12.1% 

40 3 20 3.40 sec. 19.5% 
40 3 10 3.45 sec. 19.6% 

 

Table 5. The error correspond to changing the tunable 
parameters for left leg 

aZ  O  tZ  Avg. Error Avg.  % 

20 3 40  2.34 sec. 17.1% 

40 3 40  3.00 sec. 18.1% 

80 3 40  3.86 sec. 19.2% 

40 2 40  2.38 sec. 17.1% 

40 4 40 1.92 sec. 16.9% 

40 1 40  1.77 sec. 13.2% 

40 3 20 3.28 sec. 18.2% 

40 3 10  3.34 sec. 18.3% 
 

7. CONCLUSION AND FUTURE WORK 

In this paper we presented a signal processing model for 
segmenting data streams from inertial sensors into periods of 
activity and rest. This segmentation scheme is based on the idea 
that regions of interest in the signal involve rapid changes the data 
collected by the various sensors. This scheme utilizes the results 
from multiple sensors and nodes to increase accuracy. This 
segmentation is efficient enough to be deployed on sensor nodes. 
Our experimental evaluation highlights both the strengths and 
weaknesses of this technique. Most of the segmentation errors 
involved a single action being segmented as several actions. This 
was generally because a minority of nodes considered it one 
action, while the majority considered it two actions. By setting a 
voting threshold lower than 50% we should be able to decrease 
errors. Additionally, we should test segmentation on subjects in a 
less controlled setting with video to verify the effectiveness of 
this approach in more natural environments.  
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