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ABSTRACT

Monitoring hurman activities usingvearable wireless sensor nodes
hasthe potential to enableamy useful applicationsfor everyday
situations. The long-ten lifestyle monitorng can greatlymprove
healthcare bygathering information about quality of life; aiding
the diagnosis and tracking of certaliseases such &arkinson’s.
The deploynent of an automati@and computationallyefficient
algorithmreduceshe conyplexities involved in the detection and
recognition of huran activities in aistributedsystem This paper
presentsa new algorithmfor autonatic segnentation of routine
humanactivities. The proposed algorithiwan distinguish between
discrete periods of activitgndrest without specificalljknowing
the activity. A finite subset of nodes can detect all human
activities, but each node by itself can onlgtecta particularset

of activities. For local segemtation we choostne parangtersfor
each node that result in the least segmtation error. W
denondrate the effectivenssof our algorithmon data collected
from bodysensor networks for a scenario simulatirggtof daily
activities.
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1. INTRODUCTION

The development of small sems platforms from relatively

inexpensive, commerciallyavalable components hasreated

fascinating new opportunities fordata collection. The sensor
nodes can communicate wirelesslyhave limited storage
capabilities, and are often depémlin networks. These sensor
networks have been used fawide variety sensing tasks from
individual health monitoring to fge-scale environmental sensing.
The sensors measure emvimental variables including
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termperature, hundity, force, acceleration, and heartbeatmiost
applications, a light-weight embedtisensor node is expectts
acquire phgical measirements perform local processing and
storage, and comunicate over alort distance. Sensor networks
that understand human actions anepected to beuseful for
numerousaspectsof everyday life. Human motion recognition
using wireless sensor networksn enploy data from either
environmentalor on-body sensing devices [1]JOne method of
usingenvironmental sensors isdéo processing. The use of video
streans in wireless networks to interpret hamnotion has been
consdered for adsted living applications [2] In contrast,
wearable sensor networks or boslgnsor networks (BSNs) are
built of light-weight sensor platform and can be used to
recognize the actions performed the person wearing them [3]
The sensorscan be mounted on the human body even woven
into the clothing itself [4] Unlike vision-based platforms, BSNs
require no environmental infrastructures and thene less
expensive. Moreover, the signal readings from on-beetysors
are clearer and not biag by environrantal effectssuch aslight
and the background. Thisaes BSNs potentiallynore accurate
than vision frameworks for motion recognition.

For clinical swtens, BSNs offer the unprecedentadility to
monitor patients in a natural tieg for an extended period. For
this application, data reductias critical: a clinician or doctor
cannot examine reams of ddtaasses the patient’'s performance
and health. Inead, the doctor mght prefera summary, such as
“the patient ran three miles on @sday but sleptall Wednesday
She has poor balance in the morning, but after three o’clock her
balance improves considerabBhefell 10 times last week.This
example suggests that the sm should employ pattern
recognitiontechniqueso classify the data into a set of actions.
The BSNs in these settingsust operate for extended periods of
time without communicating with hase station, thereforihe
signal processing and classification must be performesitu.
The limited storage and processing capabilities providanyn
challengego architectof thee g/stens.

Pattern recognition pically involves four steps. First, the data
from the sensorss sent through a series of filters to reduce noise,
apply calibration to the data, ®t Subsequently the data is
partitioned into individual segemts to be classified. Aexanple

is that an inage of a pagef text can be segmented into words or
even letters without knowledge of which letters or words are
preent. After this featuresare extracted fromeach sgment.
Features are chosen to reduthe volume of data without



eliminating relevant informatiorzor instance, to recognize fruit,
the color, diape, andige are relevant featurewhile the rotation
andindividual pixel values are irrelevant. Finallyhe features are
used to clasify the ggments The® clases are labels which
range from individual actions such asalting,” “sitting” or
“walking” to conclusions about hith, such as “erratic heartbeat.”

While image sgmentation has been much-regarchedtopic,
relatively little work has been done for segmation of stream
signals. The most popular approashinclude fixed timeslices
and nanual gmentation. Minual £gmentationis acceptabldor

a twenty minute treadml activity, but for a sensornetwork
deployed for hours, dag/ or evenweeks,automaticsegmentation
is required. Regions of interest ine data stream can be viay
lengths, so a fixed time slice could contain parawfaction, or
potentially several actionsCertain clagfiers, such asthe Hidden
Markov Model (HMM) can utilize fixed tira sliceseffectively
[5], epecially when computatbnally expensive operations such
as eigenvector extraction ando@rier tranforms are used.
However other classifierpopulr for their low processing
overhead suchas k-NN and Adaboost cannot. Therefore, to
enable use of the wides variety of clasifiers, autonstic
classfication capable of accuratelgegmenting sensor readings
into discrete actions and non-actions is necessary

In this paperwe introduce a segmentation technique based on the
notion that regions of interest indata stream correspototimes
when the readings from a sensor change rapdiyjng a short
period of time. A “rest” is diined as a timeduring which the
sensor's values regsim relatively constant over an interval.
Empirically this is true for een seeminglycontinuous actions,
such as walking. We preent a framework for autonatically
segmenting actions in a senssiream. This framework takes

segment the prinary recordingsby dividing the signal into fixed
time dices with a 66% overlap. Renevest al. [12] preent a
techniquefor activity classification which is used to prove the
heart rate estiation in a sgtemcomposedf optical probes and
acceleromaters Feature vectorare extracted frorautocorrelation
matricesbasedon data from fixedize segments. In [13ind [14]
Chamberset al. presnt clasification resits of humangegurefor
video annotation and retrievallo perform segmentation, they
examine stationarportions of tle signal byemploying a sliding
window. The authors assenthat the acceleratiormagnitude is
very closeto the magnitude of gravitjor stationaryportions;
hence theyassume a model gfravity plus Gaussiarwhite noise.
They measure the difference theeen log likelihoodsof two
adjacent windows. A sharp change in the lbgelihood
corresponds to the commencement of a new action/rest. A
gesture recognition platform composed of wireless inertial
measurement units j{groposed in [15] The variance of the data
over a fixed window is measureas the potential metric for
activity detection. Periods of activitgre deterrimed wherethe
variance iggreater than a constant thmekl value.

Although all aforementioned techniques hdeensuccessfuin
providing a sgtem of phgical ation clasification, they may
eitherusea manual segmentation approach to map original sensor
readings to priitive actions (eg. [10) or utilize a special
purposeauto-segmentatioscheme For instance, the fixed time
slice techniques used in [18hd [12] provide excellentresults
while avoiding segmentation comtaéy for certain classification
schemes; but are not approprifde others. We are investigating
more general segmentation techniques that are capable of
integratingwith a wide range of eksifiers. The technique in [13]
and [14]does capture entire mawents that occur ovatiffering
intervals, but it dependsn specifc sensor types and a relatively

advantage of correlation in the observation of an action betweengpecific pogure. The sgmentationscheme in [15] uses a hard

sensor nodes and sensors to increase accubaogw adaptive
method of determining activitin adata stream is explored. It is
based on standard deviatioof sensor data. Finally we
experinentally verify the® techniques bycomparing the results
to our manual segmentation.

2. RELATED WORK

BSNs with inertial sensors havedn used in several applications
suchasfall detection, gait anayys, sport medicine and balance
asessnent, and have receivedush attentionrecently Many
recent wearable syens for activity recognitionplace asingle
type of sensor,typically acceleroraters, in moltiple locations
(anywhere fromtwo to 12) on the body [6, 7]More recent
systens prefer using mitiple motion sensors [8-10]in order to
provide relevant information tmobile users, [9focuseson the
recognitionof activitiesthat are characterized by hand rotion
and an accopanying sound using on-bodsensing. Jafari el.
[10] propose a wearable movemembnitoring platform. The
system consists of lightwejht wireless sensor nodes, each
equippedwith acceleroratersand gyoscopes Sensor readings
are separated into pritive actions bymanual segrentationin an
offline manner. At the nexttage, theyare clasified usng a k-NN
classfier. [11] introducesa ystemfor activity monitoring using a
clustering approach and hierarchical femvork. They utilize

threshold value and do not take the advantafieactivity
correlation between datasams and sensor nodes.

Another platform for the cladfation of human movements is
introducedby Mathie et al. [16] Although theycan reliablyand
easily distinguish between periods aictivity and rest, the
measirenent device theyus is selected very specifically. A
similarity measure for segemting and classifyng motion streams
is presentedn [17]. Motion segrents are generated lopllecting
data from primary sream and comparing with predefined
reference motions bysingsone similarity measures.

Figure 1. Inertial sensor board attached to a mote

3. SYSTEM ARCHITECTURE

unsupervised learning to categorize a dataset and subsequentiWe are using BSNdor physical movement monitoring. Each

congruct a hierarchyof relationships between clusters. They
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sensornode, also called a mote, is equipped with a custom-
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Figure 3. Manual Segmentation: whiteisrest, gray isaction

designed sensor board with several inertial sensors as shown iWe collect and sychronize the sensor and videdata in
Figure 1. W use the TelosB ote, whichis commercially MATLAB and perform further analys off-line. Our system
available from XBow®. The note hasa microcontroller for consistsof four sensor nodes arrey on the bodyas shown in
processing and storage andradio for communication. Our  Figure 2.

cudom-desgned ensor board featurea tri-axial acceleroster

anda bi-axial gyroscope. The mote and sensor board are powered

by a Li-ion battery integrated witbachnode.The motessanple 4. MANUAL SEGMENTATION

their sensors at 50 Hz and lB&DMA schene to comnunicate
all data to an off-bodybase sition. This sampling rate is
experimentally chosen toprovide sufficient resolution while
compensating for the bandwidth constraira§ our sensor
platform The base station relaghe infornation to a PC vi&JSB
for post-processing.

Manual segmentation can be pemfieed using one of several
approaches. Logging the timof each actionis a form of
segmentation. Signals can $gmented bysynchronizing a video
to the signals and dividing e¢im based on actions observed on
screen.lt is also possible to segmt into actions bydirectly
examning the signals and utilizing knowledge of the
experimental technique.

Table 1. The scenario of daily activities

Action (initial Position : Lying)
. Lie to sit
. Sit to stand
. Walk to a desk
. Grap a plate
. Walk to a dining table
. St and leave the plate on the table
. Start eating
. Sit to stand
. Walk to a fridge
10. Pick a glass from the fridge
11. Drink and leave the glass on the fridge
12. Walk to the bed

© |00 |N|O |0 |~ |WI|N |-

Figure 2. Node placement of experimental subject
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Figure 6. Activity level signal for theright wrist

Figure 3 shows a portion of the sensor signals from the four

sensor nodes for the dailactivities and highlights the
segmentationchoices. Each plot in the diagram contains the
signals from all the sensor nodes &given sensalype (suchY
acceleratiorand rotation around Y). Table 1 shows 12 different
movements preent in our senario. The egments can be

distinguished bylooking at thevideo and at the rapid changes in

the sensor values.

We use manual segmentation as a ground truth with wioich
conpare the radts from segmentation. Wiere the autosmtic
segmentation differs, it is candered to be in error.

5. AUTOMATIC SEGMENTATION

In the signal processingameworkpresented here, segmentation

and classification are completelyndependent. Therefore for
segmentationthe morphologyof the signal for specific actions
cannot be utilized, as it is noetyknown. Furtherrare, as it is
important to limit inter-nodeommunication, communicating the
complete sensor readings tlween nodes is undesirable. We
introduce a pure signal processiagproachto this problem.
Figure 4 shows the block diagram ofir proposedmethod. It
consists of three parts. First walculate the activityevel signal
for each node and then put an adaptive threstioltto conpute
the segmented signal which shows the activityrest. At thend
we remove the overly short rests and actions by transient
elimination technique.

Segmented
Signal

Adaptive

Transient
Threshold iminati

Figure 4. The block diagram of automatic segmentation

5.1 Per-sensor Activity Level

Each sensor data streasrfiltered to providea signalrepresenting
the level of activity at angiven time.

The ‘range” of change in a dataeamfor a $ort time interval is
represented bthe standard deviation over the interval:

i+(n-1)/2

Z(Xj —Hy (Xvi))z

j=i—(n-1)/2

1)

(%)= -

where:
i+(n-1)/2

¥ @

N =ie(n-1)/2
,U,,(XJ)—T

The window is of size and is centered on poin; .

5.1.1 Normalization of Activity level

The humanbody is an imprecisenachine, therefore even when
movenent occursprimarily on one axis; somactivity is typically
measired on evenaxis The activitylevel is correlated so adding
the activity levels observed bgach sensor will raiseighal-to-
Noise Ratio (SNR), and ipmove the final segentation. The
maximum ad minimum a&tivity levels could varysignificantly
between sensors. Noatlizing theactivity levels will prevent one
sensor from overly influencing the segrantation. This gain
normalization should be activelgontrolled by thesurrounding
activity level to create a consistent n@ipation for nore and
less energetic actions. THeadsus to normalize the activitylevel
signal by dividing it by the nean of recent activitjevels Thisis
shown in Figure 5.

Normalizer

Local Standard
Deviation

Moving
Average

3

Figure 5. Standard deviation approach

5.1.2 Per-node Activity level

We calculate the tandard deviation of eactensor (a tri-axial
acceleromter and a bi-axial ggscope) and add themp for each

node. The result is a per-node activity level signal. Figure 6 shows

the activity level signal from one of the sensodesfor the daily
movement, as describeth Table 1. Corresponding manual

segmentation fsbeen highlighted on this figure to show that for
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Figure 7. Segmented signal for node on right wrist

a nunber of activities just byooking at the raw signalcandetect
the startand stop. But for somef movements such as movement
7 and 11, it is difficult to detect the start and stop of the
movement.

5.2 Adaptive Threshold

The activity level signal shows more changes and endugyg
activities.We use this propertfor our autoratic segnentation. In
human daily activities some actions have wore energythan
others, for example you can compare eating (movement 7) an
walking (movement 9) in Figure @herefore, a fixed threshold
will fail to detect allactivities.We propose an adaptive threshold
method for solving this problem. This methisdalso a standard
deviation-based approach. We c#dte the standard deviation of

the activitylevel signal in a window sizey, , and nultiply by A,

then conpare the activity level ghal with this adaptive threshold
to segment the signal. If theetivity level is above the threshold,
it is considered as an activjtyf it is below, it is considered as
rest.

5.3 Transient Elimination

Valid rests and activities havenainimum duration. \& use this
fact to renove the steps with duration aiter than a transient
time interval®, . It means that if the duration of activitin

activity level signal is less than, , we congler it asred and vice
versa.
As the diagramof Figure 4 shows there are three tunable

paraneters that can be adjusted for each node. The effects of
changing each parater are tudied in the nextection

6. EXPERIMENTS

In this section, we present oexperimental validation of this
segmentationtechnique byappling it to experimented data
representing several daily activities

6.1 Experimental Procedure

For the experiments, four right-hand subjects performed twelve
moverments that are shown in Table 1. The initial position and
final are jing on the bed with about 2 mites of activitiesn
between. Each subject wore thensor nodes described abave
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postions shownin Figure 2. Theywere placed on the right wtjs
one on the watsand one on each leg.

The results were segmented in two wayanuallyand using the
localized standard deviation of sensor activity. Manual
segmentatiorns used as the grouricuth. Errors in the automatic
toolsare anyhing that differsfrom manual segmentation.As each
node could detect a particular set of activigt all of them, the
error has been defined onbn detected raverents for every
node.

d

6.2 Results

The data collected by our base station were filtefiest to
remove the effect ofioise.Manual segmentation was performed
with the help of the video recorded during data collection.
Activity level signals were extracted bgalculating standard
deviation ona moving window of 10 samples over tket of
sensor data for each node. For the adaptive thresholthawe

changed the adaptive window sizg, , from 20 to 80 samples
and the constant factor] , took values of 1, 2, 3 and 4. We
consdered the effect of the trangent time interval®,, by
changing it from 10 to 40 samples.

Tables 2-5 show the segnation error correspondingo
variation of the above paraers for each node. The best choice
for each has been highlighted. All nodes except right wissed
some movements in detectiohhe node on thevaist couldn'’t
detect movements 7 and 11, ilghthe two legs nssed the
movements 4, 6, 7 aridl (seeTable 1 for the movement names).
The errorvalues are averaged over the detectedvenents
Thee values show the difference betweethe manual and
automatic segmentation on detecting the start and stop of an
activity that a particular node could detect. Figure 7 shthes
segmented signal for the right wirisode. The stars shaive start
and stop of the manual segmertatiFrom Figure 7, it is obvious
that the sgmentation isaccurate for mny movenents but for
others the error is significant. Some of the errors are from
transientghat had been too big for the transient @liation part,
suggesting that the window size of that shouldtureed more
aggressively Most of the othe errors resultedrom separating
one movement into several ovements. For instance, in
movement 7: ‘“eating” sometis the subject performed the
movement fluidly so it countedcis one movement, and sometimes
the subject paused, causing thevement to be recognized as
several actions. The only reason manual segmentatemynized

it as one action ishecaus we knewit should be one action. If
thee typesof errorsare renoved from the list, the overall error
rate would be less than the vadushown in the Tables 2-5.



The sampling frequencis 50Hz,so everysanple is equal to 20
msec. We've shown the average errois time scale and the
averageerror percentage of detecting th@rs and ®p of each
movement in Tables 2-5, thd8rable 2 shows the best choice for
paraneters will result an average error of 9.1% in detecting
particular movement for right wtisGiven thatffeaturesextracted
from segmented movementye not sgnificantly affected by
small deviations of segment dtand stop time, the error dte
segnentation is not likelyto causeserious classification error.

Table2. Theerror correspond to changing the tunable
parametersfor right wrist

@y | A | @ | Avg. Error | Avg. %
20 3 40 1.1%ec. 9.6%
40 3 40 1.23ec. 9.7%
80 3 40 2.13ec. 9.4%
40 2 | 40 1.18sec.| 9.1%
40 4 40 2.0Gec. 9.2%
40 1 40 1.48ec. 11.9%
40 3 20 1.4%ec. 11.8%
40 3 10 1.5Gec. 11.9%

Studying the effects of changg parameters owour method’'s
efficiency shows that by increaing @, each noeverent can be
distinguishedseparatehbut it will cause a delain detecting start
and sop of each ravenent. A controls the sensitivityof the

adaptive thrdsold. A largerd will result decreaseletectionof
small movenents. For transient elimation, the assuption that
human bodycan switch from activityo rest or vice versa in time

interval larger thamw, lead to failure tosegnent sorme small
movenents between @in activities.

For real-time applicatios) a delayis introducedequalto half of

each window size. On the other hands increasing the wistay
will increasecomputational corplexity in each samle time. Thus
there is a tradeoff between tkdsinable paraaters

Table 3. Theerror correspond to changing the tunable
parametersfor waist

Dy | A | @ | Avg. Error | Avg. %
20 3| 40| 0.77 sec. 6.4%
40 3 40 1.04 sec. 8.3%
80 3 40 1.7&ec. 10.4%
40 2 40 0.76 sec. 6.4%
40 4 40 1.44%ec. 11.5%
40 1 40 0.80 sec. 6.4%
40 3 20 1.24 sec. 9.9%
40 3 10 1.3%ec. 10.7%
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Table4. Theerror correspond to changing the tunable
parametersfor right leg

@y | A | @ | Avg. Error | Avg. %
20 3 | 40 2.48sec. | 17.5%
40 3 40 3.24 sec. 19%

80 3 40 3.74sec. | 19.6%
40 2 40 2.12 sec. 17.3%
40 4 40 4.0Gec. 20%

40 1 40 1.54 sec. 12.1%
40 3 20 3.4B%ec. 19.5%
40 3 10 3.45ec. 19.6%

Table5. Theerror correspond to changing the tunable
parametersfor left leg

Dy | A | @ | Avg. Error | Avg. %
20 3 | 40 2.34sec. | 17.1%
40 3 40 3.00 sec. 18.1%
80 3 40 3.86 sec. 19.2%
40 2 40 2.38 sec. 17.1%
40 4 40 1.9%ec. 16.9%
40 1 40 1.77 sec. 13.2%
40 3 20 3.2&ec. 18.2%
40 3 10 3.34sec. | 18.3%

7. CONCLUSION AND FUTURE WORK

In this paper we presented a signal processing model for
segmentingdata streams from inil sensors into periods of
activity and rest. This segmentation scleeis based on the idea
that regions of interest in the signal involve rapid changedatse
collected bythe various sensor$his schera utilizes the results
from multiple sensors and nodes to increamecuracy This
segmentatiornis efficient enough tde deplogd on sensor nodes.
Our experimental evaluation dtilights both the strengths and
weaknesse®f this technique. Mst of the segmentation errors
involved a single action being segmted as several actions. This
was generallybecause a mority of nodes considered one
action, while the rgority considered it two actions. Bsettinga
voting threshold lower than 50% we should be able to decrease
errors. Additionally, we should $&segmentation on subjects in a
less controlled setting with video teerify the effectivenes of
this approach in ore natural environments.
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