
CHALLENGES TO BUILDING BLUETOOTH-BASED

SENSING SOLUTIONS

Chieh-Yih Wan
Intel Corporation

chieh-yih.wan@intel.com

Sai Prasad
Intel Corporation

sai.prasad@intel.com

ABSTRACT
Emerging context aware applications call for new networking

technologies to enable rapid development of integrated solutions

that gather, process and store context from a diverse set of

sensors. We examine Bluetooth in the context of enabling

emerging classes of context aware applications, such as

healthcare, fitness, gaming, etc., using off-the-shelf (OTS)

products. While Bluetooth is widely used today, its applicability

to this new class of applications is not widely understood and

applications that use Bluetooth could suffer from inconsistent

usages and poor performance as a result. We investigate and

report the challenges of implementing solutions that use software

and OTS products based on existing Bluetooth standards. We also

present performance analysis through experimentations to

highlight some of the issues discussed in the paper. Based on our

experience from building Bluetooth based sensing solutions, we

make informed recommendations for modifications in the

Bluetooth standard and highlight areas where new standards are

required.

1. INTRODUCTION
A new class of applications is rapidly emerging around gathering,

processing and storing of context data from a diverse set of

sensors located on-body, on the host platform and in the

environment. Context data can be used to answer questions such

as “where am I”, “what am I doing” and “who’s around me.” The

high level system architecture of these applications often includes

an aggregator associated with a given person which collects data

related to that person from various sensors. Typically, the

aggregator would be implemented on a mobile device, such as a

PDA, Smartphone, or Mobile Internet Device (MID). Unlike most

conventional BSN applications that rely on custom-built

hardware, context-aware applications can benefit from the

proliferation of Bluetooth-based sensing devices available in the

market today that support on-the-go lifestyles for mobile users.

We examine Bluetooth in the context of enabling emerging

classes of context aware applications, e.g., healthcare, fitness,

gaming, etc., using Off-The-Shelf (OTS) products available in the

market today. While Bluetooth is widely used today, it was

primarily designed as a cable replacement, and its implementation

and performance issues in context-aware applications are not

widely understood. The Bluetooth specifications have left several

design issues open to implementation relative to its use as a

networking technology [22]. Most prior work in Bluetooth

research has been focused on developing efficient scatternet

formation strategies to support ad hoc networks [25] [26] [22] or

personal area network (PAN) [27]. Our work is distinct from prior

research in that we focus on the impact of Bluetooth issues on the

application and user experience rather than the network.

The requirements and usage of Bluetooth in emerging context-

aware applications is different from typical usages where

Bluetooth is used to connect to peripheral devices. The aggregator

needs to interact with a constellation of highly diversified sensors,

acquire, aggregate and correlate the context data from these

different sources to make sense of the environment and situation

of the user. The dynamic nature of a constantly changing user

environment imposes additional user and application challenges

around interacting with sensors over Bluetooth. We have

discovered a number of serious issues that are not addressed in

current implementations of a number of OTS Bluetooth sensors

commonly used in the aforementioned application scenarios. We

study the performance impact of some of these issues through

experimentations to highlight the challenges.

The purpose of this paper is two-fold:

1) To suggest the need for modifications in the Bluetooth

standard and implementations, including cases where

existing standard features have not been adopted.

2) To provide useful guidelines to system designers for

developing Bluetooth-based context aware applications.

Note that recently there have been a number of new additions [2]

[3] to the Bluetooth standard that are beginning to address some

of the issues we have identified. In this paper, we consider several

cases: 1) Issues that are not addressed in any version of the

Bluetooth standard, either because the standard does not consider

the issue or the issue is out of scope; 2) Issues that are addressed

in the most recent Bluetooth standard, which has not been widely

adopted (if at all) by device manufacturers; 3) Issues that can be

addressed by other standards, if used in conjunction with

Bluetooth.

The rest of this paper is organized as follows. Section 2 presents a

matrix of Bluetooth features required for emerging context aware

applications and highlights the high level challenges. Section 3

describes in detail the challenges that are related to standards.

Section 4 discusses implementation challenges using existing

tools (SDKs, libraries). Section 5 presents experimental

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

BodyNets’09, April 1–3, 2009, Los Angeles, California, USA.

Copyright 2008 ICST 978-963-9799-41-7 …$5.00.

* Other names and brands may be claimed as the property of others.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

evaluation on some of the challenges described in earlier sections,

followed by a conclusion in Section 6.

2. BLUETOOTH AND CONTEXT-AWARE

APPLICATIONS
Bluetooth was originally designed as a cable replacement to

connect devices such as mobile phone handsets, headsets and

portable computers [4]. Today, due to its pervasiveness, Bluetooth

has been widely used for short-range wireless communication

between a host of electronic devices. The explosive growth in

Bluetooth based products in the past few years has extended the

technology into new application areas, such as connecting mission

critical medical sensors1. The number of new applications and

new usages simply outpaces the development of Bluetooth

standards and implementations.

We present below, a taxonomy of emerging applications centered

around context collection and aggregation.

Table 1 presents a matrix of the characteristics of a class of

emerging applications and the features required to implement

them. The table also highlights the challenges in implementing

these features either due to gaps in existing Bluetooth standards or

issues in the application space. The feature characteristics

presented in the table are color-coded to indicate the degree to

which they are supported in existing Bluetooth standards and

implementations.

The feature characteristics of the emerging applications are:

• Fast Association: Rapidly pair a host with a device

seamlessly, reliably, without user intervention.

• Security: Protect sensor data streams from eavesdropping

and tampering through authentication and encryption.

• Audio: Support hands-free voice interactions.

• Streaming: Support connections that remain open for an

indefinite period of time to stream sensor data continuously.

• Periodic/Batch transmission: Reliable delivery of an

amount of payload that is known a priori.

• Auto Reconnect: Reconnect seamlessly if the connection to

sensors is lost.

• Mixed Master / Slave Mode: Support simultaneous

connections to multiple sensors operating in either master or

slave mode.

The details of these challenges are discussed in later sections of

this paper. In the table, we list the features that would be required

to support applications in different usage scenarios, based on

typical usages for which the applications are designed. For

example, in the Gaming usage scenario, the sensors are often

dedicated and owned by the user for a relatively long period of

time. The requirement for Fast Association between the host and

the sensors is optional because the associations can be setup once

and they remain active permanently or semi-permanently. On the

contrary, the sensors used for Fitness in a Fitness Center will need

to be shared among multiple users, and Fast Association is thus

mandatory in this usage scenario.

1 Note that devices, sensors are used interchangeably in this paper

to refer to the source devices that generate data, and host refer

to the aggregator or receiver of data from the sensors.

Table 1: Feature Matrix for Emerging Context Aware Applications

2.1 Context Acquisition Building Blocks
Context aware applications acquire data from a variety of sources

such as sensors and use an inference process to deduce context.

The acquired data may be rendered, stored locally, or transmitted

to backend servers for further processing. Figure 1 shows the

functional blocks required to acquire context from sensors in a

typical context aggregation framework. Bluetooth is shown as the

primary sensor interface, though in reality, sensor interfaces for

multiple wired/wireless technologies could be included. Several

context aggregation architectures have been developed. miTag

[23] and CodeBlue [24] are two example distributed context

aggregation systems that utilize IEEE 802.15.4 radio technology

for medical sensor networks applications while our work focuses

on Bluetooth.

We highlight some of the challenges to implementing these

functional blocks either due to gaps in existing Bluetooth

standards or due to lack of standards in certain areas such as

sensor data protocols/formats.

Sensors: Sensor data formats are often unique and proprietary to

each sensor (vendor specific). Depending on the sensor type, the

data is either scalar (e.g. Blood Pressure, weight) or vector (e.g.

waveform data from electrocardiogram (EKG), accelerometer).

The Bluetooth pairing process establishes a trusted relationship

between the host and the sensor. Section 3.1.1 describes the

pairing process and issues.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

Bluetooth Hardware: The Bluetooth hardware (chipset)

implements radio and baseband layers that comprise the lower

layers of the Bluetooth communication protocol. Mobile

platforms today are equipped with Bluetooth hardware and the

integration is usually over USB. Some vendors provide integrated

Bluetooth hardware solutions with the higher layers such as

L2CAP, SDP, RFCOMM and all the profiles [1] embedded in the

hardware itself. These are widely used in sensor devices as they

can be easily integrated, typically through a serial interface.

Integrated hardware solutions make it very difficult to update

bugs or errata in the Bluetooth standard. For example, there are

significant changes between version 1.0b and 1.1 specifically to

improve reliability and interoperability. Devices that use an older

version of these integrated chipsets suffer from interoperability

issues, as described in Section 3.1.

Bluetooth Stack: The Bluetooth stack is the set of drivers that

communicate directly with the Bluetooth hardware. There are two

widely used Bluetooth stacks: the Microsoft stack [10] that is

bundled with the Windows operating system and the WIDCOMM

stack [11][14] from Broadcom Corporation. The choice of stack

depends on the Bluetooth chipset installed in the host platform.

Section 4.1 presents the challenges related to Bluetooth stacks.

Bluetooth Library: A Bluetooth library is supplied by the

Bluetooth stack vendor, allowing applications to access services

from vendor’s Bluetooth stack through an API. Bluetooth libraries

are tightly integrated with Bluetooth stacks, and a Bluetooth

library from a vendor will work only with the Bluetooth stack

from that vendor. Section 4.1.2 presents the related issues.

Bluetooth SDK: Commercially available Bluetooth SDKs

provide application portability across platforms and across

Bluetooth libraries/stacks from different vendors. SDKs offer

features such as support for the .NET frameworks, portability

across platforms (Windows and CE), and portability across

vendor libraries. Section 4.2.1 discusses in detail some of the

SDK related issues.

Sensor Modules: Most sensors send data as ‘frames’. The frame

format for each sensor is proprietary and defined by the sensor

manufacturer. Sensor Modules implement the logic to parse the

sensor data stream according to specifications from the sensor

manufacturer. Since individual sensor vendors chose the frame

format and contents, features required to perform error handling,

such as sequence numbers, frame lengths, and robust start and

stop codes, are not always present. Section 3.2 presents a deeper

dive into the lack of sensor data standards issues.

The next two sections detail the challenges in each category.

3. STANDARDS BASED CHALLENGES
A number of standards related challenges arise in implementing

context aware applications based on Bluetooth technology. The

challenges fall into two broad categories: those related to the

Bluetooth standard and those due to lack of standards to represent

sensor data.

The Bluetooth standard has been through a number of major

revisions [4] – from 1.0, 1.0b, 1.1, 1.2, 2.0 to 2.1. Most revisions

are incremental improvements over earlier revisions and are

backward compatible. However, many of the improved features in

1.1 such as, low-power modes, security procedures and role

switching, are not backward compatible with 1.0b [15]. This

section describes challenges related directly to the Bluetooth

standard and data formatting standards.

3.1 Bluetooth Standards
Bluetooth is an actively evolving standard. Most of the OTS

products in the market today are still based on the older versions

1.1 and 1.2. The latest version 2.1 [1] (released July 2007) and the

recently approved (late June 2008) Health Device Profile (HDP)

[2] and Multi-Channel Adaptation Protocol (MCAP) [3] are

beginning to address some of the issues mentioned in this section.

For example, MCAP supports fast reconnection (see Section

3.1.3) and defines a time synchronization protocol for data time-

stamping (see Section 3.1.4) in the sensors. However, issues such

as pairing between a sensor and multiple hosts (see Section

3.1.1.2) are not addressed by the latest version of the Bluetooth

standard. Furthermore, products supporting these new additions

do not exist even today.

The following sub-sections describe some of the major challenges

related to the current Bluetooth standard.

3.1.1 Fast Association
Pairing is a process by which Bluetooth devices establish a trusted

relationship with each other. User interaction is required only

during pairing where the user may have to enter the passkey

manually. Bonding between a host and the peripherals or sensors

can be permanent or temporary depending on the usage.

Permanent bonding applies to dedicated or long-term host-device

associations, e.g., keyboards, mice, or medical devices such as

weighing scales and BP monitors used for home care. Temporary

bonding is used in usages where sensors may be frequently

swapped or paired with multiple hosts on a daily basis and the

associations between host-device pairs are short-lived. Some

devices used in Fitness such as treadmills, fall into this category,

and they are shared among multiple users. The key requirement

Figure 1: Context Acquisition Building Blocks

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

here is for the pairing to be quick, easy and seamless. Prompting

the user for a security pin every time the device is used can be

annoying or other constraints such as lack of an input device can

make it impractical. The next subsections discuss the challenges

to make temporary pairing quick and easy, and suggest

approaches to address them.

3.1.1.1 Device Identification
To pair a device with a host, it has to be identified to the host by

its address. For pairing to be quick, the device must be identified

to the host with minimal user interaction. Woodings, etc., [21]

propose a mechanism to accelerate Bluetooth connection

establishment time between two devices by using an IrDA

connection to exchange device discovery information required to

establish the Bluetooth connection. The approach requires both

devices to be equipped with IrDA capability, a requirement that

likely cannot be met considering most OTS sensors do not support

IrDA. The Bluetooth standard 2.1 [1] lists several association

models that may be appropriate. In the Out of Band association

model, the parameters required for pairing are exchanged through

an out-of-band channel. For example, a barcode on the device

encoded with the address and pin number can be scanned to

initiate pairing through the host application. The Just Works

association model uses a numeric passkey that is never displayed.

The user is merely asked to accept the incoming connection on the

host. These two association models use single-touch processes for

pairing. It should be noted that the Out of Band and Just Works

association models are not a part of the Bluetooth standard prior

to 2.0.

A large number of Bluetooth devices in the market today are

based on versions 1.1 or 1.2 of the standard. They use the Passkey

Entry association model that requires the user to enter a numeric

key on the host. It is important for device manufactures to adopt

Fast Association models for sensors that will be used in critical

applications where host-device associations change frequently.

3.1.1.2 Pairing with Multiple Hosts
When a device is paired with a host, both the device and the host

store the link keys for the association. The stored keys are

subsequently used when the two connect, speeding up the

connection process. However, a given device typically limits the

number of link keys that can be stored, due to resource

constraints. Some devices allow pairing with only one host at a

time and once they are bonded, they stop responding to device

inquiries from other hosts, i.e., they become non-discoverable.

Others store link associations with more than one host. The user

has to go through the pairing process, potentially with different

steps, under different conditions. For instance:

1. When a new association is needed between a device and a

host, the user has to go through the normal pairing process.

2. When the device runs out of room to store additional link

associations, some previous associations on the device have

to be removed to make room for the new ones before going

through the normal pairing process. The removal of previous

association(s) on the device can either occur automatically

when a new association is added, or may require the user to

press one or more buttons on the device for an extended

period of time. In both cases, when the previously bonded

hosts need to talk to the device, the user will need to go

through the pairing process again because their original

associations have been removed as a result.

Because these two cases require different procedures, and it is

difficult for the user to know whether or not the device can accept

additional link keys, user confusion and frustration can result.

Pairing may also be challenging for devices based on legacy

versions of the Bluetooth standard (pre 1.1). If such a device is

already bonded to host A, the user pairs it with host B, and then

tries to connect or pair it with host A again, connection or pairing

may fail indefinitely. This is because mutual authentication is not

enforced in legacy versions of Bluetooth [15]. If an old link key is

reused at one end, pairing/connection will fail because the keys do

not match. The only workaround is for the user to delete the

device from the list of known devices (e.g., via the Windows

Bluetooth Manager2) on the host and re-try pairing.

3.1.2 Master versus Slave Mode
Bluetooth devices operate in one of two modes: Master or Slave.

Communication between Bluetooth devices is based on the Time

Division Duplex (TDD) scheme [1] in which a Master provides a

common clock and frequency hopping pattern for sharing the

physical channel. Slaves synchronize to the Master in time and

frequency by following the Master’s hopping sequence. The

device that initiates the connection (paging) becomes a Master,

and the paged device becomes a Slave. Bluetooth-enabled sensors

operate either in master mode or slave mode depending on the

targeted use cases.

3.1.2.1 Master Mode
Typically, a device that collects a small amount of data

sporadically or on an on-demand basis operates in the master

mode enabling simpler and more efficient power management. A

good example is a blood pressure (BP) monitor device. A BP

monitor takes a measurement either when the user presses a

button or automatically at regular intervals. By operating in the

master mode, the device can save power by keeping the Bluetooth

hardware powered off and only power it on to upload data to a

host after a measurement has been taken. Note that in this case,

the sensor controls the timing for connection assuming that either

1) the host platform is always ready to establish the

communication link for the data upload, or 2) the sensor platform

has enough memory to store the collected data until the host is

available for upload. Note that in the former case, the host

platform must support the Bluetooth Scatternet feature to

communicate with more than one master sensor simultaneously.

3.1.2.2 Slave Mode
Data streaming devices such as accelerometers and Pulse-

Oximetry (SpO2) sensors often operate in slave mode while

delegating timing and control of connections to the host platform.

This is done for several reasons:

Real-time requirement: The host software must be ready to

receive data from the sensor in real-time when data collection

starts. An example is a host application displaying EKG or SpO2

photoplethysmographic (PPG) waveform in real-time. As a result,

it makes sense for the host to initiate and control the connection to

the device.

Storage: Due to higher data rate and continuous data collection

processes, resource-limited sensor platforms often do not have

enough memory to store the collected data for an extended

2 This workaround is known to work on Microsoft Windows XP.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

amount of time. These sensors often remain dormant (not

collecting data) until they are activated by the host.

Sensor configuration: Streaming devices such as EKG sensors

often support multiple operation modes and need to be configured

with specific parameters before data can be collected. Such

parameters include sampling rate, the number of analog-to-digital

(ADC) channels and report frequency. The setting of these

parameters often has UI or data analysis implications and should

be configured by the host software during start-up.

3.1.2.3 Supporting Mixed Mode
Context-aware applications often need to support multiple sensors

operating in either mode (master or slave) at the same time. The

Bluetooth standard supports mixed mode operations on a device

through Scatternet and Master-Slave-Switch [1]. However,

depending on the chipset used and HCI firmware version, not all

Bluetooth hardware supports Scatternet and role switching

features. The issue is mainly due to ambiguities in Bluetooth

version 1.0b, as well as incompatibility between 1.0b and later

versions [15]. While most PC and handheld devices use hardware

that support Bluetooth versions 1.1 or later, a good portion of the

medical sensors in the market today still use legacy Bluetooth

chipsets. This creates a challenge on the host to support both

master and slave sensors at the same time. Until all sensor

manufacturers comply with the latest standards, application

developers will require workarounds such as using only Slave

sensors or working with sensor manufacturers to modify their

firmware to operate their sensors in the slave mode.

3.1.2.4 Power Management
Bluetooth supports multiple low power modes, i.e., Standby,

Park, Hold and Sniff mode, but only in the connected state.

Before a device joins a piconet, the most viable low power mode

is to turn off the radio transceiver. For devices that operate in the

master mode, turning off the radio works well as they control

when connections are made. However, devices that operate in the

slave mode wait for connection from a master (e.g., the host

platform) and must keep the radio on until they are paged and

connection is established. For battery-powered sensors, keeping

the radio powered on could drain the battery quickly. A Bluetooth

device that is discoverable must regularly perform an inquiry scan

before it joins a piconet, and inquiry scan is one of the most

power consuming operations. It is therefore common for a slave

sensor to turn off inquiry scan and become non-discoverable once

it has been paired (or bonded) with another device, and would

require an out-of-band method (Section 3.1.1.1) to allow a new

host to bond and connect to the sensor without inquiry.

3.1.3 Auto Reconnect
Auto-reconnect minimizes data loss, particularly for sensors that

send streaming data such as 3-axis accelerometer and EKG

waveforms. A device may disconnect or be unable to send data

due to various reasons such as poor signal quality caused by body

absorption, RF interference, going out of range, etc., or simply

because the device runs out of battery or the user turns off the

device. The Bluetooth specification defines a parameter called the

Link Supervision Timeout (LST) that controls the amount of time

an active connection is monitored for missing packets. If no

baseband packets are received for this duration (default is 20

seconds), the link is disconnected. However, there are sensors that

will stop sending data if they lose connectivity to the host more

than a few seconds because of limited buffer space or other

resources. When this happens, the aggregator has to disconnect

from the sensor and establish a new connection. Packet loss due to

reconnection latencies can significantly impact data analysis

especially in critical care applications that use data from sensors

such as EKG.

The setting of the Link Supervision Timeout should be carefully

chosen. If the value is too large, the Bluetooth stack may take a

long time before notifying the application that the link has been

disconnected, where disconnecting and reconnecting sooner

would have reestablished the data streams. If the value is too

small, the Bluetooth stack may disconnect from the device

prematurely, resulting in unnecessary data loss.

The Health Device Profile [2] that uses the MCAP [3] protocol

solves this problem through a reconnect feature that allows an

application to quickly reestablish disconnected channels without

the overhead associated with a new connection. The application

can set the Link Supervision Timeout to a small value, for rapid

notification, and use the reconnect feature to quickly reestablish

the connection. To enable this feature, the device has to support

the new standard and maintain enough state to allow

reconnection. However, this feature may not work across sensor

reset, e.g., for battery replacement. Section 5.2 presents a

comparative analysis of the overheads associated with

disconnecting and connecting versus using the reconnect feature.

3.1.4 Data Time Stamping
Accurate time-stamping of sensor data is crucial in context aware

applications not only for displaying data, e.g., showing waveform

or trends, but more importantly to correlate time-sequence data

from different sensors for inference and/or fusion purposes.

Sensor devices today often do not have a real-time clock to keep

track of wall clock time. Even if they do, clocks drift over time

(differently on different devices) and the time differences between

different devices makes correlating time-sequence data extremely

difficult depending on the drift ranges and accuracy needed. In

order to use a common time-reference across different data

streams, most applications today timestamp data packets only after

they arrive on the host platform. However, time-stamping data on

the host has limited accuracy due to a number of factors such as

transmission latencies due to retransmissions and processing

delays due to system load. In our application, the time jitters

introduced by these variables on a relatively powerful PC

platform (ThinkPad T61) can skew the data timestamps enough to

completely distort waveforms such as the PPG waveform from a

pulse-ox sensor, as shown in Section 5.1. As a result, accurate

time-stamping of sensor data should be done at the point of

acquisition on the sensor device.

To address the aforementioned problems, it is necessary to time

synchronize all Bluetooth connected devices within a piconet.

Today, a number of time synchronization protocols are available

[16] for sensor networks that can achieve micro-second accuracy.

However, those protocols often are hardware dependent and/or

topology dependent. Given the diversity of the sensor platforms in

context aware applications, fine-tuning those protocols on each

sensor platform is a significant challenge. On the other hand, each

Bluetooth enabled device already has a synchronized clock in the

Bluetooth implementation. As previously mentioned, Bluetooth

slaves within a piconet synchronize to the Master in real time with

high accuracy. It is thus logical to leverage the Bluetooth clock

for data time-stamping purposes. Similar approaches have been

proposed in [28] [29]. It should be noted that the Bluetooth Clock

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

has no relation to the time of day but just provides the “heart

beat” of the Bluetooth transceiver [1]. A higher layer protocol is

needed to track and map the “heart beat” to time of day. The

recently approved MCAP [3] defines a Clock Synchronization

Protocol (CSP) exactly for this purpose. While the CSP is

optional in MCAP, and products that support MCAP have yet to

be developed, we recommend sensor manufacturers include CSP

for all sensors that generate time sensitive data.

3.2 Sensor Data Standards
As mentioned in Section 2.1, currently there are no commonly

adopted standards for sensor data protocols and sensor data

format. Each sensor manufacturer defines a set of proprietary

protocols and data format, and therefore proprietary drivers are

needed on the host to format and interpret the data from a specific

sensor. Most OTS sensor products today are bundled with demo

software to communicate with the sensor and interpret the data.

However, it is very difficult and often impossible to reuse the

demo code for integrating these sensors with a custom

application. Developers often resort to writing custom code for

each supported sensor device according to the specifications

supplied by the sensor manufacturer. The redundant effort in

debugging and unit testing the custom code unavoidably incurs

additional development time and cost.

To facilitate genuine interoperability between data sources

(sensor) and recipients of device application data (host), there is a

need for a standard that defines a base data protocol, command set

and device data formats for a diverse set of devices needed in

context-aware applications. Such a standard could minimize the

need for proprietary drivers and facilitate code reuse from

different vendors. The IEEE 11073-20601 Data Exchange

Protocol [17] is a standard under development for this purpose. It

attempts to solve the issues mentioned above, in the medical

space. The standard defines a common framework for making an

abstract model of personal health data available in transport

independent transfer syntax to support logical connections

between medical devices. However, the standard focuses only on

medical usages and is still only a draft, unavailable to anyone

outside of the working group.

We present one possible approach that can be applied to context

aware systems in general. We address the data format issues

(Section 3.2.2) by creating template objects that provide a set of

common data representations of sensor data for various classes of

data types, e.g., EKG waveform type, SpO2 scalar type, 3-Axis

acceleration type, etc. We also abstract common sensor

management features, e.g., connect/disconnect, sensor errors and

system resources representations, etc., through a set of well

defined interfaces that encapsulates device specific protocols in a

thin layer of middleware. The next subsection focuses on enabling

a common sensor management framework that is independent of

sensor hardware.

3.2.1 Metadata and Sensor Management
As the diversity and the number of sensors increases, managing,

maintaining and troubleshooting sensor related problems could be

a daunting task for the average user. It is reasonable to see the

high value of generic sensor management software modules that

can manage sensors without requiring them to interpret

proprietary sensor data. Today, device status is typically

embedded in sensor data packets as device specific status bits.

System resource information such as battery level and memory

usage as well as generic errors such as wire disconnected, are

common among most, if not all of the sensor platforms. It is thus

beneficial to abstract out the common elements of device

information and formalize them into device independent metadata

that can be interpreted by generic sensor management software

modules.

The metadata idea can be further generalized to eventually

support a plug-n-play sensor framework. Analogous to USB

devices and usages, when the user connects to a new sensor, the

host management software would be able to query and acquire the

device information, vendor information, device classes, device

data types, etc. using standardized metadata, and load the

corresponding sensor driver automatically, perhaps even

download the required driver from the Internet. Note that, the

newly adopted HDP coupled with the MCAP and the drafted

IEEE 11073-20601 Data Exchange Protocol promises a similar

solution for medical applications.

3.2.2 Sensor Data
All the sensors in the market today use proprietary data formats.

Application developers have to develop custom code to parse data

streams in the proprietary formats. Some of the proprietary data

formats used by sensors today lack sufficient support to reliably

detect missing or corrupted packets through mechanisms such as

sequence numbers or CRC.

3.2.3 Common Data Standards
The lack of common standards to represent sensor data makes

sensor integration a difficult task. The problem can be addressed

at two levels. First, at the sensor level, a standard needs to be

adopted to represent the packets in the raw data streams from the

sensors. This will enable developers to implement sensor modules

that can acquire data from any sensor irrespective of the type of

the sensor or the manufacturer. Second, at the application level,

there should be a standard way of representing data that is

common to all sensors that belong to a specific class. E.g., all BP

sensors at the very least send the systolic and diastolic readings.

Applications often do not care about the raw data streams but only

the context that the data actually represents. A common data

representation separates sensing context from sensors

(hardware/vendor) and supports application logic that is hardware

independent. If the raw data from each sensor were converted to

the standards-based format for the corresponding sensor class,

applications can be easily extended to handle sensors without any

additional code.

4. INTEGRATION CHALLENGES
This section describes the software issues and challenges that

developers are likely to encounter when dealing with Bluetooth

stacks, Bluetooth libraries and 3rd party Bluetooth SDKs.

4.1 Bluetooth Stack/Library
Bluetooth stacks are tightly coupled with the Bluetooth chipset

integrated on the host platform. Depending on the chipset,

switching between stacks is sometimes possible though it is not

easy.

4.1.1 Support for Hands-free Headsets
The stacks differ in the features they support. The WIDCOMM

stack from Broadcom supports more profiles than the Microsoft

(MS) stack (e.g., the MS stack does not support the Hands-Free

profile under Windows XP, while the WIDCOMM stack does).

Switching from the MS stack to the WIDCOMM stack is possible

only if the WIDCOMM stack supports the Bluetooth chipset on

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

the host platform, otherwise the Bluetooth hardware itself may

need to be replaced. There is also a limitation in the number of

Bluetooth headsets that the stacks support due to the number of

synchronous channels that are supported by the Bluetooth

standard.

4.1.2 Bluetooth Libraries
Bluetooth libraries are supplied by the Bluetooth stack vendor and

are typically available as free downloads. They provide functions

to access the vendor’s Bluetooth stack. The interface exposed by

the library is proprietary and each vendor’s library will only work

with the Bluetooth stack from that vendor. An application that is

linked to a specific vendor’s Bluetooth library will not work on a

host platform that has a Bluetooth stack from another vendor. To

make the application portable across vendor libraries, a developer

would have to implement a software abstraction layer above the

vendor libraries that insulates the application from the vendor-

specific interfaces. These factors put an additional burden on the

developer, increasing development costs and time-to-market.

Commercially available SDKs partially solve this problem as

discussed in the next section.

4.2 Bluetooth SDK Libraries
Bluetooth SDK libraries provide a layer of abstraction above the

Bluetooth vendor libraries and make it easy to develop

applications that are portable across Bluetooth stacks from

different vendors. Several commercial Bluetooth SDKs are

available. Table 2 provides a feature matrix for common

Bluetooth SDKs.

4.2.1 Problems with SDK Libraries
Though SDKs ease the burden on the developer, they have

inherent problems. The interfaces exposed by SDKs are

proprietary and not compatible with each other. This is due to a

lack of standard interface definitions. SDKs typically support

specific Bluetooth stacks (e.g., Microsoft and WIDCOMM), or

only provide features common to all supported stacks. The

richness of features available in the individual Bluetooth stacks is

thus lost. Since SDKs are not supported by hardware vendors,

bugs such as data loss are common when communicating with

specific devices. This may be due to internal buffering in the

SDKs. There are additional licensing cost associated with SDK’s

as very few of them of them are free.

Applications should be designed with the flexibility to allow

switching SDKs if necessary. A switch may be necessary due to

various reasons such as new requirements that are not supported

by the SDK that the application is currently using, or lack of

support in the SDK for the Bluetooth stack on the target platform.

A standard application-level interface for Bluetooth SDKs will

allow developers to easily migrate applications across SDKs. The

standard could include a core set of commonly used functions to

communicate with sensors such as connect, pair, read and write

data etc, and allow for extensions to support features unique to

individual sensors. A similar approach has been used in the

Wireless Extensions for Linux [20] which extends the core

networking interface to wireless networking devices. The Wireless

Extensions allows the developer to communicate to diverse

networking devices in a standard and uniform way.

5. EXPERIMENTAL EVALUATION

5.1 Data Time-stamping
To understand the performance of time-stamping data on the host

platform (see Section 3.1.4), we examine the impact of time jitter

introduced by the host through experimentations. A PulseOx

sensor (Nonin 4100 [18]) generates data at 75 samples/sec and

sends a data frame consist of 25 samples every 333 ms to a PC

(2GHz dual-core CPU, 2GB RAM, Windows XP). The PC

software time-stamps the data frame upon receiving it from the

Bluetooth stack. We obtain the timestamp skew by calculating the

difference between the expected timestamp of a data frame

estimated based on the sampling rate and the receive time of the

first data frame, and the timestamp generated by the host software.

Figure 2 presents the probability distribution of the timestamp

skews measured on a host with the WIDCOMM stack and

Microsoft stack. We collected data for several 15-minute runs

performed at different times with the same setup. For space

considerations, only data from one run is shown in the figure

(each run resulted in a similar distribution). In the plot, negative

values indicate the time lag of the timestamps in milliseconds,

while positive values indicate that the timestamps are getting

ahead due to the time jitters in operations such as buffering and

data transmissions. As shown in the figure, a large portion of the

timestamping errors, i.e., 63% for MS stack, 90% for WIDCOMM

stack, are time lags or delay. The time skews range from -1600ms

to 2000ms. The WIDCOMM skew is heavily distributed around -

800ms while MS skews are more uniformly distributed around -

200ms. It is interesting to note that different Bluetooth stacks

impact timestamp performance differently. Overall, in our setup,

the MS stack introduces less time jitter than the WIDCOMM

stack. As shown in the figure, more than 60% of the timestamp

skews are less than 400ms on MS stack while on WIDCOMM

more than 80% of the timestamp skews are larger than 400ms.

Note that MS Windows is not a real-time OS, hence a large part

of the time jitters can be attributed to the OS scheduling and the

interactions between the OS and the Bluetooth stacks. Other

factors such as sensor hardware specification, data encoding

scheme and transmission rates also impact the time-stamping

performance on various levels based on our experiments with

different type of streaming devices. The result highlights the need

to support accurate time-stamping on the device that generates the

Table 2: Feature Matrix for Bluetooth SDKs

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

data to eliminate the latencies introduced at different layers of the

system.

5.2 Reconnection and Link Supervision Timeout
A number of context aware applications interact with on-body

sensors. Prior research has shown that on-body sensor

communication is highly sensitive and dependent on the relative

positions of the sensors and aggregator [19]. Sensors frequently

lose connectivity to the aggregator, and the disconnect time

periods may vary from under a second to minutes.

During periods of intermittent connectivity, the application may

need to disconnect and reconnect to the sensors to restore data

streaming. As discussed in Section 3.1.3, the Link Supervision

Timeout (LST) defines the length of time the Bluetooth stack

monitors a link for data before disconnecting the sensor.

Overheads due to disconnect and reconnect latencies can be

reduced by choosing optimal values for the LST. Figure 3 plots

the overhead as a function of the LST. The overhead is calculated

by taking the ratio between the data lost due to the

disconnect/reconnect latencies and the net lost during the link

vulnerable period. Note that the latencies include processing delay

in OS, application and the Bluetooth stack. In our application, the

averages disconnect/connect delay was measured to be ~1.5

seconds each. Note that the overhead, as we define it, is

independent of the sampling frequency of the sensor. To quickly

detect disconnection, a smaller LST is preferable. However, as

shown in Figure 3, the overhead for LST in the sub-second range

is significantly larger than the rest of the values. Specifically, the

overhead levels off at around 3.5 seconds, which marks an

optimal LST that balance the tradeoff between overhead and

quick disconnection detection. Figure 3 also shows the overhead

assuming the MCAP reconnect feature is supported. Assuming the

reconnect delay in MCAP is 100 milliseconds, the plot shows that

the data loss can be reduced significantly and the LST can be as

low as ~500 milliseconds.

6. CONCLUSION
Emerging context aware applications often utilize a constellation

of OTS sensors for making sense of the environment and situation

of the user. As the diversity and number of sensors increases,

system designer and developer are facing a multitude level of

challenges in integrating these sensors into their solution. Our

contributions in this paper are three-fold:

1) We investigate and report the challenges and solutions of

using the existing Bluetooth standard and implementations to

support rapid development of classes of context aware

applications.

2) We provide useful guidelines and experimental evaluation

results to system designers for developing future context

aware applications.

3) We also recommend specific modification of Bluetooth

standards and implementations, including calls for sensor

manufacturers to revise current practices in cases where

existing standard features have not been adopted.

7. ACKNOWLEDGMENTS
The authors wish to thank Robert A. Lowe (M.D., M.P.H.), Jim

Bryan (M.D), Merlin Curry (EMT-P), Richard Harper (M.D.,

M.S.), Ritu Sahni (M.D., M.P.H.), Tim Seidel (EMT-P) and

Robert Norton (M.D.) for their valuable input in understanding

the communication requirements for clinical applications. We also

thank Mark Yarvis and the reviewers for their insightful

comments that helped to improve the quality of the paper.

8. REFERENCES
[1] Bluetooth SIG, “Bluetooth Core Specification 2.1 + EDR”

http://bluetooth.com/NR/rdonlyres/F8E8276A-3898-4EC6-

B7DA-E5535258B056/6545/Core_V21__EDR.zip

[2] Bluetooth Medical Devices WG, “Health Device Profile”

http://bluetooth.com/NR/rdonlyres/F507EB36-BAB6-4A2F-

8121-082D0C2A493A/7759/HDP_SPEC_V10.pdf

[3] Bluetooth Medical Devices WG, “Multi-Channel Adaptation

Protocol”.

http://bluetooth.com/NR/rdonlyres/C04E081E-7E85-4E51-

9C4D-3624A07E6715/7760/MCAP_SPEC_V10.pdf

[4] Bluetooth SIG Website.

http://www.bluetooth.com/bluetooth/

[5] In The Hand Ltd, 32Feet.NET Bluetooth SDK Website.

http://32feet.net/

[6] Franson Technology AB, BlueTools SDK Website.

http://franson.com/bluetools/

[7] High Point Software, BTAccess SDK Website.

 http://www.high-point.com/

Figure 2: Cumulative Distribution Function (CDF) of

timestamp skews

Figure 3: Optimizing Link Supervision Timeout

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

[8] Sybase iAnywhere , iAnywhere Blue SDK Website.

http://www.sybase.com/products/allproductsa-

z/mobiledevicesdks/bluetoothsdks

[9] IVT Corporation, BlueSoleil PC Platform SDK Website.

http://www.bluesoleil.com/index.asp

[10] Microsoft Corporation, Microsoft Bluetooth Stack Website.

http://msdn.microsoft.com/en-us/library/aa938547.aspx

[11] Broadcom Corporation, WIDCOMM Bluetooth Stack

Website.

http://www.broadcom.com/products/bluetooth_update.php

[12] Toshiba, Toshiba Bluetooth Stack for Windows XP/Vista

Website.

http://www.csd.toshiba.com/cgi-

bin/tais/support/jsp/askIris.jsp

[13] MindTree Ltd, EtherMind PC Website.

http://www.mindtree.com/randdservices/research/ethermind_

stack_profile.html

[14] Broadcom Corporation, BTW SDK Website

http://www.broadcom.com/products/bluetooth_sdk.php

[15] J. Bray and C.F. Sturman, “Appendix: Bluetooth 1.1
Updates”, in Bluetooth – Connect Without Cables, Second

Edition, Prentice Hall, 2002.

[16] B. Yener and F. Sivrikaya , “Time Synchronization in Sensor
Networks: A Survey”, IEEE Network Magazine, vol. 18,

issue 4, pages 45-50, July/August 2004.

[17] IEEE Std 11073-20601 ™- 2008 Health Informatics -

Personal Health Device Communication - Application Profile

- Optimized Exchange Protocol - version 1.0 or later

[18] Nonin Medical – “SpO2 Solutions”
http://www.nonin.com/productsList.asp?PageID=2000&sec=

1&sub=0

[19] R. Shah, L. Nachman and C-Y. Wan, “On the performance

of Bluetooth and IEEE 802.15.4 radios in a body area

network”, in Proc of BodyNets 2008.

[20] Jean Tourrilhes, “Wireless Extensions for Linux”,

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linu

x.Wireless.Extensions.html

[21] R. W. Woodings, D. D. Joos, T. Clifton and C. D. Knutson.

“Rapid Heterogeneous Ad Hoc Connection Establishment:

Accelerating Bluetooth Inquiry Using IrDA”, in Proc of

Wireless Communications and Networking Conference 2002.

[22] R. Guerin, E. Kim and S. Sarkar, “Bluetooth Technology
Key Challenges and Initial Research”, in Proc of SCS

Communication Networks and Distributed Systems Modeling

and Simulation CNDS 2002.

[23] T. Gao, C. Pesto, M. Welsh, etc., “Wireless Medical Sensor

Networks in Emergency Response: Implementation and Pilot

Results”, in Proc of IEEE International Conference on

Technologies for Homeland Security 2008.

[24] K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj, A.
Clavel, V. Shnayder, G. Mainland, S. Moulton, and Matt

Welsh, “Sensor Networks for Emergency Response:

Challenges and Opportunities”, in IEEE Pervasive

Computing, Special Issue on Pervasive Computing for First

Response, Oct-Dec 2004.

[25] M. Gerla, R. Kapoor, M. Kazantzidis and P. Johansson, “Ad
hoc Networking with Bluetooth”, in Proc of WMI'01, Rome,

Italy, July. 2001

[26] S. Jung, A. Chang and M. Gerla, “Comparison of Bluetooth
Interconnection Methods using BlueProbe”, in Proc of The

Second International Workshop On Wireless Network

Measurement (WiNMee 2006), April 2006.

[27] P. Johansson, M. Kazantzidis, R. Kapoor and M. Gerla,
“Bluetooth: An Enabler for Personal Area Networking”, in

IEEE Network Magazine, September. 2001.

[28] L. L. Bello and O. Mirabella, “Clock Synchronization Issues
in Bluetooth-based Industrial Measurements”, in Proc of

IEEE International Workshop on Factory Communication

Systems 2006, June 2006.

[29] M. Ringwald and K. Romer, “Practical Time
Synchronization for Bluetooth Scatternets”, in Proc of

Fourth International Conference on Broadband

Communications, Networks and Systems 2007.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6022
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6022

