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ABSTRACT
We report in this paper on a novel modeling and simulation
approach to predict orientation errors of garment-attached
sensors and their effect on posture classification. Such errors
occur frequently in smart garment implementations and can
reduce sensor information quality for movement and posture
recognition. A kinematic model of the human upper-body
was developed to simulate upper limb postures and the out-
put of virtual 3D acceleration sensors. The model was en-
hanced with a statistical approximation of garment-related
orientation errors. We derived this model from acceleration
sensor deviations between skin- and garment-attached units.
The feasibility of our body model and the garment-attached
sensor deviation was validated in experimental data. We
compared the classification performance for ten posture types
that are frequently used in shoulder rehabilitation. In a val-
idation set of 7 participants we observed similar classifier
confusions and a relative error of 2.6% (SD:±3.2%) between
simulation and experiment. We utilized the model to esti-
mate classification performance for further simulated textile
error distributions. Our simulations showed that classifica-
tion performance depends on low deviations of an acceler-
ation sensor at the lower arm, while a sensor at the upper
arm was less critical. Moreover, we included magnetic field
sensors in our simulation. With the help of this additional
modality our posture classification performance increased by
18%. We conclude that simulation of skin- and garment-
attached sensors is a feasible approach to expedite design
and development process of smart garments.

1. INTRODUCTION
Smart garments provide seamless integration of sensing and
processing elements in textiles that enable new fields for per-
sonalized services and support [13]. Movement and posture
monitoring is a vital application of smart garments. Various
smart garment implementations have been proposed for this
task, e.g. [2, 5, 7, 9, 18].

Especially for garments intended to be worn for a full day,
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unobtrusive fitting and attachment are essential prerequi-
sites for wearer acceptance [6, 10]. Nevertheless, current
smart garments used for movement and posture monitoring
require a tight fit and precise alignment of garment-attached
sensors to body parts [12,14,17]. While this setup is feasible
and accepted for expert-supervised evaluations, tight fitting
reduces wearing comfort. Moreover it cannot be maintained
for unsupervised activity monitoring, as for example in un-
supervised rehabilitation training of a patient.

While loose fitting garments [7] overcome these restrictions,
they could record unreliable orientation data due changes in
garment alignment relatively to the wearer’s skin. Direction
and displacement of alignment-changes depend on a num-
ber of aspects, including type and mechanical parameter of
the garment, fitting, considered body position, and involved
movements. First approaches to tackle sensor displacement
have been proposed using heuristics and optimizations for
sensor-derived features [11] and classifiers [8]. A descrip-
tion of garment-skin alignment for body postures has, to our
knowledge, not been attempted. However, it would repre-
sent a vital basis to estimate sensor orientation errors. Infor-
mation on these orientation errors allow to determine their
impact in particular configurations of garments, fitting, and
activities.

This paper provides the following contributions:

1. We introduce a combined model of upper limb kine-
matics and sensor operation, to simulate upper-body
limb postures. The model was validated against hu-
man performance of shoulder and elbow postures cov-
ering five degrees of freedom (DOF).

2. A statistical model for predicting orientation errors of
garment-attached sensors is introduced. We derived
the model from orientation errors measured between
acceleration sensor at body skin and the garment. In
our evaluation of the model, we compared the rehabil-
itation posture classification of predicted and actual
experimental data.

3. Using the validated models we present an exploratory
analysis of classification performances for further sim-
ulated orientation error distributions. Moreover, we
included a model of magnetic field sensors in our simu-
lation and report on particular improvements achieved
in combination with acceleration sensors.
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Figure 1: Approach to model and simulate body postures and garment-related orientation errors.

For our validation we selected postures from shoulder and
elbow rehabilitation, since smart garments are a promising
support tool in movement rehabilitation [7, 14].

2. TERMS AND OVERVIEW
In order to model and simulate garment-related alignment
changes during postures we developed a two-step approach.
In the first step a kinematic upper-body model was used to
calculate the orientation of upper-limbs, given a parametric
description of postures by joint angle configurations. Sub-
sequently, these body segment orientations are translated
into outputs of virtual sensors using according sensor mod-
els. This sensor model incorporates specific properties of a
selected sensing modality, e.g. the operation concept of an
acceleration sensor.

In a second step, an orientation error model was derived to
describe garment-related alignment changes that affect at-
tached sensors. The orientation error model is configurable
as it depends on the garment fitting, type and position of
sensors, and the intensity of expected movements. We used
the orientation error model to modulate outputs of the pre-
vious body-sensor modeling step.

Figure 1 illustrates the individual modeling steps. The kine-
matic body model and the sensor modeling are described and
validated in Section 3. The orientation error modeling is in-
troduced and compared to experimental data in Section 4.
Subsequently, we explored the influence of orientation er-
rors on posture classification in Section 5 and introduced an
additional sensor modality in the simulation in Section 6.

3. BODY-SENSOR MODEL
We present in this section our body-sensor modeling accord-
ing to Figure 1. The model consists of a 3-dimensional kine-
matic model describing upper limbs orientations, and a sen-
sor model, describing ideal sensor modality outputs. The
complete body-sensor model was validated by comparing
acceleration sensor readings from experimentally conducted
postures to the simulation.

3.1 Kinematic body model
We modeled the upper-body anatomy as a system of linked
body segments connected by rotational joints [1]. Starting
point of the first link and reference point for all Cartesian
coordinates is near the model’s neck (T1 thoracic vertebra).
Our model consists of seven serially connected links, describ-
ing five DOF of the right upper limb (see Table 1). While the
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Figure 2: Sample configuration and resulting pos-
ture of the body model. Orientation vectors at the
end of right upper arm and forearm ( ~sx, ~sy, ~sz) in-
dicate the body segment orientations. The world
coordinate axes (wx,wy,wz) are relative positions to
the reference point at the neck.

right body side was sufficient for our shoulder and elbow pos-
ture evaluation the model description can be conveniently
extended to the left body side as well. Body segments that
represented limb parts were specified according to anthro-
pometric measures of man (20-65 years, 78.4 kg) [16].

Resolving Cartesian coordinates and orientations of such
serial-link manipulators is known as a forward kinematics
problem. One common and computational inexpensive ap-
proach to forward kinematics is the expression of serial-link
manipulators by description matrices [15]. These consist
in the simplest case of a Denavit-Hartenberg (DH) param-
eter set (Θ, D, A, α), describing each link/joint pair as a
coordinate transformation from the previous coordinate sys-
tem to the next coordinate system [4]. Coordinate rotations
are described by Θ (angle) and α (twist), translations corre-
spond to D (offset) and A (length). The description matrices
can be refined to include inertial and frictional parameters.
However, in our work we limited the description of upper
limb kinematics to the DH parameter set and assumed con-
stant mass and mass distribution for all body segments.

Our implementation of the kinematic body model is based
on the Robotics Toolbox [3], which provides basic kinematic
operations for MATLAB. On top of this toolbox we modeled
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the upper-body using the serial-link manipulator with the
DH parameter set, detailed in Table 1. Figure 2 illustrates
a sample configuration of our body model, indicating body
segments for upper arm and forearm, as well as the body
segment-relative coordinate systems.

3.2 Sensor model
Subsequently we used body segment orientation informa-
tion obtained with the kinematic body model to derive the
output of acceleration sensors in a sensor model. For our
purposes of describing statically adopted body postures, the
static component of acceleration sensor responses was suffi-
cient.

Figure 3: Derivation of acceleration sensor output
( ~acc) for body segments. Vectors ~sx, ~sy and ~sz cor-
respond to unit vectors along the body segment’s
coordinate system, a sx, a sy and a sz indicate their
projections on wz.

Sensor outputs were derived by considering the orientation
of body segments relatively to world coordinates, see Fig-
ure 3. Given the body segment’s orientation, we derived
unit vectors ( ~sx, ~sy, ~sz) along each axis of its coordinate
system and projected each vector on the z-axis (wz) of the
world coordinate system. The length (and direction) of the
three projections (a sx, a sy, a sz) corresponds to each one
output of an acceleration sensor axis with −1g ≤ acc ≤ 1g.
In a similar way, we derived the outputs of magnetic field
sensors by considering the projection on the world coordi-
nate system’s y-axis (which was North by convention).

3.3 Body-sensor model validation
In order to validate the body-sensor model, we analyzed
the error between simulated and actual acceleration sensor
readings for selected arm postures. We selected a set of five
validation postures that specifically manipulate one DOF.

The experimental recordings were performed with accelera-
tion sensors attached to the skin at forearm and upper arm
from one male subject (28 years, body size of 182 cm).

The mean angular error for all postures was below 10◦(9.5◦for
the upper arm, 6◦for lower arm), which indicates the suffi-
cient function of the body-sensor model and permits its use
in subsequent analysis. The remaining angular errors were
primarily caused by inaccurately adopted postures and lim-
itations due to joint constraints. Moreover, body tissue and

superficial muscles at the upper arm resulted in rotations of
the attached sensor.

4. ORIENTATION ERROR MODEL
The body-sensor model provides body segment orientation
information and can be used to simulate sensor outputs if
the sensors are tightly coupled to body segments. With
the additional model introduced in this section, we target
a simulation of garment-related orientation errors. In this
representation, the sensor relative orientation with respect
to the body segment may change. We focused in this work
on modeling orientation errors as a function of the garment
fitting.

As outlined in Figure 1, the orientation error model is used
to modulate simulated sensor outputs of the body-sensor
model. Moreover, we present our validation of the combined
body-sensor and orientation error models in a classification
task.

4.1 Error modeling approach
We derived statistical approximations of the orientation er-
ror of garment-attached sensor outputs during posture per-
formances. These approximations were obtained by comput-
ing the orientation deviation between simultaneous readings
of skin- and garment-attached miniature acceleration sen-
sors. We considered each sensor axis individually, since it
can be affected by specific orientation errors. Moreover, we
assumed that this error can be modeled, in its simplest form,
by a Gaussian distribution. Hence, mean and standard devi-
ation of orientation errors must be estimated for each sensor-
axis of all considered sensors.

The Gaussian model approximation has the benefit that
model parameters could be direct interpreted:

• Estimated mean of a Gaussian error model can be in-
terpreted as an average orientation offset of garment-
attached sensors relative to body segments. These
means represent a constant offset of the sensor signal
in all data, that consequenly do not affect our subse-
quent posture recognition. Therefore we omitted the
mean component from our orientation error model.

• Standard deviation of Gaussian error models indicates
a range of sensor orientations, in which the garment
will disturb particular sensor axes. These orientation
errors are assumed to be constant for the duration of
every posture adopted during the repeated execution
of posture exercises. Hence, this component is essen-
tial for the orientation error model. We hypothesize
that the standard deviation could be interpreted as a
metric describing garment fitting to a wearer. For the
case of a tight-fitting garment the orientation of a sen-
sor remains constant, resulting in a standard deviation
close to zero. If a garment fits less tightly, it is more
likely that a larger orientation error occurs and con-
sequently results in a larger standard deviation in the
error model.

Our approach has the following constraints and parameter,
that need to be considered:
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Link Twist α [rad] Length A Angle Θ [rad] Offset D Functional motion

1 0 length clavicle 0 0 N/A
2 π/2 0 0 0 Shoulder flexion/extension
3 0 0 −π/2 0 Shoulder adduction/abduction
4 −π/2 0 0 0 N/A
5 π/2 0 0 -(length upper arm) Shoulder internal/external rotation
6 −π/2 0 0 0 Elbow flexion/extension
7 0 0 0 -(length forearm) Forearm pronation/supination

Table 1: Denavit-Hartenberg (DH) parameter set of the link configuration used to calibrate the body-sensor
model to exercise postures.

• The particular set of postures and intensity of move-
ments influence orientation errors between body and
garment-attached sensors. We focused in this work
on a fixed posture set that is frequently considered
in shoulder and elbow rehabilitation. A different set
of postures would lead to different orientation errors.
Postures that introduce a particularly high orientation
error had been identified in earlier works [8].

• Different sensor modalities may incur independent er-
rors for a set of postures. Sensors providing incomplete
orientation information are potentially not sensitive to
particular orientation errors. While this affects accel-
eration sensors that capture gravitational effects in our
approach, acceleration serves well to recognize body
postures.

• Garment natural fitting influences orientation errors.
Hence, sensors in a garment that is tightly fitting may
obtain no orientation errors, similar to body-attached
sensors. We specifically considered this aspect by sam-
pling orientation errors from actual posture perfor-
mances of different wearers and body heights.

4.2 Error model implementation
We estimated garment-related orientation errors for two ac-
celeration sensors attached to upper arm and forearm using
the SMASH system [7]. The setup for the sensors at the
forearm is shown in Figure 4.

Figure 4: Setup to calculate the relative orienta-
tion error for a garment-attached acceleration sen-
sor (right) relatively to a reference sensor (left) dur-
ing the execution of postures. The position of both
sensors is marked with white circles.

A set of ten postures that is frequently used in shoulder and
elbow rehabilitation was selected to obtain orientation errors
and validate the error model as detailed in Section 4.3. Fig-
ure 5 presents all included postures. Seven participants (3
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Figure 6: Orientation error distributions expressed
as angular deviation for the forearm acceleration
sensor axes of one participant. Red bold lines in-
dicate the sampled distributions, blue lines show
the distributions of generated sensor data using es-
timated Gaussian parameters.

female, 4 male, aged 20 to 35 years) performed the pos-
tures in three exercise repetitions. We included participants
with body heights between 163 cm and 183 cm to analyze
the effect of garment fitting on the standard deviation of
orientation error.

From the recorded data we calculated angular deviation be-
tween garment-attached and reference sensors for each axis.
Error models were estimated from histograms of the angu-
lar deviations. Figure 6 shows sample histograms for each
acceleration sensor axis for the forearm position of one par-
ticipant.

An estimation of the Gaussian distribution parameters (mean,
standard deviation) was performed using a maximum likeli-
hood estimation with a confidence interval of 5%. Table 2
summarizes standard deviations of garment-related orienta-
tion errors for each sensor (averaged over three axes).

For the forearm we obtained standard deviations of 8.4◦,
14.2◦, and 15◦for x-, y-, and z-axis (mean: 12.5◦). Large er-
rors for y- and z-axis can be explained by orientation errors
due to twists of the garment around the forearm. As accel-
eration sensors x-axes pointed along the forearm, this axis
was insensitive to garment twists. For the upper arm, we
observed standard deviations of 8.8◦on average. In our ex-
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Figure 5: All ten shoulder rehabilitation postures considered in the study. The participant is wearing the
SMASH system [7].

Table 2: Standard deviations (SD) of garment-
related orientation errors (average over 3 axes).

Parti- Gender Body SD SD
cipant height upper arm forearm

# [m/f] [cm] [◦] [◦]

1 f 163 10 17
2 f 170 9 10.8
3 f 172 9.4 13.3
4 m 173 9.1 14.7
5 m 180 7.7 7.3
6 m 182 7.5 10
7 m 183 9.4 7

Average 8.8 12.5

perimental data the acceleration sensor placed at the upper
arm was less affected by garment-related orientation errors
than the forearm sensor. We expect that the reduced error
at the upper arm can be explained by the garment fixation
through shoulder and torso.

In Section 4.1 we presented our hypothesis that the stan-
dard deviation of orientation errors is related to garment
fitting. Hence, the less tight a garment fits, the higher are
orientation errors. This could be confirmed from our ex-
perimental data from participants of different body heights.
Nevertheless, the garment selected for SMASH in this analy-
sis, was designed for wearer of a body height between 177 cm
and 184 cm, according to the manufacturer fitting guide.
We observed in our results that participants that did not
fit the manufacturer guide obtained larger standard devi-
ations, than those who fell into the specified body height
range. Figure 7 shows the standard deviations for all partic-
ipants considered in our experiment. The box-plots indicate
standard deviation of orientation errors for both considered
sensors with 3 axes each.

4.3 Error model validation
The ability of the implemented modeling framework to sim-
ulate the orientation errors of garment-attached sensors was
analyzed using the set of ten rehabilitation postures intro-
duced in Section 4.2. For this purpose we described all pos-
tures by according joint angle configurations in our body-
sensor model. Table 3 summarizes the exact configurations
for all ten postures. User-specific orientation error models
were derived from the posture set. Subsequently, we simu-
lated postures for upper arm and forearm.

We compared the posture classification performance of our
model-based sensor data simulation to the classification per-
formance of actual sensor data. Ideally, posture classifica-
tion using the generated sensor data would resemble the
same classifier confusion and classification accuracies as ac-
tual sensor data.
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Figure 7: User-specific box-plots of the orienta-
tion error’s standard deviation. The graphic in-
dicates lower standard deviations for participants
with a perfect fitting of the used SMASH garment
(177 cm ≤ height ≤ 184 cm).

Table 3: Joint angle configurations for ten simulated
rehabilitation postures (compare Figure 5).
Post Should. Should. Should. Elbow F.arm
ture flex./ adduc./ in./ex. flex./ pron./

exten. abduct. rotat. exten. supin.
# [rad] [rad] [rad] [rad] [rad]

1 0 0 −π/2 10π/180 π/2
2 0 40π/180 −π/2 0 π/2
3 0 π/2 −π/2 0 π/2
4 π/2 π/2 −π/2 0 0
5 0 π −π 0 0
6 0 π/2 −π/2 π/2 π/2
7 0 π/2 −π π/2 π/2
8 0 π/2 0 π/2 π/2
9 0 0 −π/2 π/2 π/2
10 0 15π/180 −π π/2 −π/2

For each participant we simulated the posture set with the
modulated orientation error model to generate train- and
test data used for classification. For this comparison, we
generated the same amount of training and testing set data
as actual sensor data available for classification. We con-
firmed that these sample amounts have a Gaussian distribu-
tion using the Kolmogorov-Smirnov-Test with a confidence
interval of 5%. A nearest class centroid-algorithm (NCC)
was used to test user-specific classification performance for
simulated and actual data evaluations. In both cases evalu-
ation procedure was the same.

Classification was performed using a three-fold cross-validation
scheme, aligned to the three exercise repetitions performed
in the experiment. The three sensor signals of acceleration
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Figure 8: User-specific classification performances
for all participants, using simulated and actual data.

sensors at the upper arm and forearm were used as fea-
ture input (at all 6 features) for the NCC algorithm. The
class-normalized accuracy was computed from the classifier
output.

Figure 8 shows the classification performances for simulated
and actual data evaluations. In comparison, both evalua-
tions obtained similar accuracies, ranging between 70% and
86%. The relative error between classification accuracies us-
ing simulated and actual data is 2.6% (SD:±3.2%). More-
over, the results show that performances have the same ten-
dencies with respect to the participant body heights. For
participants 5–7 that fell into the garment fitting specifica-
tion, accuracies close to 85% were observed.

To obtain more detailed insight into classifier performances,
we compared confusion matrices for both evaluations. The
confusion performance confirmed the similar performance
for simulation and actual sensor data. Figure 9 shows clas-
sifier confusion matrices for both evaluations for one partic-
ipant (body height: 183 cm).

The simulation using generated data predicted major confu-
sion of posture classes 3 and 6, as well as minor confusion of
classes 9 and 10. Our evaluation using recorded sensor data
showed only minor confusions of class 3 and 6, as well as 9
and 10. In both cases of confusions the result of generated
and recorded sensor data coincided. Both identified con-
fusions occur due to incomplete orientation information of
the acceleration-based gravity sensing approach. Neverthe-
less, precise quantity of confusions could not be predicted.
This result was confirmed for all participants, however con-
fusions become more dissimilar with decreasing body height.
For participant 1 (body height: 163 cm), our simulation cor-
rectly predicted confusions of classes 3 and 6, as well as
classes 9 and 10. However, it additionally predicted a false-
positive minor confusion of classes 1 and did not predict
minor confusion of classes 6 and 8, which was observed in
actual data. We conclude that prediction performance of the
simulation decreases with large garment orientation errors.

Our validation of the body-sensor model in combination
with the orientation error model showed similar classifier
accuracies and classifier confusions as achieved by using ac-
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Figure 9: Comparison of confusion matrices for clas-
sifications using actual recorded and simulated data.

tual data. We concluded that our error model can be used
to estimate classifier performance. Moreover, simulation al-
lows a predictive identification of postures that are confused
by using garment-attached sensors.

5. SENSOR-GARMENT SIMULATION
We utilized the body-sensor and orientation error models to
simulate garment-related influences on classification perfor-
mance. The models allow us to simulate the impact of par-
ticular orientation errors on the classifier performance and,
consequently, to predict effects for potential fitting config-
urations. We deployed the same set of ten rehabilitation
postures in this evaluation, as detailed before in Section 4.2
and shown in Figure 5.
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Figure 10: Classification accuracy using simulated
acceleration sensor data for the upper arm and fore-
arm. For each sensor a garment-related orientation
error between 0◦and 45◦SD was simulated.

In this simulation, we analyzed the influence of orientation
errors on the upper arm and forearm on the classification re-
sult. For both sensors, the orientation error was modeled by
a Gaussian distribution with a variable standard deviation
of 0◦to 45◦. According to Table 2 a simulated orientation
error of 45◦corresponds to approximately five times the ob-
served orientation error on the upper arm and four times of
the observed orientation error at the lower arm.

To evaluate classification performances we used the NCC
algorithm. The NCC was trained using 500 generated sam-
ples. Performance was evaluated using another 250 gen-
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erated samples. Again, we confirmed that these sample
amounts have a Gaussian distribution using the Kolmogorov-
Smirnov-Test.

In Section 4.2 we observed that the x-axis of a forearm accel-
eration sensor is less affected by orientation errors. However,
for this evaluation we assume a similar noise for all sensor
axes of the upper arm acceleration sensor and forearm sen-
sors respectively.

Figure 10 shows simulated classification accuracies of the ten
modeled rehabilitation postures. The plot indicates that a
reliable distinction of all classes is feasible if standard devia-
tions are zero. That would be the case if sensors are directly
attached to the body skin or tight fitting textiles. Moreover,
the simulation shows that classification performance remains
high if the standard deviation for the forearm is zero, while
the standard deviation at the upper arm is less than ap-
proximately 20◦. In Table 2 we estimated a mean standard
deviation of 8.8◦for the upper arm. Hence, for a reliable
discrimination for our posture set, the forearm acceleration
sensor could be fixed, while using a garment-attached accel-
eration sensor at the upper arm.

Figure 10 indicates that stable classification accuracies of
more than 80% are obtained, if both sensors show a stan-
dard deviation of less than 20◦. Our estimated standard
deviations are below this bound, hence we expect a slightly
imperfect but robust classification performance for the con-
sidered posture set.

6. ADDITIONAL SENSOR MODALITIES
We extended the body-sensor model to investigate poten-
tial performance improvements by adding a further sensor
modality. Using the approach presented in Section 3.2 we
modeled magnetic field sensors. The combination of ac-
celeration and magnetic field sensors provide complete 3-
dimensional orientation of a sensed body segment. This ad-
ditional information could help to compensate orientation
errors when provided to a classifier, and consequently im-
prove overall classification performance.

In our simulation approach we assumed that both sensor
modalities are integrated into one inertial sensing unit. Con-
sequently, we assumed the same orientation error for the
magnetic field sensors, as added for accelerometers. One
virtual inertial sensing unit was simulated at to the upper
arm and one at the forearm. Unlike acceleration sensing
units, off-the-shelve magnetic field sensors show measure-
ment inaccuracies of up to 5◦. Moreover, the magnetic field
is distorted in the presence of large metal objects. Those
sensors-specific characteristics can be considered in an addi-
tional sensor error model, if required.

Figure 11 shows the result of our simulation for the inertial
sensor units. The plot shows that classification accuracies
increased, compared to an exclusive use of acceleration sen-
sors. To visualize the improvements obtained by including
magnetic field sensors in our simulation, we calculated the
difference of both simulation maps. The result is shown in
Figure 12. As our simulation shows, garment-attached sen-
sors can be affected by a Gaussian noise with a standard
deviation of up to 25◦on both body segments and still ob-
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Figure 11: Simulation of classification accuracies
using virtual acceleration and magnetic field sen-
sors with garment-related orientation error of 0◦to
45◦SD. An inertial unit containing one of each sen-
sor modality was simulated at the upper arm and
one at the forearm.

tain perfect posture discrimination. Moreover, the results
indicate different tolerances of the classifier to simulated er-
rors. For our selected posture set, results are predominantly
affected by orientation errors of the forearm sensing unit.
Classification performance was less disturbed by orientation
errors of sensing units attached to the upper arm.
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Figure 12: Difference map showing the increase in
classification accuracy when magnetic field sensors
are added as additional sensing modality at upper
arm and forearm.

Magnetic field sensors lead to an increase in accuracy of
about 18%. A particular large increase in accuracy of 35%
was observed for large orientation errors at the upper arm
(at 45◦), and approximately 12◦at the forearm. If accelera-
tion sensors were used exclusively, the classifier performance
degraded even for low orientation errors at the forearm (see
Fig. 10). However, magnetic field sensors can provide a more
robust basis for classification that even allow small orienta-
tion errors at the forearm while still achieving perfect clas-
sification.
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7. CONCLUSION AND FURTHER WORK
In this work we presented a novel approach to model body
postures and orientation errors that originate from garment
alignment changes. In particular, we targeted an analy-
sis of garment fitting based on garment-related orientation
errors. We implemented the models using a two-step ap-
proach. Firstly, we built a body-sensor model that allowed
a flexible description of body postures for upper limbs and
simulation of sensor modalities. Secondly, we approximated
an orientation error model from experimental data. In our
evaluations, we focused on simulating rehabilitation pos-
tures that are frequently used in shoulder and elbow ex-
ercises.

Our modeling approach showed low errors compared to ex-
perimental acceleration sensor data of the rehabilitation pos-
tures. In our validation for the model, we observed an rel-
ative error of 2.6% between posture classification results.
We concluded that the orientation error modeling provides
a metric to estimate garment fitting for posture recognition
tasks.

Our further simulations targeted a prediction of posture
recognition performance for varying orientation errors. The
models allow us to estimate robustness of a configuration by
alternating garment fitting parameters. Moreover, our ap-
proach is extendable to further sensor modalities, such as a
magnetic field sensor. We demonstrated that this additional
modality improves classification performance by 18%. The
simulation provided a rapid and detailed insight into partic-
ular gains that could be obtained with such a modality.

In our further work, we plan expand our simulations to ad-
ditional sensing modalities and study the compensation of
orientation errors due to garment fitting in further detail.
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