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ABSTRACT 
In this paper, a novel approach for segmenting ECG signal in a 
body sensor network is presented. Hidden Markov Modeling 
(HMM) technique is employed. The parameter adaptation in 
traditional HMM methods is conservative and slow to respond 
to these beat interval changes. Since people’s heart rates vary a 
lot, the corresponding characteristic waveform intervals and 
durations change with time as well. Moreover, for patients with 
cardiac diseases, such as arrhythmia, the heart beat interval may 
even change abruptly and irregularly. Therefore inadequate and 
slow parameter adaptation is largely responsible for the low 
positive predictivity rate (+P). To solve the problem, we 
introduce an active HMM parameter adaptation and ECG 
segmentation algorithm, which includes three parts: the pre-
segmentation and classification, the HMM model training, and 
the detailed segmentation. Body sensor networks are used to 
pre-segment the raw ECG data by performing QRS detection. 
Then the R-R interval information that directly reflects the beat 
interval variation is extracted and used to classify the raw ECG 
data into several groups. One specific HMM is trained for each 
of the groups. Hence, instead of one single generic HMM, 
multiple individualized HMMs are set up. In the detailed 
segmentation, each HMM is only responsible for extracting the 
characteristic waveforms of the ECG signals with similar 
temporal features from the same group, so that the temporal 
parameter adaptation can be naturally achieved. 

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition]: Applications – Signal Processing. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Body Sensor Networks (BSNs), ECG Segmentation, Hidden 
Markov Models (HMMs), parameter adaptation. 

1. INTRODUCTION 
 

Heart disease is the leading cause of mortality in the United 
States. It accounts for 30.4% deaths in the United States in 1999, 
which is ranked No. 1 [1]. Traditionally, exercise test and 
ambulatory ECG are two of the most widely accepted 
noninvasive procedures for identifying patients with probable 
heart disease [2].  Measurements of the width or duration of 
characteristic waveforms and analysis of their morphology 
variations in the ECG are used to define ectopic electrical 
activity in the heart, to detect myocardial damage, and to 
classify patients at risk of cardiac diseases [8]. However, these 
tests and ECG processing are usually performed in a lab 
environment and are under the supervision of specially trained 
physicians. This may cause so-called White Coat Syndrome 
(WCS), which may affect the accuracy of the test result due to 
mental stress effects. Moreover, since the test can only be 
performed occasionally due to the cost and schedule constraints, 
some important symptoms may be missed, which often lead to 
delayed diagnoses and even misdiagnoses. 

 
Figure 1.  A body sensor network consisting of various biosensors 
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Recent significant progresses in wireless sensing/monitoring and 
wearable/implantable biosensors have enabled Body Sensor 
Networks (BSNs), a promising personal and ubiquitous 
healthcare candidate solution. Composed of various biosensors, 
such as electrocardiogram (ECG), phonocardiography (PCG), 
ambulatory blood pressure (ABP) and oxygen saturation (SpO2) 
sensors (as shown in Fig. 1), BSNs are capable of sensing, 
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communicating and processing different physiological 
parameters and helping physicians to make critical clinical 
decisions. Benefitted from their miniature sized and 
biocompatible sensor nodes, BSNs can be deployed on the 
patient’s body or even be implanted in the body, with their 
interference to the daily life of the users reduced to the 
minimum. Therefore, BSNs are ideal for collecting and 
monitoring ECG signals. Moreover, the context information 
provided by the body sensor network can improve the 
performance of many data processing algorithms, such as QRS 
detection [9]. 

 

Figure 2.  ECG and associated characteristic waveforms within one 
heartbeat. 

Interpretations and annotations of ECG are extremely time 
consuming and usually made by experienced physicians. For 
long term ECGs, such as the 24x7 continuous records obtained 
from a BSN, it is almost impossible to manually scroll through 
all the records to locate interesting episodes. Therefore, 
automated ECG analysis systems have been intensely studied by 
many researchers [4-8]. As the basis of further analysis, the 
detection of the major characteristic waveforms in ECGs is one 
of the essential tasks in ECG analysis [4-8], in which the 
waveform boundaries (the onsets and ends of P, QRS, and T 
waves, as shown in Fig.2) are located. Once those characteristic 
waveforms are extracted, important clinical features, such as the 
QRS duration, the ST segment, and the QT interval can be 
obtained; cardiac beat classification and interesting episode 
definition can be made; clinical tests such as heart rate recovery 
(HRR) and ST segment depression analysis during exercise 
testing (ET) also depend on those features. 

Hidden Markov Modeling (HMM) technique is employed in the 
ECG segmentation. Compared with methods purely based on 
heuristic rules [12-17], HMM methods have several advantages. 
Markov chain topology can preserve structural information of 
characteristic waveforms, and HMM model parameters can 
represent the statistical nature of the ECG signals [7]. As a 
probabilistic model, no thresholds used by the heuristic rules are 
needed any more. What’s more, with HMM the ECG 
segmentation and feature classification can be achieved 
simultaneously. 

ECG segmentation bears analogy to speech processing [6], in 
which HMMs have many successful applications. In both cases, 
a pattern recognizer that is insensitive to the temporal variation 
of the patterns and good segmentations of individual episode of 
interest in the training data are of great importance to achieve 
stable performance. In the field of ECG analysis, temporal 

variations widely exist. Compared with speech processing, ECG 
signals to be processed are usually not segmented. Poor HMM 
temporal parameter adaptation will cause pattern misalignments 
in the unisolated ECG signals and become the major source of 
the ECG segmentation errors. Therefore, introducing 
adaptability to the HMM is crucial for the segmentation 
performance. 

In the work of [4], HMM is adopted for cardiac arrhythmia 
analysis. Individual characteristic waveform within each beat, 
instead of R-R interval sequences, is modeled in order to 
perform arrhythmia analysis. Since heart rate varies a lot, the 
characteristic waveform intervals and duration change as well. 
The causes could be rate variations of the cardiac pacemaker, 
ectopic pacemaker sites, and abnormal propagation of pacing 
impulses through the specialized cardiac conduction system [4]. 
The cardiac rhythm of normal subjects also changes a lot during 
daily activities. Specially, for patients with heart diseases, such 
as cardiac arrhythmia, the change may be abrupt and 
unpredictable. In the ECG segmentation, those temporal 
variations could cause pattern misalignments that propagate for 
several beats, which seriously reduces the segmentation 
accuracy rate. The temporal HMM parameter adaptation is 
considered in [4], in which the model parameter is a 
combination of model parameters of the previous period and 
current estimates computed from the most recent 20 beats. To 
further improve the parameter adaptation performance, an 
isolated-beat Viterbi algorithm is also implemented. However 
those algorithms are quite conservative, hence slow to respond 
to the beat interval changes. Therefore inadequate and slow 
parameter adaptation is still the major cause for low positive 
predictivity (+P). 

In order to make HMMs adapt promptly to the temporal 
variations and reduce the misalignment errors, a body sensor 
network based active HMM parameter adaptation and ECG 
segmentation algorithm is proposed in this work. Instead of a 
single generic model, multiple individualized HMMs are used to 
improve the temporal adaptability. MIT-BIH QT database and 
MIT-BIH Arrhythmia database are used to evaluate the 
algorithms. 

This paper is organized as follows. In Section II, the background 
about the Hidden Markov Model is introduced. The body sensor 
network based ECG segmentation algorithm will be presented in 
section III. Simulation results are given in Section IV. 
Discussions and conclusions are given in Section V. 

2. HIDDEN MARKOV MODELS (HMMS) 
 

Hidden Markov Model (HMM) is a type of probabilistic signal 
model in which a discrete-time finite state homogeneous 
Markov chain is observed through a discrete-time memoryless 
invariant channel [10]. The system in a HMM is assumed to be a 
first order Markov process in this work, i.e., the probability that 
the system moves to a given state depends only on the state 
immediately preceding it. Unlike a regular Markov model, the 
states of a HMM are usually invisible and need to be estimated 
from a sequence of observations that are probabilisticly related 
to the unknown states. Therefore, a HMM can be regarded as a 
bivariate parametric process: one is the underlying finite-state 



homogeneous Markov chain that is unobservable (the hidden 
states); the other is a sequence of conditionally independent 
random variables emitted by the Markov chain (the 
observations). 

HMM has been successfully applied in a variety of research 
fields and is well-known for their successful applications in 
temporal pattern recognition including speech processing, 
handwriting and gesture recognition, and DNA sequence 
identification. A HMM is characterized by a set of parameters 
which can be denoted by λ = (A, B, π), where A is the state 
transition probability matrix, B is the observation symbol 
probability distribution, and π is the initial state distribution. 

There are three fundamental problems in HMM designs that are 
identified in [6]: the evaluation of the probability of a sequence 
of observations given a specific HMM; the determination of a 
state sequence that best explains a sequence of observations 
given the model; and the adjustment of model parameters to 
maximize the probability of a given observation sequence. The 
first problem above is also called evaluation problem, and 
usually used for classification purposes. In the ECG analysis, 
multiple HMMs can be setup according to different training 
groups and by finding out the model giving the highest 
probability to certain observations, the ECG episodes can be 
grouped by the corresponding model, and then the classification 
can be inferred. The second problem, a.k.a. decoding problem, 
is used in ECG signal segmentation. If we associate each sample 
in an ECG sequence with a hidden state (P, QRS, or T wave), 
when the optimal state sequence is found using the Viterbi 
algorithm, the ECG segmentation is naturally accomplished. 
The third problem (learning problem) needs to be finished 
before the system models can be applied in the first and second 
problem. 

One of the advantages of HMM is that computationally efficient 
algorithms to solve the three problems above are available. 
Forward-backward procedure, which is much more efficient 
than brute force calculation, can be used for the first problem. 
Viterbi algorithm is available to infer the optimal state sequence 
in the second problem. For the third problem, though there is no 
known analytical solution, Baum-Welch algorithm (expectation-
modification) usually provides acceptable performance. 

3. ALGORITHM DESCRIPTION AND 
DISCUSSIONS 

3.1 Algorithm Overview 
Our active HMM parameter adaptation and ECG segmentation 
algorithm includes three main parts: the pre-segmentation and 
classification, the HMM model training, and the detailed 
segmentation. Body sensor networks are used to collect ECG 
data and extract R-R interval information by performing QRS 
detection in the pre-segmentation. Based on the lengths of R-R 
intervals, pre-segmented raw ECG signals are classified into 
several (N) groups for the later HMM model training and 
detailed segmentation. HMM model training decides the proper 
parameters for the HMM models used in the detailed 
segmentation. Characteristic waveforms are finally obtained by 
the detailed segmentation. The mapping of ECG signal to HMM 
hidden states is done by associating each sample (voltage signal) 

in the ECG with a hidden state representing a characteristic 
waveform (P, QRS, T, or isoelectric ISO). Therefore, once the 
hidden state sequence is identified, we’ll have all the onsets, 
offsets, and duration information of any characteristic waveform, 
and the detailed segmentation is finished. The pre-segmentation 
and classification are heuristic, while the HMM model training 
and detailed segmentation base on probabilistic methods. We 
should point out that the pre-segmentation and classification 
process both the training and test data. HMM model training 
only needs the training data. The detailed segmentation only 
works on the test data. 

 

Figure 3.  Block diagram of the QRS complex detection algorithm 

3.2 The Pre-segmentation and Classification  
In the pre-segmentation step, the QRS complex detection 
algorithm in our previous work [9] is employed to extract the R-
R interval information. We choose QRS complex for the pre-
segmentation is because it is the most significant characteristic 
waveform in the ECG, therefore easy to identify and relatively 
immune to potential noise interferences. The QRS complexes 
also mark the R-R intervals that directly reflect the beat 
variation. In [9], the QRS complex detection algorithm uses the 
context information provided by the body sensor network to 
improve the QRS detection performance by dynamically 
selecting the leads with best SNR and taking advantage of the 
best features of two complementary detection algorithms. The 
accelerometer data from the BSN can be used to classify the 
patients’ daily activity and provide the context information. The 
classification results indicate both the type of the activities and 
their corresponding intensity, and the latter is directly related to 
the signal/noise ratio (SNR) of the ECG recordings. Activity 
intensity is first fed to lead selector to eliminate the leads with 
low SNR, and then is fed to a selector for selecting a proper 
QRS detector according to the noise level. The block diagram 
for the QRS complex detection algorithm is shown in Fig. 3. 

The raw ECG data are then segmented based on the detected R 
peaks. The segmented ECG is further classified into several 
groups using a heuristic rule. The classification is based on the 
lengths of the R-R intervals to make sure the ECG data in each 
group have similar R-R intervals, hence temporal features. 



Assuming that the maximum and minimum R-R interval is 
IMAX and IMIN, respectively, we can classify the pre-
segmented ECG into N groups, with the R-R interval ranges: 

     [IMIN + (k-1) ×D, IMIN + k×D] (1 ≤ k ≤ N)             (1) 

where D = (IMAX - IMIN)/N. 

The number N can be determined according to the variance of 
the ECG R-R intervals and the number of the training data. A 
bigger N could be chosen when the variance is large and the 
training data is adequate. A proper N can effectively reduce the 
temporal variations in each classified ECG group and also 
guarantee there are enough data in each group for the later 
HMM training. In this paper, N is usually chosen 
experimentally between 3 and 10. Fig. 4 is an illustration of the 
pre-segmentation and classification. 

 

Figure 4.  An illustration of the presegmentation and classification. 

3.3 Training of the Hidden Markov Models 
In this algorithm, one specific HMM is trained for each of the N 
groups, so N HMMs will be obtained. In the training process, 
each HMM adjusts its parameters to maximize the probability of 
the given observation, i.e. the ECG data with similar temporal 
features in that group. In this way, instead of one single generic 
HMM, multiple individualized HMMs are set up for the later 
detailed segmentation stage. 

The classic Baum-Welch (forward-backward) algorithm is used 
to perform the training. By analyzing the characteristic 
waveform amplitude histograms of annotated ECGs, the output 
functions can be selected to be multidimensional (d-
dimensional) Gaussian probability density functions, specified 
by two parameters, the mean vector  

iμ  and the covariance 

matrix iΩ . 
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Multiple random initializations are performed to avoid local 
maximums. The number of hidden states is also chosen 
carefully to avoid the over-fitting problem. The maximum 

likelihood reestimation formulas (3-5) are similar to the 
formulas for discrete outputs [5]: 

       

1

, 1 1,
1

1

, ,
1

( )
,  (1 i n, 1 n)

T

k i ij j k k j
k

ij T

k i k i
k

a b x
a j

α β

α β

−

+ +
=

−

=

= ≤ ≤ ≤ ≤
∑

∑
     (3) 

                 
, ,

1

, ,
1

,  (1 i n)

T

k i k i k
k

i T

k i k i
k

xα β
μ

α β

=

=

= ≤ ≤
∑

∑
                              (4) 

       
, ,

1

, ,
1

( )( )
,  (1 i n)

T
T

k i k i k i k i
k

i T

k i k i
k

x xα β μ μ

α β

=

=

− −
Ω = ≤

∑

∑
≤       (5) 

R R R R R R R R

where 
,k iα and 

,k iβ   are the forward and backward variables, 

respectively, which can be constructed inductively. aij is from 
the state transition probability matrix A. 

3.4 Detailed Segmentation 
Once the HMMs had been trained, the system is ready for the 
detailed segmentation, which aims to extract characteristic 
waveforms. Before the detailed segmentation, the test ECG data 
need to be pre-segmented and classified using the algorithm in 
the previous section. The classification rules are similar to the 
rules used on the training data. The only difference is that when 
the minimum R-R interval in the test data is less IMIN or greater 
than IMAX, they are classified to the groups with the range [IMIN, 
IMIN + T] and [IMAX - T, IMAX], respectively. 

Group 3 Group 2 Group 1 
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Figure 5.  Detailed segmentation results: the onset and offset of P-
wave, QRS complex and T wave are detected. 

Each HMM is only responsible for segmenting the test ECG 
episodes with matched temporal features, so that the temporal 
HMM parameter adaptation can be naturally achieved and 
misalignments that cause reduced positive predictivity rate (+P) 



can be avoided. Compared with the conservative temporal 
adaptation algorithm in the work of [4], this active parameter 
adaptation scheme is much faster, especially in the case of 
abrupt R-R interval changes because of the pre-segmentation 
and classification. Each sample in an ECG sequence is 
associated with a hidden state (P, QRS, or T wave). Viterbi 
algorithm [6] is used to infer the optimal state sequence for ECG 
in each of the test groups. 

4. EXPERIMENTAL TESTING AND 
SIMULATION 
The MIT-BIH QT database and MIT-BIH Arrhythmia database 
are used to evaluate the algorithms. QT database is chosen 
because it provides expert annotated characteristic waveforms, 
including P wave, QRS-complex, T and U waves [18]. It also 
cross-links several records from other Physionet Bank [19] 
databases, including MIT-BIH Arrhythmia database and ST-T 
database, etc. The arrhythmia database is chosen to show the 
adaptability of the presented algorithm with the presence of 
intensive temporal changes. QT database contains 105 two-
channel records. Each record is 15 min and sampled at 250 Hz. 
Each record has manual characteristic waveforms annotation for 
at least 30 beats by two experts. Only the annotations from the 
first expert are considered since the second one is not complete. 
750 annotated beats are selected to perform the evaluation. One 
third (250 beats) is used as training data, the others (500 beats) 
are used as test data. The onsets and offsets of P wave, QRS 
complex, and T wave are detected.  

Table 1. Algorithm 1 & 2 performance comparison (N=7, 
Σ=0.0637) 

 P wave QRS T Wave 

SE1 (%) 95.85 99.49 98.86 

+P1 (%) 93.79 96.11 94.80 

SE2 (%) 96.18 99.89 99.06 

+P2 (%) 98.64 99.46 99.32 

 
Table 2. Algorithm 1 & 2 performance comparison (N=7, 

Σ=0.0911) 

 P wave QRS T Wave 

SE1 (%) 96.23 99.35 98.54 

+P1 (%) 92.11 95.27 93.88 

SE2 (%) 96.21 99.80 98.87 

+P2 (%) 98.45 99.37 98.92 

 
 

Two widely accepted statistical benchmarks, the sensitivity (SE) 
and positive predictivity (+P), are adopted to evaluate the 
performance of the algorithms proposed in the previous sections: 

                                  TPSE
TP FN

=
+

                                    (6) 

                  TPP
TP FP

+ =
+

                                    (7) 

where TP is the number of true positives (correct detections), 
FN is the number of false negatives (missed detections), and FP 
(false detections) is the number of false positives. True positive 
means that there is a characteristic waveform matching (within 
150 msec) between the annotations made by experts and those 
generated by the algorithm under test. Otherwise, a false 
negative (missed detection) or a false positive (extra detection) 
is recorded. 

 

 

  FP 

Figure 6.  False positive detection caused by temporal variations. 

An episode of detailed segmentation result is shown in the Fig. 
5. The performance for individual characteristic waveforms 
detection is shown in table I and II. The variance of the R-R 
intervals is 0.0637 in Table I, and 0.0911 in Table II. Algorithm 
1 uses one single generic HMM for the segmentation. Algorithm 
2 is the one presented in this paper. N is set to 7 for algorithm 2, 
i.e. the test data are pre-segmented and classified into 7 groups 
during the comparison. 
As shown in Table I and II, algorithm 1 has lower +P rate than 
algorithm 2. Multiple individualized HMMs perform better than 
one single generic HMM. As discussed before, the slow 
temporal parameter adaptation in HMM is largely responsible 
for a low positive predictivity (+P) due to an excessive number 
of false positive (FP) beat detections. This problem is further 
illustrated in the Fig. 6. (The ECG record is from MIT-BIH 
arrhythmia database.) When the R-R interval changes abruptly, 
a false positive (FP) detection is observed. 



With the pre-segmentation and classification, false positive 
detections can be effectively reduced because the temporal 
variation in the test ECG data is suppressed by dividing ECG 
with huge R-R interval difference into different groups. As 
shown in the Fig. 7, the false positive detection caused by the 
temporal variation is eliminated using the proposed algorithm. 
A larger temporal variation (indicated by the variance of the R-
R intervals) makes the +P performance in algorithm 1 worse 
because more misalignments will happen, while it doesn’t hurt 
algorithm 2 much because most of the temporal variation is 
compensated by the process of pre-segmentation and 
classification.     

 

Figure 7.  False positive detection removed by proposed algorithms 
(raw ECG is the same as in Fig.5). 

Intuitively, the larger the N is the better performance the 
algorithm 2 will have. However, we should notice that HMM 
can achieve temporal adaptability to certain degree through the 
learning process of its parameters. Moreover, increasing N will 
decrease the number of samples available for the HMM learning 
in each classified group. Therefore, N must be chosen properly 
according to the variance of R-R intervals. The relation between 
+P and the number N for P-wave detection when R-R interval 
variance is 0.0911 is shown in Fig. 8. When N = 1, algorithm 1 
is used. +P increases rapidly when N increase from 1 to 5, then 
reaches the maximum when N is around 7. Further increasing N 
will not improve the +P anymore. If N is too large to provide 
enough data for the HMM training in each group, +P may even 
decrease. 

5. CONCLUSIONS AND FUTURE WORK 
A novel body sensor network based ECG segmentation 
algorithm has been developed. Hidden Markov Model is 
employed to perform the segmentation. The HMM temporal 
adaptability is improved by introducing the pre-segmentation 
and classification procedure. Body sensor networks are used to 
collect and pre-segment the raw ECG data by performing QRS 
detection. Then the R-R interval information that directly 
reflects the beat variation is extracted and used to classify the 
raw ECG data into several groups. One specific HMM is trained 
for each of the groups. Therefore, instead of one single generic 
HMM, multiple individualized HMMs are set up. Each HMM is 
only responsible for extracting the characteristic waveforms of 
the ECG signals with similar temporal features, so that the 
temporal parameter adaptation is naturally achieved. The 

experiment results show that the proposed algorithm can 
effectively improve the positive predictivity (+P) rate if a proper 
N is selected. 
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Figure 8.  False positive detection removed by proposed algorithms 
(raw ECG is the same as in Fig.5). 
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