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ABSTRACT
High-density DNA microarrays provide useful tools to ana-
lyze gene expression comprehensively. However, it is still dif-
ficult to obtain accurate expression levels from the observed
microarray data because the signal intensity is affected by
complicated factors involving probe–target hybridization, such
as nonlinear behavior of hybridization, nonspecific hybridiza-
tion, and folding of probe and target oligonucleotides. Var-
ious methods for microarray data analysis have been pro-
posed to address this problem. In our previous report [7], we
presented a benchmark analysis of probe–target hybridiza-
tion using artificially synthesized oligonucleotides as targets,
in which effect of nonspecific hybridization was negligible.
The results showed that the preceding models explained the
behavior of probe–target hybridization only within a nar-
row range of target concentrations. The experiments showed
that finiteness of both probe and target molecules should be
considered to understand detail behavior of hybridization.

In this paper, we present an extension of the Langmuir-
model that reproduces the experimental results consistently
and the 3-base nearest neighbor model to improve prediction
accuracy. We also introduced effects of secondary structure
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formation, and dissociation of the probe–target duplex dur-
ing washing after hybridization. The results will provide
useful methods for the understanding and analysis of mi-
croarray experiments.
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1. INTRODUCTION
Recently, analysis of transcriptome, i.e. comprehensive

analysis of the all genes that expressed in a cell, has been
intensely studied to investigate the behavior of an organ-
ism. Detail analysis of expression changes in various envi-
ronments has been provided us important information to un-
derstand how cells response to the environment. These stud-
ies revealed complex interaction networks of gene regulatory
system. In order to analyze more detail dynamics of the in-
teraction networks and understand the underlying principles
that controls the behavior of organisms, more quantitative
and high-throughput measurement of gene expression levels
are required [4].

DNA microarrays have become one of the most popular
tool for transcriptome analysis. High-density oligonucleotide
microarrays use a set of short oligonucleotide probes to mea-
sure gene expression and they allow us to analyze the expres-
sion of thousands of genes in a single experiment. However,
it is known that linearity of the measurement is maintained
within a rather narrow range of concentration, about 2–3 or-
ders of magnitude [3], because of a lower limit of fluorescence
measurement and saturation of probe–target hybridization.

In [11] we presented spike-in experiments without back-



ground, namely, in which only artificially synthesized oligonu-
cleotides were hybridized onto a custom designed microarray
as a dilution series. In this paper, we introduce an extended
thermodynamic model of hybridization in order to improve
accuracy and sensitivity of the prediction and the dynamic
range of measurements.

2. METHODS

2.1 Finite Hybridization Model
In this study we use the Finite Hybridization (FH) model

which was introduced in [7].
In this model, we consider equilibrium of probe-target du-

plex formation,

Pfree + Tfree Ksp

⇐⇒ PTsp, (1)

where Pfree, Tfree are free probe and target molecules and
PTsp is their duplex, Ksp gives the equilibrium constant of
gene-specific hybridization between them.

We considered the effect of nonspecific target, that is, ran-
dom DNA segments included in the solution as chemical
background. To explain the effect of nonspecific target, we
introduced two effects: nonspecific hybridization and bulk
hybridization. We also took into account other physical ef-
fects such as folding of probes [7].

If one assumes that the system reaches equilibrium, and
takes mass conservation of probe and target molecules into
account, the intensity expected by the FH model is given as
follows:
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where C is the scale of intensity, dsp and dns denote the
dissociation coefficients for specific and nonspecific targets,
Ibg is the optical background intensity. A, x and N give
the total concentration of probes, target, and nonspecific
target molecules. Ksp,Kns,Kfold and Kbulk are reaction co-
efficients estimated from free energy change of specific hy-
bridization, nonspecific hybridization, secondary structure
and bulk-hybridization, respectively. dsp and dns represent
dissociation of probe-target duplex during wash process af-
ter hybridization.

2.2 The 3-base Nearest Neighbor Model
The Nearest Neighbor (NN) model [9] has been used for es-

timate hybridization energy from nucleotide sequence. Given
the base sequence of the probe provided by b = (b1, . . . , bl),
the hybridization free energy is given as follows:

∆Gsp(b) =

l−1
X

k=1

ϵsp(bk, bk+1), (6)

where l denotes the probe length, ϵsp(bk, bk+1) denote the
binding and stacking energy of the given base pairs.

In this study, we introduced the model considering triplets
of the bases instead of combination of nearest two bases.
Namely, hybridization energy of a probe is estimated as fol-
lows:

∆Gsp(b) =

l−2
X

k=1

ϵsp(bk, bk+1, bk+2). (7)

The free energy change of nonspecific hybridization is also
estimated by the same formula, using another set of param-
eters ϵns

2.3 Parameter Optimization
This model includes 71 adjustable parameters to fit ob-

served data. We optimized these model parameters by min-
imizing the mean residual error R between the predicted and
observed probe intensity:

R =
X

i,j

(log10 Iobs
ij − log10 Ipre

ij )2/M, (8)

where Iobs
ij and Ipre

ij are the observed and predicted probe
intensities of the i-th probe in j-th experiments, respectively,
and M is the number of data points. In this study, M =
37800 data points—5400 probes in seven experiments—were
used for the analysis.

Due to the complex interaction among probe and target
molecules, it is difficult to calculate the each physical pa-
rameters from observed data directly. Instead, we used ran-
dom sampling and greedy optimization method based on
the Monte-Carlo simulation to estimate the parameter val-
ues. In short, the initial model parameters are randomly
modified in each step, then the values which prediction er-
ror is the smallest are selected. Repeat this process until the
prediction error no longer decreases.

We designed artificial random sequences as control target
oligonucleotides and designed a custom microarray whose
probes were complementary to the control targets. Using
this microarray, we evaluated our model using experimen-
tal data from a spike-in experiment. First we observed the
probe intensity in without chemical background. Namely,
only artificially synthesized oligonucleotides were hybridized
onto a custom designed microarray as a dilution series. Next,
in order to evaluate the model in a more realistic condi-
tion, cDNA sample obtained from the transcriptome of Es-
cherichia coli were mixed with the control oligonucleotide
as chemical background.

2.4 Design of Oligonucleotide Probes
We synthesized 150 species of 25 mer oligonucleotides us-

ing artificial random sequences as control targets, and de-
signed a custom microarray whose probes were complemen-
tary to the control targets. The oligonucleotide microarray
were synthesized on the Maskless Array Synthesizer plat-
form [10],[6]. We arranged 25 mer probes, which were per-
fectly complementary to the targets, but also placed shorter
probes to observe the effect of any difference in hybridization
affinity. The original 25 mer probes were shortened from one
end by one base, so that 12 different probe lengths ranging
from 14 mer to 25 mer were designed for each of the 150
targets. Because we arranged three copies for each probe,
5400 probes could be used in total for the analysis (see [11]
for detail). The extracted microarray data were analyzed
using custom-designed scripts in R software [8]. In each ex-
periment, replicates correlated well (r > 0.94), indicating



a high level of reproducibility. To obtain a single absolute
signal intensity for each probe, we average logged values of
the replicated measurements.

3. RESULTS

(a) Observed data (b) FH model
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Figure 1: Average signal intensity as a function of
probe length. The model reproduced the saturation
behavior in each target concentration level.

First, we evaluated the FH model by the experiments
without background where true signal intensity can be ob-
served. We optimized the model parameters using intensity
data of the probes that were complementary to the control
targets in the seven experiments. Then, we compared how
the models reproduced the behavior of the observed inten-
sity at 1.4 fM to 1.4 nM. Although the microarray had some
other probes whose sequences were irrelevant to these tar-
gets, the intensities of these probes were very low compared
with that of the specific hybridization (data not shown).
Thus, the effects of nonspecific hybridization were negligible
in this series of experiments.

Remember that we have arranged different lengths of probes
for each target. As Eq. 7 implies that ∆Gsp is roughly pro-
portional to the length of the probe, we first focused on the
dependency of probe intensity on probe length. Figure 1(a)
shows the results of experiments at seven target concentra-
tion levels. Each line represents the average intensity of
450 probes observed in the experiments as a function of the
probe length. The intensity saturated as the probes become
longer, i.e., as the affinity of each probe increases. However,
the behavior depended on the target concentration. When
the target concentration was lower than 1.4 pM, the satu-
ration level was proportional to the concentration. On the
other hand, when the target concentration was higher than
14 pM, the intensity saturated to the same level. The FH
model reproduced the behavior of the observed data over
the whole range of target concentrations (Fig. 1(b)).

Next, we evaluated the model under more realistic con-
ditions. In this experiment, the spike-in control oligonu-
cleotides were mixed with cDNA transfered from the total
RNA of E. coli. The concentration levels of the spike-in con-
trols were the same as in previous experiments: i.e., 1.4 fM
to 1.4 nM [11].

The scatter plot of observed and predicted intensity is
shown in Fig. 2. Even though the background RNA much
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Figure 2: Comparison between observed and pre-
dicted probe intensity. Data points observed in the
all experiments with 7 different target concentra-
tions were plotted. Colors of the dots corresponds
to concentration levels shown in the Fig. 1. Dashed
lines represent y = 3x and y = 1/3x. 95% of the data
were within this range.

affected on signal intensity as chemical noise, the model re-
produced the behavior of hybridization in all concentration
levels.

To confirm that the result was not due to over param-
eterization, we compared the prediction of the 3-base NN
model with the 2-base NN model by 10-fold cross validation
method. Namely, we evaluated the prediction for the test
data sets using the parameters optimized by the training
data from which the test data were excluded. The average
prediction error of the 3-base NN model was 5.4× 102 while
that of the 2-base NN model was 6.6 × 102. Significance of
the difference was confirmed by t-test (p < 10−4).

Finally, based on the FH model, we propose a method to
estimate the target concentration from the observed inten-
sity. Given the probe sequences and the model parameters,
the residual error R in Eq. 8 is computed as a function of
target concentration. Therefore, the target concentration
can be estimated by minimizing the residual error between
the observed and predicted intensity. We evaluated accuracy
of this method using 10 sets of randomly chosen 15 probes
and the observed data of the spike-in experiments under the
condition with the background. We compared the accuracy
with the estimation based on the same scheme of 2-base NN
model using the same data sets. The results are shown in
Fig. 3. The mean squared error of the estimation was sig-
nificantly decreased. And the results shows that estimation
using the 3-base NN model is valid over 5 orders of magni-
tude.

4. DISCUSSION AND CONCLUSION
These experiments using artificially synthesized oligonu-

cleotides as targets have revealed details of probe–target hy-
bridization. Based on the results of the experiments, we have



(a) 2-base NN model (b) 3-base NN model
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Figure 3: Estimation of target concentrations. Esti-
mated target concentrations were plotted as a func-
tion of nominal concentrations. Each lines repre-
sents a probe set which contains randomly chosen
15 probes. Dashed line represents y = x. The mean
squared error of estimation base on 2-base and 3-
base NN model were 10.9 × 10−2 and 6.6 × 10−2, re-
spectively.

identified the source of the errors in previous hybridization
models and have introduced an improved thermodynamic
model.

We presented that the 3-base NN model that estimates
hybridization energy for each base considering the bases on
the both side of the sequence. The results showed that the
model predicts the behavior of hybridization intensity better
than the 2-base NN model. Because our model is based
on a physico-chemical model of hybridization, it would be
easy to add other physical effects, for example, the effect
of base position [12], mismatch [2, 5], and others into this
framework.

Using this model, we proposed a method for the estima-
tion of target concentration. We confirmed the model using
a spike-in experiment and showed that the concentration
range over which the estimation was valid over 5 orders of
magnitude, which was much wider than preceding methods,
which dynamic ranges are around 2-3 orders [1, 12]. This
algorithm will allow us to analyze gene expression in more
detail. For example, when there are 108 cells in a sample,
our method makes it possible to measure from 1000 to 0.01
mRNA molecules per cell quantitatively. It implies that the
method can measure a wide range of genes from an enzyme
that are abundantly expressed to a regulatory gene that con-
trols upstream of signal transduction. Development of anal-
ysis based on this method will greatly improve quantitative
analyzes of gene expression levels using microarrays.
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