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ABSTRACT
This paper introduces a self-healing multipath routing solution that
is resilient to code knock-out attacks i.e., the software copes with
changing network topologies and perturbations of link character-
istics as well as loss of parts of its code base. We use the Fra-
glets artificial chemistry for building a distributed reaction network
that spans the whole network topology. Unlike the use of explicit
metric values in today’s network protocols, our approach relies on
the concentration of routing table entries to stochastically decide
which path a packet should take through the network. A reinforce-
ment mechanism rewards successful forwarding rules that compete
against each other for delivering data packets over alternative paths.
Our self-healing solution is based on the systematic use of self-
replicating code that constantly rewrites itself.
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1. INTRODUCTION
The rapidly increasing demands on today’s computer networks

lead to more complex distributed applications. Soon, human super-
vision and configuration of those systems will not be feasible any-
more, because the complexity of human intervention is increasing,
too. Therefore IBM introduced the vision of Autonomic Comput-
ing [8]. According to this concept regulatory interventions shall be
performed autonomously by the system to a large extent. The goal
is to achieve system properties like self-configuration, self-healing,
self-optimization, and self-protection.

By now network protocols try to cope with perturbations within
the network. For example, a transport protocol like TCP tolerates
and corrects corrupted packet delivery and adapts its transmission
rate to the bandwidth of the end-to-end transmission path; routing
protocols re-route packets around defective links or nodes. Some
latest routing protocols even use bio-inspired concepts [5, 11] since
biological systems exhibit the desired self-organizing properties.

In our research we are interested in software that is able to detect
and repair erroneous code execution originating either from pro-
gramming mistakes or from an unreliable execution environment
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like probabilistic chips [4]. In most programming languages avail-
able today it is hardly possible to monitor the program’s execution
and recover from a deviation from the expected behavior. More-
over, repairing the program implies that we are able to modify the
code, for which a sound theoretical framework [3] is still missing.

We achieve self-healing software by means of an artificial chem-
istry called Fraglets. In Fraglets [18] virtual molecules are used
to model code, data and network packets. These molecules react
with each other and – in doing so – compute results by rewriting
themselves. Within this framework it is easier to modify code at
run-time by creating new molecules that enable new reactions and
thereby change the reaction and computation flow.

The main contribution of this paper is to present a self-healing
routing protocol. We organize the corresponding software as co-
operative self-replicating program parts that constantly regenerate
themselves. Limited resources then lead to the necessary compe-
tition where defective parts that are not able to replicate anymore
(e.g., due to some code knock-out attack) are expunged. As a re-
sult, only viable program parts survive. The protocol consists of
two intertwined subsystems: route dissemination and regulation.
Both use code self-replication to withstand code deletion attacks.

This paper is structured as follows: Section 2 provides an in-
troduction to the Fraglets artificial chemistry, demonstrates how
to achieve self-healing software in this framework and shows the
methods we used to analyze the resulting chemical programs. Sec-
tion 3 contains the description of the self-healing multipath routing
protocol. In Sect. 4 we present simulation results of typical network
perturbations as well as deletion attacks towards the own code base,
before we compare to related work and assess the results in Sect.5.

2. AN ARTIFICIAL CHEMISTRY FOR
PROTOCOL EXECUTION

This section presents the context in which we have developed the
routing protocol. We first summarize the Fraglets artificial chem-
istry. Then we show how self-healing code can be obtained in this
system. Finally, we provide a method for predicting the behavior
of protocols that have been designed using this model.

2.1 Fraglets
Fraglets [18] is an artificial chemistry characterized by the triple

(S, R, A) (in accordance to [6]). The set of molecules S is the set
of all possible words w of arbitrary length over a finite alphabet
of symbols Σ, thus S = {w|w ∈ Σ∗}. (In this paper we use the
terms “molecules” and “fraglets” interchangeably.) Fraglets is an
instance of a tag system [14], a string rewriting system in which
the leftmost symbol identifies the rule to apply. The set of reaction
rules R is therefore implicitly defined by a finite set of production
rules that operate on molecules. A subset of the Fraglet production



Table 1: A subset of Fraglet production rules. A, B, and X are
symbols ∈ Σ, TAIL, and NEXT are words w ∈ Σ∗.

Instr. Substitution pattern
sexch [sexch NEXT A B]→ [NEXT B A]
snode ni[snode X NEXT]→ ni[NEXT ni]
send ni[send nj TAIL]

(unicast) →
(

nj[TAIL] if (ni, nj) ∈ E

ε otherwise
send ni[send all TAIL]

(broadcast) →nj[TAIL] (∀j : (ni, nj) ∈ E)
match [match A TAIL1]+[A TAIL2]

→ [TAIL1 TAIL2]
matchs [matchs A TAIL1]+[A TAIL2]

→ [TAIL1 TAIL2]+[A TAIL2]
matchp [matchp A TAIL1]+[A TAIL2]

→ [matchp A TAIL1]+[TAIL1 TAIL2]

rules is shown in Tab. 1. For example, molecule
[sexch NEXT A B]→ [NEXT B A]

starts with instruction sexch, which treats its tail as data stack
(the last symbol is the top of the stack) and swaps the last symbols.
For example, when applied to [sexch a b c d e] this will
result in [a b c e d]. Instructions can also be manipulated in
this way (code rewriting). Note that stack instructions are a new
addition to the original instruction set.

A Fraglet node, or reaction vessel, contains a multiset of fraglets.
Nodes communicate by exchanging fraglets. Formally, the network
is described by a graph G = {N, E}, where the set of nodes N =
{n1, . . . , nk} is connected by bidirectional network links or edges
E = {e1, . . . , el}. Consider Fig. 2 for an example topology. Two
nodes ni and nj are called neighbors iff ∃e = (ni, nj) ∈ E∨∃e =
(nj , ni) ∈ E. In this case we define adj(ni, nj) = adj(nj , ni) =
1, or 0 if there is no direct connection between the nodes. Nodes
are able to send fraglets over the attached links in either broadcast,
anycast or unicast mode (see the send instruction in Tab. 1).

The third element of an artificial chemistry triple, A, is an al-
gorithm that describes the dynamic behavior of the system. At any
time, several chemical reactions are potentially viable, but only one
will be executed. The algorithm A selects which molecules have to
be processed in the next iteration and how long the system has to
wait before the next reaction shall occur. Fraglets uses the Gillespie
algorithm [7] that models the chemical law of mass action [2].

Each node is an independent artificial chemical reactor, de-
scribed by its own triple (Si, Ri, Ai). The transmission of fraglets
between two neighbor nodes ni and nj is done by the send in-
struction, which converts a molecule Mi ∈ Si in vessel ni into
the same word Mj ∈ Sj , but located in the neighbor vessel nj ,
or Mi → Mj in the notation of chemical reactions. This spans a
global distributed reaction system defined by the triple (S, R, A),
where S =

S
i∈N Si and R =

S
i∈N Ri.

2.2 Self-Healing Code
We aim at software that is robust to the destruction of parts of its

own code base. The software has to continuously observe its own
health state, detect an attack and autonomously take counteractions
by repairing itself. Obviously, this behavior cannot be performed
by static code; the program must have the possibility to modify
its own code at runtime. A kind of software homeostasis as de-
manded in [15] can be achieved by self-replicating program parts
where each operational block replicates its own code while being
executed.
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Figure 1: Autocatalytic quine
In [13] we proposed to use autocatalytic quines to achieve self-

healing code. In computer science, “quines” are programs that pro-
duce their own source code as output [17]. An autocatalytic quine is
a program fragment that produces more than one copy of itself and
therefore self-replicates. In Fraglets this can be realized by a set of
three fraglets. Figure 1 shows the reaction network of such an auto-
catalytic quine. The cycle starts when an input data molecule (IN )
is available: The active rule (Q(A)) reacts with the data molecule
(and disappears). The reaction product performs the desired com-
putation and generates both a molecule representing the result of
the computation (OUT ) as well as a replication reward (Q(R)).
The latter molecule consumes the blueprint of the quine (Q(B)),
which contains a description of how to regenerate two copies of the
active rule and of itself. Because of this duplication, the number of
quine molecules will grow exponentially if the input molecules are
continuously replenished.

In order to prevent unbound growth of a reaction vessel we ex-
tend the reaction algorithm A to keep track of a vessel’s capacity
N . After each iteration, the extended reaction algorithm examines
the multiset M and counts the number of molecules exceeding N
(∆ = |M | − N ). If ∆ > 0 the algorithm randomly selects ∆
molecules in M and removes them from the multiset. This cre-
ates a “dilution flow” that operates randomly on all molecules of a
vessel as soon as it would overflow.

Reaction chains with no growth in molecules would quickly be-
come extinct in case they are put in competition with autocatalytic
quines, which grow in number. The many duplicates of the quine in
Fig. 1, for example, will have a better chance to occupy the space
of the vanishing molecules than the molecules from a static chain.
Considering now a competition between autocatalytic quines, sur-
vival will depend on how aggressive their growth is. If several
quines process the same stream of data molecules, for example if
the second quine consumes the data molecules produced by the first
quine, their replication is coupled. If one of the quines in this pro-
cessing chain is eliminated completely, the whole chain will die
out. However, we have previously shown that if at least one of each
quine instances is present, the whole program built out of such co-
operating quines is able to survive [13]. There we also examined
under which circumstances such quines are resistant to other at-
tacks such as mutations.

The protocol software discussed in this paper makes use of cou-
pled autocatalytic quines such that the program is robust to the de-
struction of any participating molecule. In the whole system, code
portions as well as data molecules, like routing table entries, con-
tinuously rewrite themselves.

2.3 Dynamical Analysis
Algorithm A, the Gillespie algorithm, stochastically simulates

chemical reaction rates according to the law of mass action. In ev-
ery iteration it calculates which reaction occurs next and when this
reaction occurs based on a probabilistic selection. The dynamic be-
havior of the chemical reaction network can be predicted by means
of a deterministic approach. Putting the dilution flow aside for a
moment, the time evolution of the concentration vector can be ap-
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Figure 2: Network topology with 10 nodes and two services.

proximated by a system of ordinary differential equations (ODEs)

˙̃n(t) = Sv (1)

where ñ(t) = (ñ1, . . . , ñm)T is a vector of the number of
molecules of each type in the reaction vessel, S is the stoichio-
metric matrix, and v = (v1, . . . , vr)

T the reaction velocity vector
according to the law of mass action: For instance, the velocity of a
bimolecular reaction r, 2A + 3B

k−→ C, is given by vr = kn2
An3

B ,
where k is a given kinetic constant for the reaction.

In order to take into account the dilution flow, one has to model
the removal of the excess molecules after each iteration step.
Stadler et al. showed in [16] that such systems can be described
by the catalytic network equation. In our case this can be written
as

ṅ(t) = ˙̃n(t)− n(t)

N
Φ(t) (2)

where Φ(t) is the total overproduction given by

Φ(t) =
mX

i=1

˙̃ni(t) (3)

Unfortunately, such a system of differential equations cannot be
solved analytically, even for a simple reaction network like that of
a single autocatalytic quine. Instead, one has to use a numerical
integrator available in mathematical packages like Scilab [1]. Fig-
ure 5 shows the concentration traces of a reaction network for both,
the stochastic Fraglet simulation as well as for the deterministic
prediction using Scilab. The meaning of the reaction network that
generates these values will be explained in a later section; here we
point out that the deterministic calculation accurately predicts the
stochastic simulation.

3. SELF-HEALING ROUTING CODE
The task of a routing protocol is to setup forwarding state in a

network’s nodes such that data packets can be forwarded across
the net. At the same time, the forwarding state should maximize
throughput and minimize packet losses. In our case we addition-
ally wish that the routing software is able to tolerate code deletion
attacks, meaning that the routing protocol continues to operate and
self-heals as soon as possible.

3.1 Definitions
Throughout this paper we will base our simulations on the net-

work topology as shown in Fig. 2 which consists of 10 nodes con-
nected by bidirectional links. At selected nodes we have services
which are the final destinations to which data packets shall be de-
livered. Each service, as well as each node, has a globally unique
flat identifier.

The same service may be replicated and made available at differ-
ent locations in the network. In this case, data packets can be sent
to any node that provides this service. Figure 2 shows that service
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sa is registered at nodes n1 and n7. This enables a data centric
network model [9] where packets for a given destination service
are forwarded to any (preferentially to the closest) node where the
service is present. In this model, the routing protocol becomes re-
sponsible for disseminating the availability of all services in the
net.

Formally, we extend the topology by a set of services S =
{sa, sb} and a set of associations between services and nodes
(bindings) B = {(sa, n1), (sa, n7), (sb, n5)}. A service sm is
bound to node ni iff ∃b = (sm ∈ S, ni ∈ N) ∈ B. Alternatively,
we can define a function bnd(sm, ni) = 1 if service sm is bound
to node ni, or 0 otherwise.

3.2 Protocol Overview
Our protocol was inspired by the structure of an eukaryotic

cell [12] which features a nucleus. Each network node has two
reaction vessels: The main vessel serves as forwarding engine that
forwards incoming data packets to one of the neighbor nodes (see
Fig. 3). A second vessel called “nucleus” contains the “genome”,
which in our case accumulates information about the topology of
the network in form of routing table entries. Linking both vessels,
there are “riboquines” (inspired by ribosomes in cells) which are
responsible for “expressing” the nucleus’ routing table entries into
forwarding rules in the main vessel.

The first task of our protocol is to gather information about
the network topology: Each node has to obtain knowledge about
which service can be reached over which neighbor node(s) as in
traditional distance vector protocols. Unlike in traditional routing
protocols, we do not aim at immediately finding the best path to a
service; instead, the transmission paths are later reinforced by the
forwarding engine.

Path reinforcement is based on a competition and reward mech-
anism for forwarding rules. Forwarding rules are <destination ser-
vice, next hop> tuples represented by an active fraglet that poten-
tially reacts with a passive data packet destined to that service. On
each node the Gillespie algorithm randomly selects one of the for-
warding rules matching the packet’s destination, based on the cor-
responding concentrations. When a packet finally reaches the des-
tination service, an acknowledge packet is sent back along the re-
verse path. This acknowledge packet reacts with all corresponding
rules that previously forwarded the data packet and triggers their
replication. Thus, whenever a forwarding rule contributed to the
successful delivery of a packet, it is duplicated, thereby increasing
its concentration and hence the probability of being chosen for a
next forwarding task.

The reward mechanism just described results in the most efficient
path to get reinforced. Less efficient paths quickly vanish due to the
dilution flow: If one forwarding rule is allowed to replicate, another
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Figure 4: Distributed reaction network to disseminate routing table entries.

rule has to die. This means that if there is a preferential path to a
certain destination, the corresponding forwarding rules may com-
pletely displace rules for a suboptimal alternative path. This would
be a problem if the forwarding rules would be the only place where
we keep the topological information about the network’s structure.
However, this information is kept inside the nucleus which effec-
tively shields connectivity data from the fierce competition and path
optimization. The role of the nucleus is therefore to cultivate a
variety of alternative paths and to continuously inject them into
the forwarding engine. Even if suboptimal paths are squeezed out
when another path suddenly becomes more attractive, the nucleus
provides the initial rule for it, which can be re-instantiated later.

In Sect. 3.3 we first show how routing information is dissemi-
nated among the nuclei to build a routing table entry multiset in
each node. Then, in Sect. 3.4 we discuss the “riboquines” before
we analyze the self-optimizing forwarding engine in Sect. 3.5.

3.3 Dissemination of Routing Table Entries
In the context of an artificial chemistry a routing table may be

represented by a multiset of molecules where each molecule in-
stance contains a 〈sm, path(sm)〉 tuple, where path(sm) is a list
of nodes along the path to the destination service. In order to keep
a high variety of alternative paths to the same destination, a dissem-
ination protocol periodically obtains copies of routing table entries
from all neighbors. Figure 4 shows the resulting distributed reac-
tion network for a subnet of our topology, and for a given node ni

it can be formally described as
∀ni ∈ N : (4)

∅ ρr−→ RTEi ∀sr ∈ S : bnd(sr, ni) = 1

∅ σ−→ TFRi (5)
TFRi + SFR(A)i −→ SFR(R)i

+
X

nj∈N

adj(ni, nj)FR
(i)
j (6)

SFR(R)i + SFR(B)i −→ 2SFR(A)i + 2SFR(B)i (7)

FR
(j)
i + RTEi −→ RTEi + RTEj (8)

Every node to which a service is bound periodically injects ser-
vice specific routing table entries into its nucleus. For example,
node n7 (Fig. 2) injects an entry referring to service sa (n7[RTE
sa]) into its nucleus subvessel, at a certain rate ρa (Fig. 4). In
the reaction graph, a routing table entry in node ni is referred to as
RTEi; the formal chemical reaction is shown in Eq. (4).

The dissemination program in node ni is realized using an auto-
catalytic quine SFRi which consists of three molecules SFR(A)i,
SFR(R)i, and SFR(B)i. The replication of SFRi (7) is trig-
gered by a periodically injected fraglet TFRi (5) whose injection
rate σ sets the pace for the exchange of routing table entries. Con-

sequently, the quine broadcasts active fetch route packets (FR
(i)
j )

to all neighbors at rate σ (6). This is also the rate at which entries
from neighbor nodes are fetched, by the FR

(i)
j fraglets (8). An in-

coming FR
(i)
j fraglet reacts with a randomly selected routing table

entry RTEj on the remote side, makes a copy of it, appends its
own node identifier nj to the copy, and sends it back to the node
that originally sent the fetch request. This is shown in the following
reaction trace:

nj[matchs RTE snode _ send ni RTE] (FR
(i)
j )

+ nj[RTE sa] (RTEj)
→ (nj[RTE sa]) (RTEj)
+ nj[snode _ send ni RTE sa]
→ nj[send ni RTE sa nj]
→ ni[RTE sa nj] (RTEi)

The last line shows that node ni ultimately collected an RTE
entry which states that service sa is reachable via node nj . The
multiple RTE entries will accumulate in the nucleus and will be
subject to a dilution flow: This automatically removes entries for
services that no longer exist.

From the reactions in Eqs. (4)–(8) we generated the differential
equation system according to the catalytic network equation and
simulated them in Fraglets. Figure 5 shows the outcome in both
cases for the scenario where node n10 joins the network at t = 300
and node n2 leaves the network at t = 500. At t = 300, the
concentration of sa molecules starts to rise in node n10 because it
starts to broadcast fetch route messages to its neighbors (Fig. 5).
Because of the dilution flow the concentration reaches a steady-
state in which there are more entries to service sa over the link to
neighbor n2 than n4. When node n2 disconnects at t = 500 s, the
concentration of routing table entries for sa slowly change to favor
the remaining link via n4.

The routing table is slow in adapting to topological changes. E.g.
it takes about 500 s to forget about link (n10, n2) after node n2 has
been switched off. But since we are only interested in the diversity
of alternative paths, this does not matter. The forwarding engine
will adapt faster on changing link characteristics as we will discuss
later.

Note that the routing table entries are passive molecules, i.e. they
cannot perform actions themselves. The next task for our protocol
is to generate active forwarding rules based on the passive entries.

3.4 Expression of Routing Table Entries
The riboquines1, introduced in Sect. 3.2, “express” the collected

routing table entries for ultimately producing the forwarding rules.
Riboquines are periodically triggered at rate φ to translate the nu-
1We use the word “riboquine” in analogy to the ribosomes in eu-
karyotic cells that translate genetic information (mRNA) into pro-
teins [10].
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topology in Fig. 2) of a stochastic simulation in Fraglets, and an
ODE prediction.
cleus’ passive routing table entries into active forwarding rules for
the node’s main vessel.

The riboquines are located in the nucleus2, although they expel
the generated active rules to the outer vessel. This location is im-
portant because it protects the molecules involved in the dissemi-
nation and expression of routing table entries from the competition
for resources in the outer vessel. Note that in a steady-state when
there are no data packets to be forwarded in the outer vessel, the
concentration of forwarding rules is proportional to the concentra-
tion of the corresponding routing table entries in the nucleus.

The riboquine generates two different kinds of forwarding rules,
one for the case where the target service is locally present, and an-
other one for a remote service. Technically, the first case can be rec-
ognized by the fact that the corresponding RTE fraglet has length
2, for example [RTE sa] for a local service sa, meaning that we
should install a local delivery rule like [match sa deliver].
In the other case the entry has length greater than 2 (e.g. [RTE sa
n1 n2]) and the riboquine expresses a forwarding rule of the type
[match sa send n2 sa]. The exact structure and operation
of the forwarding rules will be discussed in the next section.

3.5 Forwarding Path Reinforcement
A natural way of implementing a forwarding engine in Fraglets

is to use active molecules ([match sx send ...]) as for-
warding rules: A data packet of the form [sx...] will react with
such a rule, leading to the actual forwarding (send). Such for-
warding rules are injected by the “riboquines”. For example, after
some time the forwarding state in node n10 could look like

n10[match sa send n2 sa]60
n10[match sa send n4 sa]20
n10[match sb send n4 sb]40

There are two competing rules for a data packet [sa my data].
According to the law of mass action, the reaction probability is pro-
portional to the concentration of the reaction rules. In our example,
75 % of the packets to sa will be sent to neighbor n2 while 25 %
travel over n4. The following reaction trace shows how the first
forwarding rule reacts with a data packet and sends it to the next
hop:

n10[match sa send n2 sa] + n10[sa my data]
→ n10[send n2 sa my data]→ n2[sa my data]

A forwarding rule is therefore consumed for each data packet that
is sent. The rate of replenishment by the riboquines may not match
the rate of the incoming data packets. Therefore a mechanism is
needed that regulates the concentration of forwarding rules by se-
lectively replicating them.

2Unlike in biological cells where ribosomes are located in the
rough endoplasmic reticulum within the cytoplasm.

Replicating Forwarding Rules. As sketched in Sect. 3.2, we
will install a stream of feedback fraglets that reward those rules
which participated in a successful delivery of a data packet. Recall
from Fig. 1 that a reward Q(R) for a quine act as a trigger for its
replication. We now defer the reward until an acknowledgment is
received as depicted in Fig. 6. Because the reward has to travel
backwards, we construct the reverse route during the forwarding
by appending the id of each node that the data packet traversed.

At the end of the forwarding chain, a delivery quine creates an
acknowledge packet and embeds the collected rewards inside. This
ACK fraglet travels backwards and, by successively delivering the
rewards, triggers the replication of all those quines that created a
good forwarding rule. Consequently, these quines increase their
relative concentration compared to the other forwarding quines in
the same node, resulting in a higher strength of that forwarding path
compared to competing paths.

If the stream of data packets travels over an overloaded link,
some of the (data as well as ACK) packets fall victim to buffer
overflows and are lost. Naturally, the concerned forwarding quine
will never receive a reward in such cases: It is indirectly punished
by the fact that there may be a competing path that is able to repli-
cate its quines faster.

4. RESULTS
This section shows how our protocol responds to link, delay and

loss disruptions, as well as code deletion attacks. We will always
use the network topology shown in Fig. 2 and study the impact on
a data stream from a source in node n10 to destination service sa.
First, in Sect. 4.1 we show that after a link outage the data stream
is deviated over other available links. In Sect. 4.2, we demonstrate
that packets are preferably sent over links without packet loss with
little impact on the data stream itself. Section 4.3 uncovers a rather
counterintuitive phenomenon: delayed paths seem to have a small
benefit compared to ideal ones. Finally, in Sect. 4.4 we highlight
the robustness of the protocol software against code and data dele-
tion attacks.

4.1 Link Loss
The most typical topological change in a network is the tem-

porary outage of a link. Here we consecutively disconnect link
(n10, n2), and link (n10, n4). Aside from these outages, the links
are ideal: they neither lose packets nor deliver them delayed. The
results are summarized in Fig. 7.

At t = 200 s, the concentration of forwarding rules (Fig. 7(a))
reflects the concentration of the corresponding routing table entries
in the nucleus which favors the transmission path over neighbor
n2. At t = 300 s, we start injecting data packets with a rate of
20 packets

s
. Consequently, as shown in Fig. 7(b), most of the traffic

is sent to n2 and thus this forwarding rule is able to replicate faster
than the competing rule over n4.

At t = 400 s, the link (n10, n2) is disconnected. The remaining
rules for 〈sa, n2〉 still send packet over the broken link, but they
don’t receive acknowledgements and are not able to replicate any-
more; the packet loss rises to 100 % (Fig. 7(c)). The death of these
rules is to the credit of 〈sa, n4〉 rules, which are able to gain con-
centration and probability of being chosen. Hence the data traffic
is redirected over the remaining link.

Later, at t = 500 s, we reconnect link (n10, n2). Fig. 7(c) shows
similar packet loss rates and end-to-end delays for either link. Thus
the quine over n2 only has a slight advantage, resulting in a weak
attraction towards this path. This situation changes when the now
preferred link (n10, n4) is dropped at t = 700 s, rules over n4

starve and the link over n2 is strongly preferred.
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Figure 6: Reaction network of a single forwarding path as a chain of autocatalytic forwarding quines with deferred replication.

4.2 Packet Loss
Next, we examine the situation where the link (n10, n4) exhibits

a packet loss probability of 20 % while the remaining network is
still ideal. Figure 8 shows these results.

After t = 300 s, when data packet are injected, the forwarding
rules over the loss-free link receive all acknowledgments and there-
fore win the competition. Consequently, rules over n4 soon become
extinct. Unfortunately, this means that there is no alternative for-
warding rule when the primary link is disconnected at t = 400 s.
In the next 100 s no packets are forwarded anymore until a data
packet is finally consumed by one of the rules that are continu-
ously generated by the riboquine. After this obstacle is overcome,
the rule quickly becomes stronger, because there is no competition.
The observed down time can be reduced by increasing the rate φ
at which the riboquine injects new forwarding rules. This again
highlights the importance of the separate nucleus which maintains
the diversity of alternative paths. Finally, at t = 500 s, when we
reconnected link (n10, n2), the lossless path quickly outperforms
the alternative path over n4 as desired. A direct comparison of
Figs. 7(b) and 8(b) shows that the attraction of the path over n2 is
much stronger in the latter scenario.

4.3 Delay
Finally, we examine the behavior of the protocol when having

links with delayed packet delivery. We again start with an ideal
network with the exception that link (n10, n4) exhibits a delay of
1 second. A simulation trace of this scenario is shown in Fig. 9(c).

Surprisingly, after t = 500 s, when link (n10, n2) is recon-
nected, the re-adaption until t = 700 s is slower than for the ideal
network: The concentration of forwarding rules (Fig.9(a)) over the
delayed link to n4 is not suppressed as quickly as in Fig. 7(a) where
the link has no delay. Even though path n2 wins the competition,
the delayed path has a small benefit compared to the ideal one. One
would expect that the delayed data packets and acknowledgments
would result in slower replication of the forwarding quine over n4.
However, there is another aspect that has not been discussed so far:

Even if the round-trip time is longer over a delayed path, the
rate at which the acknowledgments return is the same. After one
initial round-trip time the forwarding quine then replicates with the
same rate as its competitor. Even if the latter had a head start in
gaining weight, the force to displace other molecules is the same
for both quines. Furthermore the queueing capacity of a link rises
with its delay; more packets are on the wire at the same time, and
these packets are not subject to the dilution flow of any reaction
vessel anymore. Remember that data packets in a reaction vessel
are also subject to dilution, since they have to wait a short time until
being picked up by a forwarding rule. This idle time is dictated by
the Gillespie algorithm that simulates the collision of molecules in
a well-stirred reaction vessel. If a data stream is able to “store”
packets in the non-diluted environment of a delayed link, it has a
small advantage. This explains why the reaction network does not

react to delays as intuitively suggested.
The fact that the path over ideal link finally wins the competition

is due to the fact that in our topology the data stream passes less
nodes in average: The system is more sensitive to the number of
hops than to the actual round-trip time. This behavior needs further
investigation.

4.4 Self-Healing Aspects
We used an artificial chemistry for packet routing because of its

ability to feature self-healing properties. We first constrained each
reaction vessel by a dilution, which forced us to carefully design
programs that constantly replicate in order to survive in this en-
vironment. As a result, our protocol software consists of several
interdependent quines that obey two different robustness concepts:

(i) In the nucleus we foster a protected environment in which ev-
ery node is able to control its net production rate; there is no uncon-
trolled inflow of molecules. The reference clocks, generated by the
injection frequencies of the trigger molecules (ρ, σ, and φ), control
the rate at which routing table entries are imported from neighbors
and therefore the growth rate of the molecules in the nucleus; the
riboquine expels its products to the main vessel. Thus the dynamic
behavior of the nucleus is predictable, and since the whole active
code in the nucleus is made of quines, the whole dissemination and
expression process resists deletion attacks as shown in [13].

(ii) The quines in the forwarding engine are not able to repro-
duce themselves immediately, since the required reward is deferred
by the acknowledge mechanism. The forwarding quine may there-
fore become extinct, for example if the data packet or acknowledge
packet is lost. However, this extinction of code is desired, because
it enables populations of successful forwarding quines to grow in-
stead. Furthermore riboquines periodically repopulate the forward-
ing engine with fresh rules.

Figure 10 shows a simulation trace where molecules suffer de-
struction attacks. At t = 400 s, we randomly remove 50 % of all
molecules from both reaction vessels in node n10. Even though
the reduction is clearly visible in Fig. 10(a) the effect on data rate,
packet loss, and delay is hardly noticeable. In a long lasting attack
it may happen that the data packets start to accumulate due to the
reduced number of forwarding rules. As soon as the attack is over
the accumulated data packets will temporarily increase the reaction
rate of the forwarding quine due to the law of mass action, which
will compensate for the reduced transmission rate during the attack.

5. RELATED WORK AND ASSESSMENT
We now compare our protocol to two other biologically-inspired

routing protocols (AntNet [5] and MARAS [11]), then critically as-
sess our protocol in this context.

In AntNet [5], each node periodically sends forward ants to
known destinations. The path of the forward ant is stochastically
determined by the already existing routing table. The forward ant
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records the number of hops and the latency during its journey.
When reaching the destination it generates a backward ant that trav-
els back to the source node and deposits pheromones on the nodes
according to the quality of the path.

MARAS [11] assumes that the location of the destination service
can be approximated using geographical information and therefore
does not need to disseminate location information. Their forward-
ing engine also probabilistically selects one out of multiple possible
next hops. When the packet reaches the destination, the quality of
the path is evaluated and this information is sent back along the
path to update the routing tables.

The concentration of chemical signals is used to indicate the
quality of a path in both AntNet and our protocol. Unlike AntNet
however, the dissemination part of our algorithm does not know
the available services, since there is no feedback from the forward-
ing engine to the nucleus. The nucleus broadcasts unspecific fetch
requests to its neighbors to learn about the existence of services.
After expressing the entry, the forwarding engine already has a for-
warding rule to deliver a packet to a destination to which it has
never sent a packet before. However, this approach does not scale
well when there are many services in the network. MARAS avoids
this step by using geographical information to approximately find
next hops towards the destination service.

The three algorithms use feedback information from the destina-
tion service to update their forwarding logic, which then stochasti-
cally selects a path. While the update frequency in AntNet is deter-
mined by the independent rate at which discovery ants are sent, the
adaption speed of MARAS and our algorithm depends on the rate
of the forwarded traffic. The main difference of our algorithm com-
pared to the others is that it does not explicitly calculate the quality
of a certain path. We never store a metric, delay or quality value
symbolically in one of the molecules. Instead, the concentration of
molecules together with the reaction algorithm leads to the emer-
gent phenomenon of optimal path reinforcement. This mechanism
is more robust when facing destruction attacks: a deleted entry does
not distort the probability of choosing a certain path.

The presented protocol is not superior to comparable multipath
routing protocols but has code healing abilities. One observed
problem is that links with shorter delays are not preferred. In ad-
dition to this, there is a small portion of data packets that might be
lost by dilution. Then, data packets have to wait a short time until
they are randomly chosen by a forwarding rule, and finally, data
packets may be reordered within a reaction vessel. However, the
presented protocol correctly switches to alternative paths to avoid
dropped links or nodes and tries to optimize for high throughput
and therefore low packet loss.

6. CONCLUSIONS
Our results show that continuous code rewriting is a valid ap-

proach for self-healing applications that have to work over a net-
work with variable topology and quality. A notable property of our
multipath routing protocol is that there is no central control, su-
pervision or health monitor: Instead, code homeostasis is used to
solve – in one go – the tasks of self-healing, topology tracking, load
balancing, link quality assessment and forwarding.

The dilution flow, that randomly eliminates excess molecules, is
at the same time a panacea and curse. The difficult part is to engi-
neer regulation loops that are stable despite the continuous pressure
on code fraglets. On the other hand, dilution flow is the basis for
running a competition among execution alternatives and for imple-
menting a form of continuous garbage collection.

We have started to expand our research towards other “autocat-
alytic patterns” in order to enrich our design methodology beyond

compact quines. On the other hand, designing distributed “chem-
ical” applications by hand is challenging because of the difficulty
in anticipating the emergent effects of a local change in a chemical
rule. Instead, we would need a system that generates and tries al-
ternative execution branches in an automatic way, creating compe-
tition and cooperation on a next level of “service super organisms”.
Based on the work presented here we believe that the encoding of
state as rates (instead of numeric symbols), the pressure of a dilu-
tion flow and the principle of continuous and regulated code rewrit-
ing will play an important role for code evolution in the net.
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