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ABSTRACT
Natural phenomena such as the synchronization of fireflies,
interactions between neurons, and the formation of earth-
quakes are commonly described by the mathematical model
of pulse-coupled oscillators. This article investigates the be-
havior of this model when oscillators form a meshed network,
i.e. nodes are not directly coupled to all others. In order to
characterize the synchronization process of populations of
coupled oscillators we propose a metric that allows to char-
acterize the level of local synchronization. We demonstrate
the merits of the proposed local metric by means of two
case studies that examine the effect of imperfections on the
synchronization process, namely the presence of frequency
drifts and propagation delays.

Keywords
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1. INTRODUCTION
Synchronization is a common ensemble behavior displayed

by biological systems. Some striking examples include the
synchronization of fireflies in South-East Asia where fireflies
gather on trees at dawn and synchronize their blinking [4];
heart cells synchronizing so that the heart contracts appro-
priately [16]; the synchronous firing of neurons [9, 2]; and
the formation of earthquakes [7]. A comprehensive overview
of these phenomena is available in [19].

All these fascinating examples are governed by similar ba-
sic rules: each node, e.g. a firefly, a heart cell or a neuron,
maintains a periodic function dictating when to pulse, and
this function is adjusted when receiving pulses from other
nodes. This oscillator model is known as pulse-coupled oscil-
lator (PCO). Depending on intrinsic dynamics and on the
rules defined for adjusting internal functions, different be-
haviors can be achieved.

To characterize the synchronization state in a population
of coupled oscillators, Kuramoto introduced a synchroniza-
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tion metric in [11], which allows to study the effect of im-
perfections, such as frequency drift and noise [17]. The Ku-
ramoto metric represents the degree of coherence in the net-
work on a global scale, and therefore ignores the fact that
nodes in self-organizing networks only interact locally with
their neighbors. When nodes form a meshed network it is
more meaningful to measure the synchronization state lo-
cally, only accounting for nodes that are directly connected.
For instance, in wireless networks, local synchrony is more
important than global synchrony with regards to packet
transmissions, because the collision probability depends on
local synchrony.

In this paper, a local synchronization metric targeted at
meshed networks is presented, using elements from graph
theory. The proposed metric is computed based on local
information only, and enables individuals to quantify their
local synchronization level.

To validate the proposed metric two case studies are con-
ducted: the behavior of PCOs under imperfect clock condi-
tions and the effect of propagation delays. Discrepancies in
the frequency of internal oscillators are unavoidable in prac-
tice. It is shown that even in sparsely connected meshed
networks and within certain limits on the coupling, PCOs
are still able to synchronize. Propagation delays may cause
instability to PCO synchronization [6]. This result is ex-
tended to meshed networks. The synchronization metric
allows to characterize and quantify the transition from the
initial unordered state to the stable synchronized state in
the presence of delays.

This paper is structured as follows. Section 2 presents the
PCO model describing firefly synchronization and some of its
applications to neural networks and wireless networks. Sec-
tion 3 introduces a measure for local synchrony, and exam-
ines its behavior under two illustrative network topologies.
Finally Sections 4 and 5 apply the local metric to character-
ize the behavior of PCOs in the presence of frequency drift
and propagation delays, respectively.

2. BIOLOGICALLY-INSPIRED
SYNCHRONIZATION

The theory of PCOs describes entities that mutually inter-
act at discrete time instances via infinitely short pulses. The
first part of this section reviews PCO synchronization and
introduces the underlying rules leading to in-phase synchro-
nization, i.e. all oscillators pulse simultaneously. Thanks to
its simple set of local rules, the PCO model has been con-
sidered in different fields. Some of these applications are
summarized in the second part.



2.1 Pulse-Coupled Oscillator Synchronization
A system of N pulse-coupled oscillators is considered, and

each node n, n=1, . . . , N in the system is described by its
phase variable φn, which determines when a pulse is emitted.
The evolution of φn over time depends on the node’s internal
dynamics and on interactions with other nodes.

As long as no pulse is perceived, a node behaves as an
uncoupled oscillator. Its phase variable φn grows linearly
over time with a given rate:

dφn

dt
=

1

T
. (1)

Whenever φn=1 at reference instant t=τn, the node fires:
it emits an infinitely short pulse, and the phase variable
is reset to 0, increases again linearly, and so on. Thus, if
the oscillator is uncoupled or it does not receive any pulse
between two firing instants, it fires with constant period T .

Based on this phase function, we define an internal clock cn
for node n:

cn = exp (j 2π φn) . (2)

For an uncoupled node, the internal clock cn rotates around
the unit circle at constant speed 1/T , and passes through
the firing instant cn=1 every T seconds.

Synchronization rules. When a node m fires at instant
t=τm and if nodes n and m are coupled, the phase variable
φn is adjusted upon reception of the pulse from m. When
receiving such a pulse, node n instantly increments its phase,
depending on its current internal state φn(τm). The total
system behavior is described by:

φm(τm) = 1⇒
{
φm(τ+

m) = 0
φn(τ+

m) = φn(τm) + ∆φ (φn(τm)) , ∀n∈Nm

(3)
where τ+

m=τm+dt, and Nm denotes the set of nodes cou-
pled to m. The increment function ∆φ (φn) is called phase
response curve (PRC).

In [15] conditions on the PRC to reach synchrony for arbi-
trary initial time offsets are identified. A simple PRC lead-
ing to synchrony is the piecewise linear function

φn + ∆φ (φn) = min (α · φn + β, 1) . (4)

The terms α and β are the coupling parameters: α is the
slope and β is the initial value of the PRC. Assuming that
each node maintains the same PRC, if α > 1 and 0 < β < 1,
a set of nodes always synchronizes independently of the ini-
tial conditions. The time to synchrony is inversely propor-
tional to α. Figure 1 plots an example of the PRC (4)
for α=1.3 and β=0.01.

Synchronization process. A key feature in the synchro-
nization of PCOs is that, over time, nodes cluster into groups
of oscillators. This phenomenon is referred to as absorp-
tion, and occurs when the pulse of a firing node forces other
nodes to exceed their firing threshold, causing them to fire at
the same instant. As nodes have the same internal dynam-
ics, in a fully-meshed network where all nodes are mutually
coupled, absorptions are permanent. Mirollo and Strogatz
show that the set of initial conditions that never leads to
any absorption has a Lebesgue measure of zero [15]. There-
fore nodes following the PCO rules always synchronize from
any initial condition; nodes first gather into groups that

Figure 1: Phase response curve for α=1.3 and β=0.01.

gradually absorb one another, eventually forming one syn-
chronized group. In [12] Lucarelli and Wang extended the
demonstration to meshed networks where nodes are locally
coupled, and absorptions are not permanent.

2.2 Applications of PCO Dynamics
The mathematical model of PCOs provides simple rules

leading to synchronization, and has been applied to different
fields, integrating different constraints.

The application of PCOs to wireless systems is particu-
larly attractive, especially in ad hoc networks, as it enables
networks to synchronize in a distributed manner. Various
implementations and adaptations to wireless networks have
been considered, and some include:

• utilizing the characteristic pulse of Ultra Wide Band
(UWB) radio to imitate the PCO synchronization prin-
ciple [8];

• considering long synchronization sequences instead of
pulses, and appropriately delaying interactions so that
the accuracy is upper bounded by propagation de-
lays [20];

• placing the synchronization unit on the MAC layer,
and performing synchronization through the exchange
of a low-level timestamp [21];

• achieving a round-robin schedule in a decentralized
manner by modifying the PCO model so that nodes
fire one after the other with a constant offset [5].

Another interesting application of PCO dynamics is the
study of neural networks. Each neuron is modeled as an os-
cillator that emits electrical impulses periodically, and ad-
justs its emission instant when receiving impulses from other
neurons. The phase model for PCOs enabled Izhikevitch [9]
to study neural systems and to show possible behaviors, e.g.
synchronization if neurons have roughly the same internal
frequency, or oscillatory associative memory behavior under
certain coupling assumptions.

PCO dynamics have also been applied to design a com-
putationally efficient image processing algorithm. In [18]
the PCO model is applied to perform image clustering. A
coupling function different to (4) is defined that organizes a



population of PCOs into clusters: within each cluster oscil-
lators fire synchronously, while clusters themselves fire with
a constant phase difference.

3. SYNCHRONIZATION METRIC
The objective of a synchronization metric is to identify

whether a network is synchronized and to quantify the state
of the system. When all nodes are synchronized in-phase, i.e.
they all fire at the same instant, the metric should be equal
to 1. When the system is in disorder, i.e. firing instants
are randomly distributed within [0, T ], the metric should
approach 0.

This section details an global metric derived by Ku-
ramoto [11]. Then a new metric targetted at locally cou-
pled oscillators is presented, and applied to two particular
network topologies to motivate its behavior.

3.1 Global Synchronization
The Kuramoto model introduces the mean field of phases,

defined as [11]:

r exp
(
j 2π φ̄

)
=

1

N

N∑
n=1

exp (j 2π φn) =
1

N

N∑
n=1

cn (5)

where r is the Kuramoto synchronization index, and φ̄∈[0, 1]
is the mean phase of all N oscillators.

The mean field r is an indicator of the coherence due to
synchronization in the network. If all phases are equal, the
complex exponentials in (5) add up constructively and r=1.
If phases are uniformly distributed in [0, 1], then r→0.

The Kuramoto metric for N=2 nodes evolves according
to:

r =
√

1
2

(
1− cos (2π(φm−φn))

)
. (6)

The Kuramoto metric is not specific to any oscillator
model, and can be applied to the PCO model presented in
Section 2.1. As an example, Figure 2 plots the evolution of
N=20 phases following the simple rules of (1) and (3), and
the corresponding Kuramoto synchronization index r.

From Figure 2 the synchronization index starts with a
value close to r=0, and jumps abruptly when a node fires,
this jump being proportional to the number of firing nodes.
After three periods, two groups of oscillators have formed,
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Figure 2: Evolution of phases φn over time and the
corresponding Kuramoto synchronization index r.

at which point the metric remains close to r=0. Then the
metric gradually converges to r=1, and synchronization is
reached after six periods. The Kuramoto model (2) charac-
terizes the state of N nodes with a single number, and thus
captures the degree of coherence in a simpler manner than
the evolution of phases.

3.2 Local Synchronization
The Kuramoto index (5) is defined for the whole network.

In this section we define a metric targeted at meshed net-
works where nodes interact locally, so that the synchroniza-
tion state of a node with regards to its neighbors can be
quantified. Before presenting the metric, some preliminar-
ies from graph theory are summarized, which establishes a
measure for the connectivity of a given network.

3.2.1 Meshed Network
The topology of a meshed network is modeled as a graph G

consisting of a set of N nodes denoted by V and a set of links
denoted by E . Two nodes that have a joint link are called
neighbors. The set of neighbors of node n is defined as
Nn= {m : (n,m) ∈ E}. The number of neighbors of node n,
|Nn|, is the degree of the node. If all node pairs are connected
by a link, the degree of each node is N−1, and the network
is said to be fully-meshed.

The degree matrix of G, denoted by ∆(G), is a diagonal
matrix whose elements are equal to the degree of node n
on the n-th diagonal element and 0 elsewhere. The adjency
matrix of G is denoted by A(G), and its elements on line n
and column m are equal to anm=1 if nodes n and m are
connected and anm=0 otherwise. For an undirected graph,
A(G)=AT(G), where [.]T denotes the transpose operator.

The Laplacian matrix [1] is equal to:

L(G) = ∆(G)−A(G) . (7)

The spectrum of L(G) characterizes topological properties
of G [1]. The second smallest eigenvalue of L(G) is denoted
by κ, and is called algebraic connectivity. If the network is
connected, i.e. there exists a path between any two nodes,
then κ>0. If the network is fully-meshed, then κ=N . The
algebraic connectivity is an adequate measure of the network
topology when studying synchronization [14].

3.2.2 Local Metric
The state of a node is conveniently represented by its

clock (2), in terms of the complex exponential of its phase.
The proposed local synchronization metric for node n is de-
fined as the normalized sum of pairwise differences of local
clocks:

rn = 1− 1

|Nn|

∣∣∣∣∣ ∑
m∈Nn

(cn − cm)

∣∣∣∣∣ . (8)

The local metric is defined in the interval rn∈[−1, 1].
It is instructive to study the local metric by the evolution

of the clock difference cn−cm in the complex plane. Figure 3
shows the two clock vectors cn and cm and their resulting
difference cn−cm, which constitutes one element of the sum
in (8). In Figure 3 the phase of node n is equal to φn=0. The
set of possible resulting clock differences cn−cm describes a
circle, which is plotted with a dashed line in Figure 3.

If node n is synchronized with all its neighbors, then
cn=cm, ∀m∈Nn so that their difference is equal to 0, and
the local metric yields rn=1.



Figure 3: Geometric representation of two clock vec-
tors cn and cm and their resulting difference cn− cm.

Two interesting special cases also result in rn=0. If neigh-
boring nodes in Nn form two groups of equal size and are
anti-phase synchronized, i.e. the firing instants of each group
are delayed by T/2, then the pairwise difference in the sum
over m with cn in (8) gives 0 in half the sum and 2 in the
other half, resulting in a total metric of rn=0. The met-
ric also yields rn=0 when phases of neighboring nodes are
equally spaced in [0, 1]. In this case, the pairwise difference
with the clock of node n cancel each other, so that the nor-
malized sum in (8) becomes 1, which results in rn=0.

The local metric gives rn=−1 when two anti-phase syn-
chronized groups form, one composed of node n only and
all its neighbors forming the second group. Then cn=−cm,
∀m∈Nn, so that the magnitude of the clock difference be-
comes |cn−cm|=2, which yields rn=−1. Therefore rn is an
appropriate metric for characterizing the local synchroniza-
tion state.

The resulting metric for N=2 nodes is rn=1−|cn−cm|,
which yields, using the law of cosines

rn = 1−
√

2
(
1− cos(2π(φm−φn))

)
. (9)

Figure 4 compares the Kuramoto global metric (6) and the
proposed local metric (9) as the phase difference φm−φn

varies in a system of N=2 nodes. From Figure 4 the Ku-
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Figure 4: Resulting global and local metrics as the
phase difference φm−φn varies in a system of 2 nodes.

ramoto metric is less penalizing against small phase differ-
ences. On the other hand, the proposed local metric de-
creases rapidly as the phase difference increases. For in-
stance, when φm−φn=0.1, the local metric yields rn≈0.4,
whereas the global metric yields rn≈0.95. Around the max-
imum phase difference at φm−φn=0.5, the slope of the
global metric is discontinuous, whereas the local metric has
a smooth trajectory. Therefore the local metric pronounces
small phase changes but hardly varies when the phase differ-
ence is maximal. We believe that these are desirable prop-
erties of the proposed metric.

A further difference between the proposed metric and the
Kuramoto metric is that the former is exclusively computed
based on local information, as the sum in (8) depends only
on neighboring clocks. This is particularly useful when ap-
plying the metric to self-organizing networks where only lo-
cal information is available.

The proposed metric can be conveniently reformulated as
a function of the degree and Laplacian matrices. Let C be
defined as the vector of all internal clocks C = [c1 . . . cN ]T.
Then the local synchronization metric can be written as:

r = 1−
∣∣(∆(G))−1 · L(G) ·C

∣∣ (10)

with r = [r1, . . . , rN ]T.

3.2.3 Case Study: Two Interconnected Clusters
A benefit of the local metric can be observed when apply-

ing it to the network topology shown in Figure 5. In this
network, nodes within the same cluster can directly com-
municate, while the two clusters are interconnected by only
one pair of nodes. The algebraic connectivity of this network
is κ=8.91.

Figure 6 presents the evolution of the global and local met-
rics for this particular topology. During the first three peri-
ods, each cluster synchronizes almost independently, and the
local metric increases very rapidly to a value close to rn=1,
whereas the global metric decreases to r=0.15. This re-
flects the fact that nodes synchronize first with their direct
neighbors. After this initial phase, the two clusters mutu-
ally synchronize, and global synchronization is reached after
seven periods. During this time, the local metric does not
reach rn=1, because one neighbor of n is connected to the
other cluster, which perturbs the synchronization index rn.

3.2.4 Case Study: Ring of Oscillators
The diameter of the network is a common measure to de-

scribe a given topology; it is equal to the maximum number
of links on the shortest path between any node pairs. To
compare the behavior of the global Kuramoto metric and
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Figure 5: Two fully-meshed networks of 10 nodes
interconnected by one link.



the proposed metric, N oscillators form a ring and commu-
nicate directly with the two nodes that have the smallest
physical distance. The diameter of such a topology is equal
to N/2 when N is even and to (N−1)/2 when N is odd.
Figure 7 plots the evolution of the average global and local
metrics over time for 1, 000 sets of initial conditions. The
coupling parameters are set to α=1.2 and β=0.01, and there
is a constant interaction delay of 0.01T between two con-
nected nodes.

Increasing the network diameter impacts heavily the
global metric. For N=20, the metric converges to a value
close to 1, which indicates that the whole network has ap-
proximately the same phase value. As the diameter in-
creases, the global metric oscillates before settling to a de-
creasing value as N increases. This oscillating behavior is
due to the constant delay between nodes [3]. On the other
hand, the local metric does not change as N varies, which
confirms that nodes are synchronized on a local scale.

4. FREQUENCY DRIFT
A common question in network synchronization is to de-

termine the robustness of a scheme with regards to frequency
drifts. In (1) the phases of all nodes evolve with a constant
rate 1/T , but in practice, two oscillators are in general not
identical, and their internal frequency is distributed around
some nominal value.

In the presence of frequency drift γn, the internal clock
rate (1) of node n becomes:

dφn

dt
=

1 + γn

T
. (11)

We assume that γn is uniformly distributed in
[−γmax, γmax]. Thus the natural periods of uncoupled
oscillators are distributed between Tmin=T/(1+γmax) and
Tmax=T/(1−γmax).

Phase increments of the phase response curve (3) are al-
ways strictly positive (see Figure 1). Therefore nodes always
shorten their period and advance their next firing instant,
and thus attempt to catch up with a received pulse. In the
presence of frequency drifts, nodes thus tend to catch up
with the quickest oscillator, i.e. the node with the shortest
natural period Tmin.
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Figure 6: Evolution over time of the global and local
synchronization metrics for the two interconnected
fully-meshed networks.

If the frequency drift γn is too severe, some nodes are not
able to catch up with the quickest oscillator. To establish
the frequency drift limit, Figure 1 plots the phase limit φ`:
if the phase of a node is superior to φ` when receiving a
pulse, the node fires immediatly. Thus nodes whose phase is
the interval [φ`, 1] are absorbed by the received pulse. The
phase limit for absorption yields:

φ` =
1− β
α

. (12)

All nodes are absorbed by the pulse of the fastest oscil-
lator if their phase is in the interval [φ`, 1]. This imposes
a condition on the slowest oscillator, which should have a
phase φmin≥φ` when the quickest oscillator fires. This min-
imum phase is φmin = Tmin/Tmax = (1−γmax)/(1+γmax),
which gives the following condition for the maximum clock
drift:

γmax ≤
1− φ`

1 + φ`
. (13)

The absorption by the quickest node repeats itself peri-
odically, and re-aligns all phases every period. Therefore,
once nodes have synchronized, the synchronization metric
stays equal to one as long as condition (13) is met. To ver-
ify that this condition is valid in meshed networks, Figure 8
plots the evolution over time of the mean local synchroniza-
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Figure 7: Evolution over time of the mean global
and local metrics in a ring of N oscillators.
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Figure 8: Evolution over time of the mean local
synchronization metric in the presence of frequency
drift.

tion metric for several values of γmax obtained in networks
of N=25 nodes with an algebraic connectivity of κ=0.03.
Under the condition α=1.2 and β=0.01, the maximum clock
drift from (13) is equal to γmax≈0.10. In Figure 8 as long
as the drift is below this threshold, nodes are still able to
synchronize although the time to synchrony augments as
the drift increases. When the drift threshold is exceeded at
γmax=0.11, a large gap in the synchronization metric is ob-
served. Nevertheless the system is more ordered than in the
initial unordered state, because only a few nodes are unable
to follow the quickest node.

5. PROPAGATION DELAYS
When applying the PCO model to wireless networks,

propagation delays delay the coupling between nodes. It
was shown in [6] that coupling delays may lead to instabil-
ity. By the introduction of a refractory period where phase
adjustments are not permitted, stability is regained. In this
section unstable synchronization states and the effect of a
refractory period are characterized by the local synchroniza-
tion metric.

5.1 Refractory Period
Introducing coupling delays in a system of PCOs may lead

to an unstable system that is unable to synchronize [6]. To
regain stability, a refractory period after sending a pulse is
introduced [13]. During refractory, i.e. when φn<φrefr, no
phase increment is possible, so that pulses from neighboring
nodes are not acknowledged.

In [13], it was shown for two nodes that the system re-
mains stable if “echos” are not acknowledged, which is en-
sured by setting the refractory period to

φrefr > 2
ν

T
(14)

where ν accounts for the propagation delay between the
two considered nodes. Under these conditions and if
φrefr<0.5 [10], the system converges to a stable state where
firing instants are shifted by ν [13].

5.2 Delays in Meshed Networks
Determining the stable state achieved by a system of

PCOs in the presence of coupling delays is a difficult task.
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Figure 9: Example of the time evolution of the syn-
chronization index for different refractory durations.

In a fully-meshed network where all nodes are coupled di-
rectly to all others, the two node case can be generalized
as follows: if the refractory duration is at least equal to
twice the maximum propagation delay, the first firing node
forces its delayed firing instant onto other nodes, because it
discards their echos. Echos are discarded if φrefr, the refrac-
tory duration common to all nodes, satisfies the following
condition:

φrefr > 2 max
n,m

νnm

T
(15)

where νnm accounts for the propagation delay between
node n and its neighbors m. Therefore, in a fully-
meshed network, firing instants are spread within an interval
[τ1, τ1+νmax] where τ1 is the firing instant of the first firing
node and νmax is the maximum propagation delay with this
node.

In a meshed network, the stable state is not as clear, be-
cause the first firing node does not directly influence all other
nodes. To the best of our knowledge, the impact of propa-
gation delays in this case is an unsolved problem. We thus
apply the local synchronization metric to examine whether
the stability condition (15) is valid. As an example, Figure 9
plots the evolution of the metric for several values of the
refractory duration in a network of N=12 nodes with con-
nectivity κ=6 and a maximum propagation delay of 0.1T .

The synchronization metric in Figure 9 displays differ-
ent behaviors depending on the duration of the refractory
period. If φrefr is too short and (15) is not met locally,
then rn oscillates, which corresponds to an unstable state as
phases never align. If the refractory period is too large, i.e.
φrefr>0.5, nodes are not able to synchronize, and the metric
remains low. Finally, if the duration of refractory is appro-
priately chosen, e.g. φrefr=0.25, nodes synchronize, and the
metric displays a constant value that is close to rn=1. The
difference 1−rn accounts for the effect of propagation delays,
as the achieved accuracy is bounded by these delays.

To generalize these results, Figure 10 plots the achieved
mean synchronization index for different maximum propaga-
tion delays as the refractory duration φrefr augments, where
φrefr is common to all nodes. Simulations are conducted in
networks of N=25 nodes with κ=0.03.

Figure 10 confirms that the stability condition (15) is
valid in meshed networks. In case φrefr<2 νmax/T , the re-
fractory duration is too short, so that the system is un-
stable, expressed by a low synchronization metric rn. For
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Figure 10: Mean synchronization index for different
values of the maximum propagation delay.

2 νmax/T≤φrefr<0.5, the synchronization index is maximum
and remains constant. Thus the achieved accuracy does not
depend on the refractory duration φrefr but only on propa-
gation delays. Finally, when φrefr>0.5, the synchronization
index drops due to deafness between nodes, i.e. nodes spend
more time in refractory than in listen, and when nodes are
only in refractory (φrefr=1), the synchronization metric is
minimal, as nodes remain in the initial unordered state.

6. CONCLUSION
This paper studied the model of pulse-coupled oscilla-

tor applied to meshed networks. A synchronization metric
suitable for locally coupled oscillators was presented, and
shown to be useful in studying the synchronization process.
To demonstrate how the proposed metric characterizes the
synchronization state of the network, two case studies were
conducted. The first study looked at the synchronization
in the presence of frequency drift, and showed that even in
sparsely connected meshed networks, nodes synchronize as
long as a maximum drift is observed. The second study
extended to meshed networks a stability condition derived
for two nodes, and showed that if the refractory period is
appropriately chosen, the network synchronizes.
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