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ABSTRACT
In the last decade, there has been a considerable increase
of interest in fault-tolerant computing due to dependabil-
ity problems related to process scaling, embedded software,
and ubiquitous computing. In this paper, we consider an
approach to fault-tolerance which is inspired by gene regula-
tory networks of living cells. Living cells are capable of main-
taining their functionality under a variety of genetic changes
and external perturbations. They have natural self-healing,
self-maintaining, self-replicating and self-assembling mech-
anisms. The fault-tolerance of living cells is due to the
intrinsic robustness of attractors’ landscapes of their gene
regulatory networks. Previously, we introduced a technique
which exploits the stability of attractors to achieve a fault-
tolerant computation. In this paper, we evaluate this tech-
nique on the example of a gene regulatory network model
of Arabidopsis thaliana and show that it can tolerate 70%
single-point mutations in the outputs of the defining tables
of gene functions.

Keywords
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1. INTRODUCTION
Fault tolerance is the ability of a system to continue per-

forming its intended function in the presence of faults [30].
In a broad sense, fault tolerance is associated with relia-
bility, successful operation, and the absence of breakdowns.
Originally, techniques for fault-tolerance were used to cope
with low reliabilities of individual hardware components.
Designers of early computing systems used replicated gates
and flip-flops to detect faults, or applied voting to correct
faults [44, 53]. As semiconductor technology progressed,
hardware components became intrinsically more reliable and
the need for tolerance of component defect diminished in
general purpose applications. Nevertheless, fault tolerance
remained an essential attribute of systems used in safety-,
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mission- and business-critical applications such as military,
avionics and aerospace.

During the mid-90, the interest in fault-tolerance resurged
considerably. Smaller process sizes lead to an increased like-
lihood of noise-related faults caused by crosstalk. Lower sup-
ply voltage levels, which are used to decrease power dissipa-
tion, result in even higher susceptibility to noise [42]. More-
over, denser feature sizes considerably increase the prob-
ability of soft errors [13] (also called transient faults, or
glitches [3]) caused by cosmic rays and alpha particles. Shield-
ing and radiation hardening are difficult and not cost-effective
for most system designs. Shielding increases the weight and
size of the system. Radiation hardening is an expensive pro-
cess and, when used for a low-volume production, will lead
to very costly parts. Therefore, alternative methods for as-
suring fault-tolerance that do not have these drawbacks are
needed for general purpose applications.

Another rapidly growing area demanding fault-tolerance
is embedded software systems. Since software is inherently
more complex and less regular than hardware, achieving suf-
ficient verification coverage is difficult. Conventional testing
and debugging methods are inherently slow and unscalable.
They are generally incapable of covering functional corner
cases or finding hard-to-find bugs that may occur only after
hundreds of thousands of cycles (like Intel Pentium FDIV
bug [51]). The recent focus on formal methods promises
higher coverage, however, due to their large computational
complexity they are only applicable for specific applications.
As a consequence of incomplete verification, many design
faults in software remain undetected, creating a risk of seri-
ous accidents like Therac-25 radiation overdoses [36], crash
of the British destroyer Sheffield [37], explosion of Ariane
5 [38] and Challenger [2].

Interest in fault tolerance is further boosted by the on-
going shift from the traditional desk-top information pro-
cessing paradigm, in which a single user engages a single
device for a specialized purpose, to ubiquitous computing,
in which many small, inexpensive networked processing de-
vices are engaged simultaneously and distributed at all scales
throughout everyday life [55]. The demand for low-cost, low-
area, low-power devices which satisfy high safety and secu-
rity requirements of ubiquitous computing brings a need for
unconventional approaches to fault-tolerance.

In this paper, we discuss a possibility of finding new ways
to achieve fault tolerance by investigating principles used in
the creation of living cells. A living cell can be considered
as a molecular computer that configures itself as part of the
execution of its code. Cells can maintain their performance



under a broad range of random perturbations, varying from
temporary chemical or physical changes in the environment
to permanent genetic mutations. The core signaling network
of a cell is the gene regulatory network. The fault-tolerance
of living cells is due to the intrinsic robustness of attractors’
landscape of their gene regulatory network. The attractors’
landscape is determined by the dynamical phase in which
the networks operate, which is, in turn, determined by the
allocation of redundancy in the network. By understanding
the principles of redundancy allocation at the genetic level,
we may find ways to build fault-tolerant chips that can self-
heal, self-maintain, self-replicate and self-assemble.

In [22] we introduced a computational scheme which ex-
ploits the stability of attractors to achieve fault-tolerance
in a non-traditional way. In this scheme, the states of a
Boolean network represent variables of the computed func-
tion, and attractors represent function’s values. In this pa-
per, we evaluate the robustness of this computational scheme
on the example of a gene regulatory network model of Ara-
bidopsis thaliana and show that it can tolerate 70% single-
point mutations in the outputs of the defining tables of gene
functions.

The paper is organized as follows. In Section 2, we give a
brief introduction to gene regulatory networks. In Section 3,
we describe an abstract model of gene regulatory networks
called synchronous Boolean networks. In Section 4, we sum-
marize a Boolean network-based computation scheme pre-
sented in [22]. In Section 5 we describe an algorithm for
checking equivalence of two functions represented by dif-
ferent Boolean networks and in Section 6 apply this algo-
rithm to evaluate the robustness of the computation scheme
from [22]. Section 7 analyzes the relation between redun-
dancy allocation and fault-tolerance. Section 8 concludes
the paper and discusses open problems.

2. GENE REGULATORY NETWORKS
The Gene Regulatory Network (GRN) is one of the most

important signaling networks in living cells [7]. It is com-
posed of the interactions of proteins with the genome. The
major discovery related to GRNs was made in 1961 by French
biologists François Jacob and Jacques Monod [29]. They
found that a small fraction of the thousands of genes in the
DNA molecule acts as tiny ”switches”. By exposing a cell
to a certain hormone, these switches can be turned ”on” or
”off”. The activated genes send chemical signals to other
genes which, in turn, get either activated or repressed. The
signals propagate along the cell until it settles down into a
stable pattern.

Jacob and Monod’s discovery showed that the DNA is not
just a blueprint for the cell, but rather an automaton which
allows for the creation of different types of cells. It answered
the long open question of how one fertilized egg cell can
differentiate itself into brain cells, lung cells, muscle cells,
and other types of cells that form a newborn baby. Each
kind of cells corresponds to a different pattern of activated
genes in the automaton.

Jacob and Monod introduced the first model of the GRN
described by a system of differential equations for the acti-
vation and deactivation of the set of genes controlling the
transport and metabolism of lactose in E. coli. Since then,
this little genetic circuit, known as the lac operon, has been
a prototype for the modeling of the GRN. It is a point of
view of many biologists that the only valid approach for the

modeling of the GRN is through differential equations.
In 1969 Stuart Kauffman proposed an alternative model

of the GRN, called Boolean network [31]. In this model, one
is interested in the state of expression of the genes rather
than in the concentration of their products. The genome is
represented by a set of Boolean variables which are related to
each other through some logical rules. For many years, the
Kauffman model was considered as an over-simplification of
the GRN. Most did not believe that the Boolean approach
can yield accurate descriptions of real biological systems.

However, recently it turned out that Kauffman’s model
is much more powerful than it was originally thought. Ex-
perimental and numerical evidence have shown that gene
expression profiles of real organisms can be recovered by us-
ing the Boolean approach [43, 5, 23]. Kauffman’s hypothesis
stating that dynamical attractors of the GRN correspond to
cell types have been investigated and confirmed experimen-
tally [28, 27]. These results show that the Boolean network
model indeed captures the essential aspects of the interac-
tions between the genes.

Many other network models of the GRN have been pro-
posed (see [46] for an overview). Although the details of
the network’s dynamics might change from continuous in
one model to discrete in the other, the general properties of
the dynamics appear to be model independent. It has been
demonstrated that continuous and discrete descriptions of
the GRN exhibit similar dynamical properties under very
general conditions [50, 17]. For example, a Boolean network
of the Drosophila melanogaster [6] has been shown to re-
cover the same patterns for segment polarity genes as those
recovered by a continuous model [52]. Discrete models are
further justified because recent experimental evidence sug-
gests that, at the individual cell level, gene expression is
digital and stochastic rather than continuous [16].

Apart of the simplifying assumption regarding the dis-
crete states of a gene, the Boolean network model assumes
the synchronous updating. It has been demonstrated that
synchronous and asynchronous updating schemes yield very
similar critical stability values, meaning that the transition
between the dynamical phases does not depend on the up-
dating scheme [25].

Lastly, the restriction to only two binary states has also
been shown justifiable. In [16], the original ternary-state
network model of Arabidopsis thaliana [23] has been trans-
lated to a binary-state one. It has been shown that the
Boolean model reaches the same number and type of at-
tractors as the ones reached by the original model. It also
responds to perturbations in a qualitatively identical man-
ner to the ternary one. These results suggest that binary
states are sufficient to capture the dynamical features of the
GRN.

3. BOOLEAN NETWORKS
In the synchronous Boolean network model of the GRN [31],

every gene is represented by a vertex in a directed graph with
an associated Boolean variable xi that can take two values:
xi = 1 if the gene is expressed and xi = 0 otherwise. The
genome is represented by a set of n variables, x1, x2, ..., xn.
An edge from one vertex to another indicates that the for-
mer gene regulates the latter. Time is viewed as proceeding
in discrete steps. At each step, the expression of the gene xi
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Figure 1: A Boolean network and its state transition

graph. Each state is a triple (xa, xb, xc).

changes according to the equation

xi(t + 1) = fi(xi1
(t), xi2

(t), . . . , xiki
(t)),

where xi1
, xi2

, . . . , xiki
are regulators of xi and fi is a Boolean

function which is assigned according to the inhibitory or ac-
tivatory nature of the regulators. The ki-tuples of values
of the regulators for which fi = 1 are called activatory as-
signments, and those for which fi = 0 are called inhibitory
assignments.

The state of the network is defined as an ordered n-tuple
of values of variables x1, x2, ..., xn describing which genes in
the network are expressed or not at a particular moment.
Since the network is deterministic and finite, any sequence
of consecutive states eventually converges to either a single
state, or a cycle of states, called attractor. The basin of at-
traction of an attractor A is the set of all states from which
A can be reached. Kauffman hypothesized that attractors
correspond to a combination of gene expressions which spec-
ifies a particular cell type or cell fate of an organism [32].
The number of cell types predicted by the Boolean network
model agrees well with our current knowledge [28, 33].

An example of a Boolean network is shown in Figure 1.
Arrows indicate activatory regulation and blunt-ends repre-
sent inhibitory regulation. The following Boolean functions
are associated to the vertices:

fa = x′

c

fb = xb · (x
′

a + x′

c)
fc = xb

where “·”, “+” and “′” stand for the Boolean AND, OR and
NOT, respectively. The state transition graph describing the
dynamics of this network is shown on the right-hand side of
Figure 1. There are two point (i.e. single-state) attractors,
(100) and (011).

The fraction p of activatory assignments of regulators in
the entire network, called the gene expression probability,
is an important parameter which controls the dynamical
phase in which the network operates. Dynamics of randomly
generated Boolean networks has been extensively studied
(see [8] for an overview). It has been shown that, for a given
gene expression probability p, the critical value kc of the
mean input degree of vertices at which the transition from
ordered to chaotic phase occurs is given by the equation:

kc =
1

2p(1 − p)
. (1)
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Figure 2: A gene regulatory network model of the

wild-type Arabidopsis thaliana.

In the infinite size limit, if the mean input degree k of
vertices in the network is smaller than kc, then the network
is in the ordered phase [24]. If k > kc, then the network is
in the chaotic phase [39]. If k = kc, then the network is on
the critical line [11].

Kauffman hypothesized that Boolean networks operating
on the critical line are good candidates for the modeling of
real GRNs [32]. On one hand, networks in the ordered phase
exhibit “frozen” dynamics in which small variations in the
initial state of the network typically die out over time. On
the other hand, networks operating in the chaotic phase are
extremely sensitive to small changes in the initial state, and
therefore unstable [26, 39]. A compromise between frozen
and chaotic behavior is achieved close to the critical line be-
tween the phases. Recent works have shown evidence that
GRNs of living cells operate close to the critical line [45,
10]. Critical systems exhibit remarkable properties. For in-
stance, they can integrate, process and transfer information
faster and more reliably than non critical systems [47]. They
can detect and respond to external stimuli whose intensities
span several orders of magnitude, like the brain [35]. These
properties are mainly a consequence of the long-range cor-
relations that emerge close to the critical line, producing
collective behaviors and coordinated responses of the entire
system [10]. Thus, criticality gives a system the ability to
respond and adapt to a rapidly changing environment.

Boolean networks have been applied to the problems of
cell differentiation [28], immune response [34], evolution [19],
and neural networks [9]. They have also been extensively
studied by physicists due to their analogy with the disor-
dered systems studied in statistical mechanics, such as the
mean field spin glass [18].

4. BOOLEAN NETWORK-BASED
COMPUTATIONAL SCHEME

Suppose that we have a Boolean network G with n vertices
v1, . . . , vn and m attractors A1, . . . , Am. Let the basin of
attraction of Ai be denoted by B(Ai). In [22] we introduced
the following computational scheme:



AP3 UFO FUL FT AP1 EMF1 LFY AP2 WUS AG LUG CLF TFL1 PI SEP Cell type
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 Infl1
0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 Infl2
0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 Infl3
0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 Infl4
1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 Pe1
1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 Pe2
0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 Sep
1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 St1
1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 St2
0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 Car

Table 1: Point attractors of the Boolean network in Figure 2; Infl = inflorescence meristematic cells; Pe =

petal primordial cells; Sep = sepal primordial cells; St = stamen primordial cells; Car = carpel primordial

cells.

Definition 1. A Boolean network with n vertices and m

attractors A1, A2, . . . , Am represents a function of type g :
{0, 1}n → {0, 1, . . . , m − 1} which is defined as follows:

g(s1, . . . , sn) = i if and only if (s1, . . . , sn) ∈ B(Ai),

for all (s1, . . . , sn) ∈ {0, 1}n and all i ∈ {0, 1, . . . , m − 1}.

In the definition above, the set of all points of the Boolean
space corresponding to the states in the basin of attraction of
Ai is mapped to i. Since the basins of attractions partition
the Boolean space {0, 1}n into m connected components via
a dynamic process, the mapping g : {0, 1}n → {0, 1, . . . , m−
1} is unique up to the permutation of m values of g.

As an example, consider the state transition graph of the
Boolean network shown in Figure 1. If we assign the logical
0 to the left-hand side attractor and the logical 1 to the
right-hand side attractor, then this network represents the
Boolean function g = x′

a · xb · xc.
The size of the resulting Boolean network representation

is linear in the number of variables of the represented func-
tion. The maximal number of steps required to compute the
value of the function for a given assignment of variables is
equal to the longest path to an attractor. Although such a
path can potentially be exponential in the number of vari-
ables, it is known that Boolean networks on the critical line
reach an attractor in a relatively small number of steps [8].
For example, in the Boolean network model of Arabidop-
sis thaliana considered in the next section, an attractor is
reached in at most 8 steps [16], while the mean number of
steps varies for different attractors from 1.64 to 3.96 [16].

5. EQUIVALENCE CHECKING
In order to evaluate the robustness of the computational

scheme given by the Definition 1, we need an algorithm for
checking whether a Boolean network after a mutation com-
putes the same function as the original network. In other
words, we have to check equivalence of two functions rep-
resented by two different Boolean networks. First, we in-
troduce the notion of state-isomorphism of state transition
graphs.

Definition 2. Two state transition graphs S1 and S2 are
state-isomorphic if they have equal number of connected com-
ponents and, for each component in S1 there is a component
in S2 which has the same states as S1.

As an example, consider the state transition graphs in
Figure 3. Both have two components which consist of the
same states. So, the graphs are state-isomorphic.

Lemma 1. Two Boolean networks represent the same func-
tion if and only if their state transition graphs are state-
isomorphic.

The proof follows from the Definitions 1 and 2.
Similarly to the general isomorphism, state-isomorphism

is an equivalence relation on state transition graphs which
partitions the set of all state transition graphs into equiv-
alence classes. Equivalence classes are related to our study
of robustness because a larger equivalence class implies a
higher probability of remaining in the same class after the
occurrence of a fault.

It is possible to check state-isomorphism using the algo-
rithm for computing attractors which we presented in [22].
This algorithm starts from a randomly selected state and
applies forward reachability analysis to find a state in some
attractor Ai. Then, using this state as a final state, back-
ward reachability analysis is performed to find the remaining
states in the basin of attraction B(Ai). The process is re-
peated starting from a state not previously visited until the
complete state space is covered. We use this algorithm for
checking state-isomorphism by running it in parallel on two
networks from the same initial state. For each computed
attractor Ai, the basins of attractions of two networks are
compared for equivalence of states. We use Binary Decision
Diagrams (BDDs) [15] for representing the set of states in
the basin of attraction, which makes the equivalence check-
ing particularly efficient (a constant-time operation). If the
basins are not state-isomorphic, the algorithm terminates.
Otherwise, it continues until the complete state space is cov-
ered.

6. EVALUATION OF ROBUSTNESS
Living organisms can sustain a wide variety of genetic

changes. Gene regulatory networks and metabolic path-
ways self-organize and re-accommodate to make the organ-
ism continue performing under many point mutations, gene
duplications and gene deletions [54]. In this section, we
demonstrate that the proposed computational scheme in-
herits the intrinsic robustness of living organisms. As a case
study, we take Arabidopsis thaliana. Arabidopsis is proba-
bly the most studied flower plant [14]. It was the first plant
to have its entire genome sequenced in 2000 [4].



Attractor Basin size
Infl1 512
Infl2 512
Infl3 256
Infl4 256
Sep 448
Pe1 8
Pe2 440
St1 15168
St2 568
Car 14600

Table 2: Size of the basins of attraction of the

Boolean network in Figure 2.

Number of Total number
Vertex tolerated faults of faults
AP3 98 128
UFO 0 2
FUL 4 4
FT 1 2
AP1 2 16

EMF1 0 2
LFY 0 16
AP2 0 2
WUS 0 8
AG 381 512
LUG 0 1
CLF 0 1
TFL1 6 16

PI 56 64
SEP 0 2
total 548 776

Table 3: Results of injecting single faults in each

output of all Boolean functions associated to vertices

of the Boolean network in Figure 2.

A gene regulatory network model of Arabidopsis thaliana
floral organ cell fate determination was presented in [16] (see
Figure 2). The description of Boolean functions associated
to vertices is given in the Appendix. These functions were
derived by the authors of [16] from molecular genetic ex-
perimental data. The state transition graph of the Boolean
network in Figure 2 has 10 point attractors, shown in Ta-
ble 1. These attractors coincide with the gene expression
profiles that have been documented experimentally in the
cells of wild-type Arabidopsis. The number of states in each
basin of attraction is shown in Table 2. Note that the sizes of
the basins of attraction may indicate which genes are crit-
ical to attain each cell type [16]. The largest two basins,
consisting of 15168 and 14600 states, belong to reproduc-
tive organs (stamens and carpels). They are much larger
than the basins of the perianth organs (sepals and petals).
A larger basin usually implies a more stable attractor, sug-
gesting that the cells of the reproductive organs are more
stable than the ones of the perianth organs.

We have tested the robustness of the function g : {0, 1}15 →
{0, 1, . . . , 9} represented by the Boolean network in Figure 2
in accordance with the Definition 1 by single random point
alterations of the outputs in the defining tables of gene func-
tions. At each run, one alteration was done in one of the

Total 10 102 103 104 105 106 107

Relevant 5 25 93 270 690 1614 3502

Table 4: Average number of relevant vertices in ran-

dom Boolean networks on the critical line.

outputs of the associated function of a selected network’s
vertex. After each alteration, the basins of attraction were
recomputed and the resulting represented function g com-
pared to the original one using the algorithm described in
the previous section. This was repeated for each output
of the Boolean functions associated to all vertices of the
Boolean network in Figure 2 (776 times in total). The re-
sults are summarized in Table 3. As we can see, 228 of the
776 altered networks (29.38%) yielded a different function
from the original one. So, 70.62% of single-point mutations
in the outputs of the defining tables of gene functions are
tolerated.

7. REDUNDANCY ALLOCATION
The robustness of biological systems is due to a large per-

centage of redundancy. Living cells use redundancy in genes
as well as redundancy and extensive feedback in regulatory
pathways in order to achieve regulatory reliability [41]. Re-
dundancy is believed to act as a protective buffer against
genetic damage and harmful mutations, reducing the prob-
ability that any single, random offense to the nucleotide se-
quence will affect the organism [49]. However, the principles
of redundancy allocation in GRNs are not well-understood
yet. Some studies indicate that the genome is heterogeneous
in terms of connectivity of individual genes [40, 16]. A large
portion of the genes are effector genes that do not directly
control the expression of other genes. These effector genes
are enslaved by a core of regulatory genes that have direct
outputs to the effector genes. Thus, the entire genome of an
organism can be seen as a “medusa” network with a regu-
latory head and many “tentacles” of enslaved effector genes.
The dynamical properties of the network are determined by
the head of the medusa network, thus the effector genes can
be considered redundant. The size of the head of regula-
tory genes is not known, but is believed to be substantially
smaller than the total number of genes of a typical genome.
For instance, in E. coli virus, the head of the medusa net-
work as computed from the Regulon Data Base consists of
less than 80 genes [40]. The total number of genes in E. coli
genome is 4377 [1].

In the context of Boolean networks, a vertex is considered
redundant if its removal does not change the attractors of
the network [48]. If a vertex is not redundant, it is called
relevant [12].

Table 1 shows our simulation results for randomly gener-
ated Boolean networks on the critical line with homogeneous
random topology (k = 2 and p = 0.5) of sizes from 10 to
107 vertices. The first row shows the total number of ver-
tices in the original Boolean network. The second row gives
the number of relevant vertices in the reduced network af-
ter the removal of the redundant vertices computed as an
average for 1000 networks. The redundant vertices were
identified using our algorithm RemoveRedundant [21, 20].
RemoveRedundant is an efficient linear-time heuristic. It
quickly finds a subset of redundant vertices which are evi-
dent from the structure of the network. RemoveRedundant



might miss to identify redundant vertices whose associated
functions have constant values due to the correlation of their
input variables. Therefore, the actual number of relevant
vertices might be smaller than the one shown in the second
row of Table 4.

It is well know that a network’s robustness is determined
not only by the number of redundant vertices, but also by
network’s topology and by its gene expression probability.
The influence of parameters such as input and output de-
gree distributions, type of feedback loops, etc., on networks’
fault-tolerance have been extensively studied. However, the
specific feature of our approach is that our definition of tol-
erance is weaker that the usual one. For us, a Boolean net-
work tolerates a fault as long as the basins of attraction of
the original and the changed networks are state-isomorphic.
This adds another ingredient to the mixture of traditional
parameters influencing a network’s robustness.

As an example, consider two networks shown in Figure 3.
The left-hand side network has the following Boolean func-
tions associated to its vertices:

fa = x′

a + xb

fb = xa · xb

and the right-hand side network has the functions:

fa = xa + x′

b

fb = xa · xb

Both networks have the same number of vertices and edges,
same gene expressions probabilities, same average number
of inputs and outputs, same input and output distributions,
and same type of feedback loops. By Definition 1, both
networks implement the 2-input Boolean AND. By applying
all possible single-point mutations to each output of each
associated function (8 in total), we can conclude that the
left-hand side network is tolerant (i.e. remains the 2-input
Boolean AND) to 4 faults (50%), while the right-hand side
network is tolerant to only 2 faults (25%). So, two networks
with apparently identical properties have different degrees
of robustness.

8. SUMMARY
Traditionally, fault-tolerance of a system is achieved by

adding redundant components. However, there are other
alternatives. In the computational scheme which we intro-
duced in [22], fault-tolerance is due to the non-uniqueness of
paths leading to an attractor. A fault may change a path,
but the destination remains the same with a high probabil-
ity. Therefore, if attractors are stable, the network is able
of sustain the majority of faults.

The stability of attractors strongly depends on the dy-
namical phase in which a network operates. Networks on
the critical line have been shown to have stable attractors’
landscapes while preserving the ability for evolutionary im-
provements. From the point of view of the computational
scheme from [22], evolvability might be useful for finding a
good Boolean network-based representation for a given func-
tion. We plan to address this problem in our future work.
In general, we can find a Boolean network representing a
given Boolean function g by applying traditional sequential
circuits synthesis techniques. We can build a state transi-
tion graph which partitions the minterms of g into basins
of attractions according to Definition 1, and then derive the
next-state functions for vertices of the network. However,

1001
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Figure 3: Two networks implementing 2-input

Boolean AND and their state transition graphs.

note that functions associated to vertices of a Boolean net-
work model of a GRN are always unate, since a gene regulate
another gene in either activatory, or inhibitory way, but not
both. Recall that a function f(x1, x2, . . . , xn) is called pos-
itive unate in a variable xi if f(x1, x2, . . . , xi−1, 1, xi+1, . . . ,

xn) ≥ f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn). Similarly, a func-
tion is negative unate in xi if f(x1, x2, . . . , xi−1, 0, xi+1, . . . ,

xn) ≥ f(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn). A function which
is either positive or negative unate in every variable is called
unate. Finding a state transition graph which can be de-
scribed by unate next-state functions only is an open prob-
lem. Selecting a solution which maximizes the robustness of
a network is another open problem.
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APPENDIX
This appendix presents defining tables for Boolean functions
associated to vertices of the Boolean network in Figure 2.
The sign “-” stands for any value, 0 or 1. In each table, only
the assignments of variables for which the function evaluates
to 1 are shown; for all remaining assignments the function
evaluates to 0.

LUG
1

CLF
1

UFO UFO
1 1

LFY SEP
1 1

AP3 FT
0 1

TFL1 AP2
0 1

LFY EMF1
0 1

AP1 TFL1 FUL
0 0 1

WUS AG SEP WUS
1 0 - 1
1 - 0 1

FT LFY AG TFL1 AP1
1 - 0 - 1
- 1 0 - 1
- - 0 0 1

AP1 EMF1 LFY AP2 TFL1
0 1 0 - 1

FUL AP1 EMF1 TFL1 LFY
1 - - 0 1
- 1 - 0 1
- - 0 - 1

AP1 LFY AG PI SEP AP3 PI
- 0 1 1 1 1 1
- 1 0 - - 1 1
- 1 1 - - - 1
1 0 - 1 1 1 1

AP1 LFY AG PI SEP AP3 UFO AP3
1 - - 1 1 1 - 1
- - 1 1 1 1 - 1
- 1 - - - - 1 1

AP1 LFY AP2 WUS AG LUG CLF TFL1 SEP AG
- - 0 - - - - 0 - 1
- 1 - - 1 - - - 1 1
- 1 - - - - 0 - - 1
- 1 - - - 0 - - - 1
0 1 - - - - - - - 1
- 1 - 1 - - - - - 1
- 1 0 - - - - - - 1


