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ABSTRACT
This work presents a cost-effective base station deployment
model based on artificial immune systems. It uses a multi-
objective algorithm based on artificial immune systems (MO-
AIS) as an optimiser. MO-AIS algorithms are a new class of
evolutionary algorithms. The Binary-coded Multi-objective
Optimisation Algorithm (BRMOA) is inspired by the clonal
selection theory and the immune network theory. In this in-
novative approach, the network is optimised for high service
coverage and low cost. The cost function takes into account
user-defined geographical costs and environmental legisla-
tion. The optimisation strategy is applied to two realistic
scenarios and results are compared.

Keywords
Base station deployment; optimisation; artificial immune
systems.

1. INTRODUCTION
The base station deployment problem is a multi-objective

problem (MOP). It involves many conflicting objectives: al-
low handoff between cells and at the same time guarantee
minimum interference, produce the best coverage at the low-
est possible cost of deployment and maintenance, respect the
local environmental legislation and obey the rules imposed
by the local government or by service regulatory agencies. It
involves both site selection and site configuration. A subset
of candidate sites is chosen based on traffic hold require-
ments and propagation data for a given area. For each se-
lected site, the number of installed antennae as well as their
configurations (type of antenna, azimuth, tilt, gain, power,
etc.) are determined.

Several models have been proposed [12]. The models show
differences in terms of detail or complexity, in the simulation
environment, in the type of network planning adopted, in the
number of objectives and which objectives are considered,
in the propagation model used for the path loss calculation
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and in the optimisation algorithm. Obtaining an accurate
estimation of deployment costs is a growing concern [9].

Many optimisation algorithms have been used: simulated
annealing [9]; local search algorithm [13]; evolutionary algo-
rithm [1]; genetic algorithm [10], [12]; tabu search [14].

The multi-objective optimisation algorithms based on ar-
tificial immune systems (MO-AIS) are a new class of evo-
lutionary algorithms. They are inspired by processes that
take place in the human immune system, such as: affin-
ity maturation, antigen recognition and receptor editing [4].
Many multi-objective algorithms based on immunological
mechanisms have been proposed [2], [5]: Constrained Multi-
objective Immune Algorithm (CMOIA); Multi-objective Im-
mune System Algorithm (MISA) [6]; Vector Immune Sys-
tem (VIS) [7]; Multi-objective Clonal Selection Algorithm
(MOCSA) [8]. In all MO-AIS algorithms, local and global
searches are carried out simultaneously [11].

2. MULTI-OBJECTIVE OPTIMISATION
The goal of a multi-objective optimisation problem (MOP)

is to find a solution that balances the conflicting objectives
and constraints. This solution is not unique and cannot be
considered a global optimum. The multi-objective optimi-
sation problem or multiple criteria optimisation problem is
described as follows.

Find

x = [x1, x2, .., xn]T , x ∈ Ω, (1)

that minimises or maximises the objective function

f (x) = [f1 (x) , f2 (x) , . . . , fk (x)]T , (2)

subject to

gi (x) ≤ 0 para i = 1, . . . , m, (3)

and

hj (x) = 0 para j = 1, . . . , p, (4)

where x is the vector of decision variables, m is the number
of inequality constraints, p is the number of equality con-
straints and Ω contains all possible x that can be used to
evaluate f (x) (decision space). Equations (3) e (4) describe
the dependencies among decision variables and parameters
in the problem. The set of plausible solutions (or candi-
date solutions) is called the Pareto optimal set and form the
Pareto front. Once the Pareto front is known, a decision
maker is able to choose the most suitable solution to a given
problem. The formal definitions of Pareto optimal set and
Pareto front are provided next.



Definition 1. (Pareto Dominance) A vector u dominates
a vector v (u � v) if and only if u is partially less than v,
i.e., ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 2. (Pareto Optimality) A vector x∗ ∈ Ω is
a Pareto optimal if and only if there isn’t a vector x′ ∈ Ω

for which v = f (x′) = [f1 (x′) , f2 (x′) , . . . , fk (x′)]
T

domi-

nates u = f (x∗) = [f1 (x∗) , f2 (x∗) , . . . , fk (x∗)]T . A non-
dominant solution is Pareto optimal.

Definition 3. (Pareto Optimal Set) For a given multi-

objective problem f (x) = [f1 (x) , f2 (x) , . . . , fk (x)]T , the
Pareto optimal set P ∗ is defined as

P
∗ :=

˘

x ∈ Ω | ¬∃ x
′ ∈ Ω f

`

x
′
´

� f (x)
¯

. (5)

When a vector x that is a Pareto optimal is evaluated
by f (x), the vector u é obtained. The components of the
vector u are the optimal solutions for each of the optimising
objectives. The performance of each component cannot be
improved without affecting another.

Definition 4. (Pareto Front) For a given multi-objective

problem f (x) = [f1 (x) , f2 (x) , . . . , fk (x)]T with the Pareto
optimal set P ∗, the Pareto front PF ∗ is defined as

PF
∗ := {u = f (x) | x ∈ P

∗} . (6)

All vectors in the Pareto front are non-dominant. As it is
sometimes difficult to obtain the Pareto front when real en-
gineering problems are considered, approximations are used.
It is necessary to make a distinction between the real Pareto
front PF ∗

r and the approximated Pareto front PF ∗

a , ob-
tained through the optimisation procedure.

2.1 Multi-objective Optimisation Based On Ar-
tificial Immune Systems

Most multi-objective optimisation algorithms based on ar-
tificial immune systems are inspired by the clonal selection
theory [11], [6], [8]. The immune cells B go through a process
called clonal expansion. The clonal expansion includes adap-
tation through mutation (somatic hypermutation) and a se-
lection mechanism. This selection mechanism makes sure
that the B cells, which produce antibodies with more affin-
ity, survive and subsequently become memory cells. This
combination of mutation and selection is called the affinity
maturation of the immune system. Other concepts or theo-
ries usually applied to the development of artificial immune
systems for multi-objective optimisation are [8]: the immune
network theory, receptor editing through a DNA library and
linfocines or chemical messages.

The MO-AIS algorithms include a memory population or
offline population and is divided into the following phases:
affinity evaluation, avidity evaluation, selection for cloning,
proliferation and mutation (somatic hypermutation) and di-
versification [2]. The iterative process is repeated several
times until a stopping criterium is met. The offline popula-
tion is constantly updated in the process.

The memory population or offline population stores the
best solutions, the Pareto front approximation. Dominance
relations are used to compare the vectors obtained through-
out the iterative process.

In optimisation, affinity means the evaluation of the ob-
jective function f (x) and the constraints (3) e (4). Avidity
refers to the overall binding intensity between an antigen

f (x) and an antibody (the solution vector x). Therefore, it
measures the quality of the candidate solution. In MOCSA,
the candidate solutions (antibodies) are classified into suc-
cessive non-dominant fronts according to dominance rela-
tions.

The selection for cloning the best Nc might be performed
deterministically or stochasticly. In order to promote selec-
tion proportional to the affinity between antibodies and anti-
gens or selection according to avidity, any selection mech-
anism commonly used in evolutionary algorithms might be
used, such as: roulette wheel selection, elitist selection, hi-
erarchical selection, tournament selection and bi-classist se-
lection.

The mutation rate inversely proportional to affinity and
the number of clones proportional to affinity when combined
result in a balance of local and global searches. Once the
percentage of individuals to be cloned is chosen, the number
of clones that each produces may be determined in different
ways [4]. The greater the number of individuals prolifer-
ating, the longer is the processing time. In MOCSA, the
number of clones is determined based on the Pareto front
the antibodies belong [8]. The number of clones is given by

Nc = round

„

β.N

i

«

, (7)

where β is a multiplying constant, N is the overall number of
antibodies, round(·) is an operator that returns the closest
integer value to its argument and i is the number of the
Pareto front it belongs.

The diversification phase is related to the global searches.
It is not present in all MO-AIS algorithms. By applying
diversification, it is possible to add new solutions randomly.
Based on the immune network theory, a common suppress-
ing operator is usually applied [7]. When two antibodies
are too close to each other, one of them might recognise
the other and, therefore, one of them is eliminated. If the
Euclidian distance between two antibodies in the objective
space is greater than a given value ǫ1, the antibody with the
greatest affinity will be suppressed.

In MOCSA, suppression is applied both to the decision
variable space and to the objective space [5]. In a more
recent work, Campelo et al. only apply suppression to the
objective space [8]. The objective space vectors are first
normalized to the unitary hypercube to account for possible
discrepancies between threshold values for each objective.
Then the distances between the remaining antibodies N in
the offline population are calculated. The distances of each
individual to its k closest neighbours are obtained, where k

is given by

k = round
“√

N
”

. (8)

The individual with the smallest sum of the k distances is
eliminated, as it is located in a dense region of the Pareto
front. The procedure is repeated until the memory popula-
tion reaches the maximum size specified by the user.

3. PROPOSED MODEL
The proposed model is a discrete test point model based

on [12]. The working area or simulation area W is discretised
into test points at Cartesian coordinates (x, y, z) at a given
resolution and the following data is defined:



• The reception test points RTP, where signal reception
quality is measured;

• The service test points STP, where the received signal
must be above the service threshold Sq, to ensure the
quality of service is met;

• The traffic test points TTP, with each carrying a traf-
fic load in erlang;

• The candidate sites CBS, which may contain up to 3
antennae;

• The angle of incidence matrix AIM, that specifies the
vertical angles from each CBS to each RTP;

• The path loss matrix PLM, with information regard-
ing the signal loss from each CBS to each RTP.

The standard urban empirical propagation model pro-
posed by Hata is used for path loss calculation. The model
also considers random shadowing effects as proposed in [10].
These can either amplify or attenuate the strength of the
signal at reception. They are obtained by the next pseudo-
random Gaussian value (µ, σ), where µ is the path loss value
and σ is 4dB.

The best server model is adopted, where each STP is
served by the CBS providing the greatest received signal
strength. A cell is defined by the set of STPs covered by
one antenna, where Pr ≥-90dBm. Each site may contain up
to 3 antennae.

A network subset CBS′ refers to a set of sites CBS with
at least one active antenna and satisfies the following objec-
tives:

• Coverage - It is the sum of the covered STPi in the
working area divided by the total number of STP as
a percentage. Thus,

COVERCBS′ =

nST P
P

i=1

STPi

nSTP

× 100, (9)

where

STPi =



1, if STPi is covered,
0, otherwise;

(10)

• Traffic - It is the sum of the current overall traffic in the
network divided by the total traffic load and expressed
as a percentage. Thus,

TRAFCBS′ =

n
CBS′
P

i=1

TCBS′

i

nT T P
P

i=1

TTPi

× 100; (11)

• Cost - It is the overall deployment cost and is given
by,

COSTCBS′ =
X

CBSi∈CBS′

[Cf (CBSi) + Cg(CBSi)] ,

(12)
where Cf (CBSi) is the fixed cost of deploying a base
station at a plain site and Cg(CBSi) is the geograph-
ical cost.

The fixed cost of deploying a base station at a plain site
includes:

• Acquisition, shipping and installation of equipment;

• Software licenses;

• Site acquisition or rent in an area, where there are
no restrictions on base station deployment, regarding
environmental impact, radio emission or local environ-
mental legislation;

• Site legalisation (bureaucratic fees, administrative fees
for permission for radio emission, legal expenses, tech-
nical reports from experts in the field in order to ap-
prove the site location);

• Site preparation including construction.

The geographical cost depends on the site location. It may
slightly increase overall costs or rather hinder site selection.
The working area is divided into the following categories:

• Standard or plain area:

It comprises urban and suburban areas where there are
no restrictions on radio emission;

• Areas with surcharge:

The surcharge refers to the high cost of property in the
city centre or in any other high-priced residential areas
and also to higher deployment costs in rural areas;

• Prohibited areas:

Even though environmental legislation tends to limit
base station deployment in certain areas, the compa-
nies may still need to choose a prohibited site so as to
meet technical requirements or for business expansion
purposes. Choosing a prohibited site means extra cost
related to fines and other bureaucratic fees;

• Preferred areas:

In order to reduce deployment costs, preferred areas
are chosen. These include areas where site sharing
is possible and buildings or areas belonging to the
company or business partners. The local government
might as well lease areas or buildings for deployment
at reduced costs;

• Mandatory areas:

These include areas where site deployment is manda-
tory for security reasons (inside tunnels and under
overpasses) and areas where a large number of people
are usually gathered (football stadiums, close to the-
atres, shopping malls, convention and trade centres,
etc.);

• Non-regulated areas:

These are not included in any of the previous cat-
egories and new procedures or fees may apply. In
non-regulated areas, the geographical cost is a random
value between the fixed cost of deploying a base station
at a plain site and the geographical cost of deploying
base stations in prohibited areas.



The optimisation strategy is divided into three phases:
pre-processing, site initialization and iterative process. In
the pre-processing phase, the configuration of the anten-
nae that ensure that maximum traffic load in each cell is
no greater than 5.4 erlang and the set of STPs covered
by each site are determined. The key aspect of the ap-
proach is to perform cell dimensioning only once and op-
timise the network for high service coverage and low cost.
If all STPs are covered, all TTPs are covered by definition,
since TTP ⊆ STP ⊆ RTP .

Site initialization with binary representation speeds up the
iterative process and reduces computational time [12]. Each
individual in the population is identified by a binary string
with length nCBS (number of candidate sites). Whether a
site is on or off is indicated, respectively, by 1 or 0. The
initial population is randomly generated and the number of
active sites is chosen according to the following criterium:
For the first third of the population, the number of active
sites is chosen between 1 and the minimum number of sites,
which could satisfy 100% traffic hold; For the second third
of the population, the total number of sites to be turned on
is between the minimum and double the minimum.

The optimising algorithm is based on MOCSA. MOCSA
adopts real-valued variables and is inspired by the clonal se-
lection theory and the immune network theory. The Binary-
coded Multi-objective Optimisation Algorithm BRMOA pro-
duced satisfactory results when compared to the NSGA-
II algorithm [3]. BRMOA uses binary representation for
the decision variables and replaces the Gaussian mutation,
adopted by MOCSA, with a uniform mutation [4], with
probability

pm =
1√

nCBS

. (13)

The proposed model is very flexible when it comes to can-
didate sites. It is possible to choose which sites to activate
throughout the iterative process. The user may use his ex-
perience to interfere in the process and lead the search to
previously selected sites.

4. SIMULATION RESULTS
The simulation environment used for analysis mimics a

metropolis. Figure 1 shows the simulation Table 1 contains
the simulation environment data. The candidate sites are di-
vided into twelve categories according to different geograph-
ical costs as shown in Table 2. The standard or plain area
accounts for 58.68% of the working area with randomly dis-
tributed candidate sites. Some preserved and high-priced
residential areas are expected to handle high traffic load.
Therefore, two prohibited sites are needed to meet traffic
requirements. Preferred sites are randomly distributed in
the working area. Both non-regulated and rural areas are
far away from the city centre. Geographical costs are user-
defined.

Two scenarios are considered for the analysis. In the
first scenario, sites in mandatory areas are active during
the whole iterative process. On the other hand, the sites
in preserved areas are always disabled. The remaining sites
are activated or disabled according to simulation results. In
the second scenario, sites in mandatory areas as well as sites
in preferred areas are always active. The analysis is carried
out in order to find out if total coverage is obtained, which
sites are selected and the criteria used to choose sites in both
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Figure 1: Simulation environment.

Table 1: Simulation environment data.
Working area 2,252.64 km2

RTPs 56,792
STPs 17,393

Candidate sites 568
TTPs 6,602

Traffic load 3,221.84 erlang

Table 2: Number of candidate sites and geographical
cost according to the different categories.

Candidate Cg

sites (per site)
Standard areas

Urban and suburban areas 339 0
Areas with surcharge

City centre 7 1.00
High-priced residential areas 37 2.00
Rural areas 31 1.00

Optional areas
Non-regulated areas 67 1.00-9.00

Prohibited areas
Preserved areas 44 9.00

Preferred areas
Site sharing 20 -0.50
Business partners 4 -0.50
Government 3 -0.25

Mandatory areas
Indoor (shopping malls) 7 4.00
Indoor (tunnels and overpasses) 3 3.00
Crowded areas 6 1.00



scenarios.
Table 3 describes the two scenarios. Minimum cost and

minimum number of selected sites refer to active sites before
the optimisation strategy is applied.

Table 3: Description of both scenarios.
Scenario 1 Scenario 2

Preserved areas 2 active sites 2 active sites
Preferred areas ”on” or ”off” always ”on”
Mandatory areas always ”on” always ”on”
Sites in other areas ”on” or ”off” ”on” or ”off”
Minimum sites 18 45
Minimum cost 77.00 91.25

The Pareto front approximations were obtained for an ini-
tial population of 30 individuals, when: gmax ≤ 10, ne =
12, 000, Pm = 100 e d = 0.25. As BRMOA is a stochastic
optimiser, a statistical analysis was carried out based on ten
runs of the software. Computing time was estimated based
on the number of objective function evaluations. Schott’s
spacing metric was chosen as a quality indicator [5]. It does
not require the researcher to know the real Pareto front. It
measures the distance variance of neighbouring vectors in
the Pareto front and is given by,

Sp =

v

u

u

t

1

N − 1

N
X

i=1

`

d − di

´2

, (14)

di = min
j

˛

˛

˛
f

i
1 (−→x ) − f

j
1

(−→x )
˛

˛

˛
+

˛

˛

˛
f

i
2 (−→x ) − f

j
2

(−→x )
˛

˛

˛
, (15)

where N is the number of vectors in PF ∗, d is the mean of all
di and f i

k (−→x ) is each component of the objective function.
Figure 2 shows the best Pareto front approximations ac-

cording to Schott’s spacing metric for an initial popula-
tion of 30 individuals for the first scenario. Figure 3 shows
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Figure 2: Pareto front approximation for scenario 1.

the Pareto front approximations for the second scenario.
The minimum network configuration guarantees coverage at
76.44% in the first scenario and coverage at 96.24% in the
second scenario. Total coverage is not obtained in any of
the scenarios. In the first scenario, maximum coverage is

99.72%, which refers to deployment cost of 207.00. In the
second scenario, maximum coverage is 99.97%, with deploy-
ment cost of 204.00. There is an increase of 0.26% at cover-
age and overall deployment cost is reduced by 1.45% when
the second approach is adopted. The addition of preferred
sites with low deployment cost guarantees satisfactory cov-
erage even before the optimisation procedure is carried out.
Overall deployment cost is higher for the first scenario, when
the same coverage is attempted.
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Figure 3: Pareto front approximation for scenario 2.

Figure 4 shows the number of objective function evalua-
tions after each generation for both scenarios. More objec-
tive function evaluations are observed in the first scenario,
since more variables are considered. Figure 5 shows the num-
ber of vectors in the Pareto front after each generation for
both scenarios. The number of solutions is sometimes re-
duced sharply in two successive generations. This is related
to the suppression operator that eliminates similar or very
close individuals from the memory population. The oscilla-
tions in the number of individuals in the memory population
are more intense in the second scenario, although the num-
ber of individuals is the same after ten generations. It is
important to point out that the number of solutions in the
Pareto front is higher than 30 after the very first generation
for both scenarios.

Table 4 and Table 5 show coverage, cost, number of sites
and traffic for solutions at 97%, 98% and 99% coverage for
both scenarios. The results were obtained in ten runs of the
software and after only one generation. When the number of
candidate sites is restricted, maximum coverage is attained
faster as shown in Table 5.

Table 6 and Table 7 show the type of candidate sites se-
lected for solutions at 97% coverage, 98% coverage , 99%
coverage and maximum coverage. In the first scenario, low-
cost preferred areas are only selected in order to reduce de-
ployment costs. When higher coverage is attempted, stan-
dard sites are chosen. The optimisation strategy selects ar-
eas with surcharge based on technical requirements. Non-
regulated areas are only selected when their geographical
costs are low. In the second scenario, there is a sharp fall
in the number of sites in standard areas. High-cost sites are
only activated so as to meet traffic requirements. Figure 6
and Figure 7 show sample solutions at maximum coverage
for both scenarios.
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Figure 4: Number of objective function evaluations
after each generation for both scenarios.
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Figure 5: Number of solutions in the Pareto front
after each generation for both scenarios.

Table 4: Coverage, cost, number of sites and traffic
at 97%, 98% e 99% coverage for scenario 1.

Coverage Cost Sites Traffic
mean mean mean mean

Std. dev. Std. dev. Std. dev. Std. dev.
97.026 141.167 60.667 96.717
0.204 6.449 1.528 0.639
97.984 152.583 67.667 98.101
0.098 8.064 3.055 0.324
98.948 181.167 74.000 99.064
0.168 20.642 10.001 0.295

Table 5: Coverage, cost, number of sites and traffic
at 97%, 98% e 99% coverage for scenario 2.

Coverage Cost Sites Traffic
mean mean mean mean

Std. dev. Std. dev. Std. dev. Std. dev.
96.901 101.583 51.333 96.424
0.304 1.528 2.517 0.443
98.244 119.25 64.000 98.101
0.295 3.606 2.000 0.581
99.047 138.917 69.667 99.185
0.009 5.033 1.528 0.131

Table 6: Selected sites in different solutions for sce-
nario 1.

Types of candidate sites Coverage
97% 98% 99% Max.

Standard urban areas 31 41 41 43
City centre 2 1 1 2

High-priced urban areas 3 4 3 6
Rural areas 1 2 3 7

Non-regulated areas 2 2 6 4
Preserved areas 2 2 2 2
Preferred areas 2 3 2 4

Mandatory areas 16 16 16 16
Total 59 71 74 84

Table 7: Selected sites in different solutions for sce-
nario 2.

Types of candidate sites Coverage
97% 98% 99% Max.

Standard urban areas 5 18 19 42
City centre 0 0 1 0

High-priced urban areas 0 1 1 9
Rural areas 0 0 3 3

Non-regulated areas 1 1 1 8
Preserved areas 2 2 2 2
Preferred areas 27 27 27 27

Mandatory areas 16 16 16 16
Total 51 66 70 107
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Figure 6: Maximum coverage for scenario 1.
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Figure 7: Maximum coverage for scenario 2.

5. CONCLUSIONS
This work has presented a cost-effective base station de-

ployment model based on artificial immune systems. It uses
a multi-objective algorithm based on artificial systems (MO-
AIS) as an optimiser. The Binary-coded Multi-objective
Optimisation Algorithm (BRMOA) is inspired by the clonal
selection theory and the immune network theory.In this in-
novative approach, the network is optimised for high service
coverage and low cost. The cost function takes into account
user-defined geographical costs and candidate sites are clas-
sified as such. The optimisation strategy was applied to
two realistic scenarios. An accurate estimate of deployment
costs was obtained when candidate sites were grouped ac-
cording to geographical costs and environmental legislation
was considered. Even though prohibited areas limit full cov-
erage goals, cost-effective solutions may still be obtained. By
choosing low-cost preferred sites, it is possible to accelerate
covergence and obtain high coverage solutions at low cost.
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