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ABSTRACT
One of the today issues in software engineering is to find
new effective ways to deal intelligently with the increasing
complexity of distributed computing systems. In this con-
text a crucial role is played by the balancing of the work
load among all nodes in the system. So far load balanc-
ing approaches have been designed for networks with fixed
or dynamic topologies. These approaches work well in the
case each node knows its similes and is able to contact them
to delegate tasks. However, they do not address the needs
of more dynamic systems where nodes are able to process
different types of jobs and have limited knowledge about
their neighbors and the whole system. To address these
issue, we are experimenting with the usage of autonomic
self-aggregation techniques that rewire such highly dynamic
systems in groups of homogeneous nodes that are then able
to balance the load among each others. We present our ap-
proach and show through simulation that it provides signifi-
cant advantages under the circumstances described before.
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1. INTRODUCTION
One of today issues in software engineering is to find new

effective ways to deal intelligently with the increasing com-
plexity of distributed computing systems. In this context
a crucial role is played by the balancing of the work load
among all nodes in a system.

The literature in the area of load balancing has produced
several algorithms aiming at supporting the nodes in un-
derstanding when they are overloaded and in deciding if to
delegate part of their tasks (see for example [25]). These
algorithms are mainly based on the use of iterative methods
derived from the linear systems theory [10] and they iter-
atively balance the load of a node with its neighbors until
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the whole network is globally balanced. They can be used
in networks with fixed topologies or dynamic topologies, but
they work well only in the case each node knows its similes
and is able to contact them to delegate tasks.

Therefore, there is the need to find new approaches that
could work properly in highly dynamic contexts. Think,
for example, of a system where nodes enter and exit the
system without following any rule (e.g., a conference room
where persons are free to participate or a megastore where
customers enter and exit continuously). The system is com-
posed of sensors and actuators, associated to people and to
service centers, with different capabilities and able to deal
with and to react to possible critical situations by dividing
the workload among similar nodes (e.g., nodes — represent-
ing people — in the conference room willing to share the lec-
ture recording and others — representing specialized clerks
— trying to share high numbers of customers with other
clerks to be able to fulfill their requests).

To address this issue, we are experimenting with the us-
age of autonomic self-aggregation techniques that rewire a
system composed of heterogeneous nodes in groups of homo-
geneous nodes that are then able to balance the load among
each others using classical techniques.

To this end we take advantage from researches that bor-
row some ideas from the biological world [27]. For instance,
they study the capability of various species to evolve in or-
der to better adapt to the environment they are living in.
Also, they analyze the behavior of colonies of insects and
their capability to self-organize [12, 7]. In this last case, the
main goal is to apply similar capabilities to software sys-
tems of interconnected components that singularly, like ants
for their anthill [2], have limited information and reasoning
power, but, all together, contribute to the high-level goals
for the whole system. Using this approach many complex
problems can be solved by executing simple rules locally to
each component of the system, regardless system size and
without the need of a centralized control [5].

In this context, self-aggregation algorithms aim at estab-
lishing and maintaining groups of components that coop-
erate to reach a common goal. The applications of these
algorithms include all cases in which there is a need for con-
tinuously reconfiguring those groups. Besides the pervasive
computing examples we have mentioned before, think also
at the case of a network of message brokers that need to be
restructured because of a failure in one of its portions.

In this paper we experiment with the usage of self-ag-
gregation algorithms to support load balancing in a highly
dynamic and pervasive setting. A preliminary description



of our work is reported in poster [14]. Here we describe
the approach in more detail and evaluate it through sim-
ulation. In particular, our simulation experiments show
how the application of self-aggregation algorithms enables
load balancing also in the presence of dynamic networks,
heterogeneous types, and variable workload and processing
time. Besides, our experiments show that the introduction
of self-aggregation does not introduce a significant overhead
in terms of execution time, even if it requires the exchange
of a higher number of messages between nodes.

The organization of the paper is as follows. Section 2
presents some existing dynamic load balancing algorithms.
Section 3 describes the aggregation problem and presents
some distributed algorithms that address it. In Section 4 we
discuss on how to apply self-aggregation for load balancing.
Section 5 presents the results we have obtained by simulating
the proposed approach. Section 6 presents an overview of
the state of the art. Finally, Section 7 concludes the paper.

2. DYNAMIC LOAD BALANCING
In this section we introduce the load-balancing problem

in the context of decentralized reconfigurable distributed
systems. In particular we focus on some existing dynamic
load-balancing algorithms and how it is possible to acceler-
ate their converge in overlay networks with multiple types
of nodes.

Load balancing algorithms can be broadly classified into
two categories, static and dynamic [23]. Here we focus on
the dynamic approaches that defer the decision on how to
distribute the jobs at runtime, based on dynamic informa-
tion instead of static one.

Assume a network of interconnected nodes. Each node
can be seen as a resource that is able to process jobs. Each
node corresponds to a type that defines which job(s) it is
able to process. In this kind of networks the purpose of
Load-Balancing is to distribute the jobs evenly to all the
nodes of the network with the aim to:

• increase the job processing rate of the whole network;

• increase the number of nodes involved in a computa-
tion, and reduce, at the same time, their utilization.

Extensive studies have been carried out on this topic applied
to networks of interconnected microprocessors and generic
parallel computing architectures. Some studies focused on
centralized architectures in which there is an entity that de-
cides the assignment of the jobs, others on decentralized
architectures where each node takes the decision to pass or
enqueue a job using its available information. In decentral-
ized architectures a node may have the following type of
knowledge:

• “a priori”static knowledge of network topology, such as
the probability of jobs distribution, static route tables,
etc;

• local dynamic knowledge of the list of neighbors, in-
cluding their type and their workload;

• global dynamic knowledge of the global status of the
network through a shared memory environment.

In the context of this paper we consider only the decentral-
ized architectures since we want a solution without single
points of failure that scales well with minimal configuration

issues when increasing the network size. Another require-
ment is that a node should not have global and a priori
knowledge of the network: this means that the decisions
on how to assign jobs would be taken on the basis of local
information only.

In the literature there are two algorithms that, using sim-
ple local rules and knowledge, are able to balance the work-
load of a network. They are the Diffusive Load Balancing Al-
gorithm and the Dimension Exchange algorithm [10]. Both
of them have been formally studied and their convergence
has been mathematically proved in [25]. Variations of these
exist as well (see for instance [30]), but they speed up the
load balancing convergence only in presence of some par-
ticular invariant properties, such as having a fixed network
topology or other predictable patterns. Thus, we do not con-
sider them since we do not want to make any assumption
on the evolution of the network that can arbitrarily evolve
gaining and losing links and nodes.

The Diffusive Load Balancing Algorithm is described by
the following formula that determines the workload w that
node i should have at time t+1 considering its workload at
time t as well as the workload of its neighbors at the same
time t :

wi(t+ 1) = wi(t) +
X

j

αij(wj(t)− wi(t))

In the formula, i is a generic node of the network, 1 ≤
j ≤ degree(i) identifies each neighbor of i1, and αij is an
algorithm parameter that is usually equal to the inverse of
the degree of node i incremented by one. Based on this
formula it results that the load of all the nodes in the net-
work tends to be evenly distributed after some time interval.
Figure 1 shows an example of how a network of four nodes
would evolve starting from the situation in which one of the
nodes owns all the load of the network. In the figure each
circle represents a node, each star represents a job. After
the network has been initialized, a node randomly activates
(black circle), and locks its neighbors (gray circles). Then, it
retrieves information about the number of jobs of its neigh-
bors, and, based on that, moves the jobs so to equilibrate the
load within its neighbors. Finally, the active node unlocks
the others. Iterations are repeated and can occur also si-
multaneously until a steady, load balanced, state is reached.
The main limit of this approach is that each activated node
requires to interact with all its neighbors in the same itera-
tion.

The Dimension Exchange Algorithm is described by the
following formula:

wi(t+ 1) = wi(t) +
wj(t)− wi(t)

2

where i is a generic node and j is a random neighbor of
node i. At the end of the iteration, both nodes will have the
same number of jobs. Figure 2 shows an example of appli-
cation of such algorithm. Its advantages, compared to the
Diffusive Load Balancing Algorithm, reside in the fact that
at any iteration the interaction is limited only to pairs of
nodes. This makes the algorithm less sensitive to synchro-
nization issues and more suitable in the case of dynamically
reconfigurable networks where the node degree changes sig-
nificantly over time. For the above reasons in our work we
1degree(i) defines the number of neighbors of i.



Init It. 1
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Figure 1: Example of execution of Diffusive Load Bal-

ancing Algorithm.

have decided to exploit this algorithm over the other. The

Init It. 1

It. 2 It. 3

Figure 2: Example of execution of Dimension Exchange

Load Balancing Algorithm.

presented algorithms consider a network of interconnected
nodes in which the topology can dynamically change but
they do not conceive the possibility to have various nodes
and jobs of different types coexisting in the same network
(heterogeneous case). In this case, if, for example, a node of
type A has 10 jobs of type A to balance, but its neighbors are
all (or almost all) of type B, the load balancing algorithm
is not able to work properly even in the case other nodes
of type A exist in the network. This is due to the implicit
assumption that this kind of algorithms work only on ho-
mogeneous network domains, where a homogeneous domain
is defined as a connected subgraph of the original network
that is composed only nodes of a single type.

We devise the following strategies to solve the load bal-
ancing problem in heterogeneous networks:

• make the jobs traverse the incompatible nodes;

• modify the links of the network (rewire) in order to
aggregate the nodes of the same type to form a single
domain.

The first solution is not applicable because the nodes are not
able to forward the jobs directly to their target since they
do not have enough global information about the network.
With the usage of a random policy it is possible that all the

jobs are eventually processed, but there is always a possibil-
ity that the convergence in extreme situations is worse than
not using load-balancing at all.

In the second method we need to identify a proper al-
gorithm to achieve such node aggregation without global
knowledge on the structure of the network. The consequence
is that, after the aggregation process, the Dimension Ex-
change Algorithm will behave in the case with heterogeneous
node types as efficiently as in the case with homogeneous
node types.

In the following section we describe a way in which each
node is able to modify the connections with its neighbors
in order to reach a more efficient and effective configura-
tion, while in Section 4 we describe the application of this
approach to the balancing of workload.

3. SELF-AGGREGATION ALGORITHMS
The final purpose of the self-aggregation algorithms we are

presenting is to rewire the network with the aim to reduce
the number of links from incompatible nodes and to add
new links to compatible nodes. The notion of compatibility
is related to the type of the nodes. In our case we refer to
a specific case of self-aggregation that is named Clustering.
In this case nodes tend to establish links with neighbors of
the same type. Therefore, compatibility between two nodes
is defined as the equality of their types.

Figure 3: The effect of clustering on a set of nodes.

Colors indicate the type of nodes.

Figure 3 shows the situation of a network of two types of
nodes (depicted by the back and white colors) before and
after the execution of the clustering algorithm. As it can
be seen from the picture, the network tends to organize in
two areas, one containing nodes of type black and the other
nodes of type white. These algorithms require to run contin-
uously in order to maintain a dynamic system in the desired
state even in unpredictable situations like independent ar-
rival and departure of nodes (this is called churn in peer-to-
peer networks [28]) due to their dynamic nature. In contrast
to what happens with other approaches like the one in [29]
the network may possibly be partitioned, but such partition-
ing will not be permanent since the continuous appearance
of new nodes will keep adding random links to the network.

While clustering algorithms, per se, are not new in the
literature (see the state of the art analysis presented in Sec-
tion 6), here the interesting aspect is that clustering is not
executed by a centralized entity, external to the network.
Instead, it is executed in a distributed way thanks to the
ability of each node to autonomously take a simple ”discon-
nect/maintain the link” decision on the basis of the type of
each neighbor.

In [13] and [24] we have presented the self-aggregation al-
gorithms we have identified so far. Here we briefly summa-
rize them and in the next sections we show how they could
be used to support load balancing.



The first algorithm we have studied is named Active Clus-
tering [24]. It is based on the iterative execution by each
node in the network of the following steps:

• at a random time the node elects itself as the initiator
node and elects a matchmaker node among its neigh-
bors;

• the matchmaker node chooses one neighbor that is
compatible with the initiator and makes the two es-
tablish a new link;

• finally, the matchmaker removes a link between itself
and the chosen neighbor.

The performance of this algorithm, in the following called
Original Saffre Clustering, has been evaluated in [24]. The
results clearly show that the system tends to reach a steady
state. Starting from these results we have tried to under-
stand why such simple and local laws are able to organize
complex networks with the aim of investigating possible fur-
ther optimizations. The most interesting fact we have no-
ticed is that the previous algorithm does not always perform
operations that increase the number of links between com-
patible nodes. In this case it is said that the algorithm intro-
duces some noise into the system. In [21] for example, it is
explained that in the biological world this noise is necessary
because, on large numbers, this increases the probability to
obtain an optimal solution. To understand if this observa-
tion holds in our context, in [13] we have investigated the
effects of an increase or a decrease of noise in the original
self-aggregation algorithms.

We have first removed all the noise from the original al-
gorithms: this resulted in a new algorithm that we call Fast
Algorithm. It is similar to the original one, but with the
additional constraint that an algorithm iteration can never
remove a link between compatible nodes. From the pre-
liminary simulations we have seen that, with respect to the
original algorithm, this one has a faster convergence rate be-
cause it avoids “noisy” iterations. Also, another advantage
is that it reduces the total number of link exchanges be-
cause of the lower number of neighbors that can be chosen.
The disadvantage is that the increase in the number of links
between compatible nodes is not as good as in the original
clustering. This leads us to conclude that the noise is a key
factor for the accuracy of the algorithm.

The second investigation we have done has been to in-
crease the algorithm noise. This case, that we have called
Accurate, assumes that the decision of adding and remov-
ing links in each algorithm iteration is fully unconstrained,
except for the fact that the total number of links must re-
main the same and that a link between incompatible nodes
can be added only if a link between incompatible nodes is
removed in the same iteration. This constraint ensures that
the aggregation level of the system in the worst case remains
constant and never decreases. After the preliminary simu-
lations we have seen a lower convergence rate and a larger
number of exchanged messages with respect to the original
algorithm. However the number of links between compatible
nodes has increased. This strategy is similar to what hap-
pens in genetic algorithms [16]: in a genetic algorithm each
iteration has a mutation operation that randomly modifies
the solutions that are computed until that moment. This
prevents the genetic algorithm to get stuck in local optima
and therefore improves the accuracy.

Given the advantages and disadvantages offered by each
solution, we have defined a self-adaptive algorithm that is
able to modify its behavior according to some local rules.
These local rules have been modeled as a Finite State Ma-
chine (FSM). As shown in Figure 4, the general logic is that
the algorithm starts behaving as the most constrained al-
gorithm (Fast Algorithm) and stays in that state until the
constraints inhibit further iterations (this happens when a
node gets stuck because it does not have neighbors to choose
that satisfy the algorithm requirements). In such a case
the algorithm switches to a medium-constrained algorithm
(Original Saffre Clustering) first and then, if it gets stuck
again, to the less constrained algorithm (Accurate Cluster-
ing). Finally, as soon as a new neighbor is added in a local
node, it switches again to the most constrained algorithm.

In Figure 4 Failure transition is triggered when an algo-
rithm is not able to complete an iteration because of its
constraints. Success transition is triggered when an iter-
ation terminates successfully. New Neighbors transition is
triggered when a new neighbor has been added to the local
node.

Figure 4: Adaptive Clustering Algorithm FSM

4. SELF-AGGREGATION FOR LB
As discussed in Section 2, to overcome the inherent limi-

tations of classical load balancing algorithms, we argue that
autonomic self-aggregation techniques could help since they
rewire the system in groups of homogeneous nodes that are
then able to balance the load among each others using clas-
sical techniques. The algorithm we have chosen for the re-
configuration of network topology is the Adaptive Cluster-
ing Algorithm presented in Section 3. This algorithm runs
in parallel with the Load Balancing algorithm in order to
enhance its convergence rate, and therefore maximize the
throughput of the system. More precisely, it is started when
the network is created and stays active forever. The only
information it uses and modifies is the list of neighbors of
each node involved in an iteration. In parallel, the Dimen-
sion Exchange Algorithm is activated when a node has in its
neighbors list at least a node of the same type and its queue
of jobs is not empty. It can modify only its list of queued
jobs and the one of its neighbors.

Since the two algorithms modify always different node pro-
prieties, no conflicts are possible, therefore they can be exe-
cuted in parallel without the need of coordinating them. An
example of execution of both algorithms can be seen in Fig-
ure 5. To make the example understandable to the reader,
the clustering and load balancing algorithms are shown as
interleaved, but in reality they actually are executed in par-



allel. In the figure circles represent nodes, circle color repre-
sents the type of the node, and the number reported inside
represents the current number of jobs contained in the node.
The nodes that are activated by the iterations of one of the
algorithms are depicted with a double border. In the ex-
ample we can see that, after applying load-balancing to the
initial configuration, we reach a steady state in which the
load is balanced at the local level, but not at global level.

After a clustering iteration, some previously separate do-
mains are possibly joined, therefore another load balancing
iteration is able to further improve the balance of the load.
If we iterate this process we reach the last configuration of
Figure 5 in which the network is fully clustered and the
workload is balanced at global level.
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Figure 5: Simultaneous execution of Active Adaptive

Clustering with the Dimension Exchange Load Balancing

algorithm.

Of course, during the execution of the algorithms the net-
work can evolve: new nodes can appear and connect to some
already existing nodes and others can disappear. Since self-
aggregation is always running, this do not cause severe per-
turbations to the whole system as we show in Section 5 ,
provided that the network continues to stay connected.

5. EXPERIMENTAL RESULTS
In this section we show the experimental results we have

obtained using a combination of load balancing and the pre-
viously introduced self-aggregation techniques on dynamic
and distributed networks with different types of nodes.

We first describe the simulation environment and the per-
formance parameters that have been used to quantify the
level of load balancing of the network (Section 5.1). Then we

describe the results we have obtained in Section 5.2. Finally,
we discuss about the strengths and the weaknesses of this
approach in terms of trade-off between convergence speed
and the message overhead that is added by the rewiring op-
erations (Section 5.3).

5.1 Setting up the Experiments
Simulation Environment. To set up the experiments we
have used a simulation framework that we have implemented
for this specific purpose. All the results that will be pre-
sented in this section have been produced by Monte Carlo
simulations that have been repeated at least 20 times, to give
statistical significance to the obtained data. In our previous
study presented in [13] we have shown that the adaptive
clustering algorithm is scalable with respect to the number
of nodes and links, therefore in the simulations we will start
with an initial number of nodes equal to 100 and an average
node degree equal to 4. Other values might be chosen with-
out affecting the results in a considerable way. The initial
topology that has been used is the Scale-Free one [4] since
it is the most similar to a real network. The heterogeneity
of the network has been fixed to 10% to have a reasonably
difficult scenario for the load balancing problem, therefore
we have 10 different types of nodes and jobs, with the con-
straint that a job cannot be assigned or processed by a node
that does not match its type.

The load of the network and the node processing time
vary over time. Indeed, the network structure changes dy-
namically in terms of nodes and links among them. Thus,
the following input parameters have been defined:

• Jobs distribution: this parameter indicates how the
jobs are distributed among the nodes. We have con-
sidered the case with an initial static workload of 400
jobs and the case of a run-time insertion of other 400
jobs every 20 seconds. All the jobs enter the system
in the most unbalanced way: they are sent to a single
randomly selected node for each type.

• Node processing time: this parameter specifies the job
execution time for the nodes of the network. We have
considered the situation in which all the nodes are able
to process the jobs in 5 seconds, and the case in which
70% of the nodes require 7 seconds and 30% 3 seconds;
in both situation the maximum ideal throughput is
equal to 20 jobs/second.

• Node churn: this parameter represents the rate in
which nodes can appear and disappear in the network.
We will show the situation without node churn and the
situation in which every 10 seconds 20% of the nodes
are removed from the network and replaced with other
nodes with new random links. The new nodes are cre-
ated in such a way that the cardinality of nodes, links,
types, and jobs tends to stay similar to the original
one.

Performance Parameters. To study the performance of
the load balancing algorithms the following three perfor-
mance parameters have been considered:

• the overall Number of completed jobs,

• Throughput = CompletedJobs/ElapsedT ime, and



• the Average Number of messages exchanged by each
node that counts the number of messages that are ex-
changed by each node since the beginning of the sim-
ulation.

For each performance parameter we have considered its min-
imum, its average, and its maximum.

5.2 Results
In Figure 6 we can see the most important results of our

experiments.
Load-Balancing without Rewiring. The experiment in
Figure 6a has been done to show how the basic distributed
load balancing algorithm behaves in a network with differ-
ent types. In this case rewiring is not executed. The ob-
tained results are similar to what we would ideally have in
a fully disconnected network: 10 jobs processed every 5 sec-
onds. This result is not unexpected since the load balancing
approach we have used has been designed to work in ho-
mogeneous networks only, in fact the actual load-balancing
happens only in small domains of the network as we pre-
dicted in Section 4. In other words further load balancing
iterations are inhibited by the fact that the jobs cannot tra-
verse the nodes with different types.
Load-Balancing with Rewiring. In the experiment of
Figure 6b we used the same parameters of the previous one
with the addition of the parallel execution of the Active
Adaptive Clustering rewiring algorithm on each node. The
results show a significant improvement with respect to the
one in Figure 6a, although it is slightly worse than the ideal
one. Looking at the minimum and maximum number of
processed jobs we can see that there is a slight difference
between them and the average number of processed jobs in
the middle steps of the simulations, while this difference is
irrelevant in the first steps and the last steps of the sim-
ulation (after all initial jobs have been processed). This
phenomenon can be explained by the fact that every sim-
ulation is started with a different topology seed, and each
node evolves in a different way even if it executes always the
same simple rules.
Load-Balancing with Rewiring and Multiple Bursts.
In this last series of experiments we study how the network
evolves when it keeps on receiving bursts of new jobs on dif-
ferent nodes at fixed time intervals. This makes it possible to
point out how the combination of load-balancing and cluster-
ing can significantly improve the throughput of the system,
leading to values that are more typical of the ones ideally
obtained in centralized optimal load-balanced systems. The
results of these simulations are shown in Figure 6c in terms
of number of processed jobs over time. The values in the
initial simulation steps are similar to the ones in Figure 6b.
Then, the curve continues to grow as a straight line because
of the continuous job bursts that are sent to the nodes. The
measured throughput is shown in Figure 6d. It is close to
the optimal value because, as long as new jobs arrive, the
rewiring algorithm modifies the network in a way that leads
to the creation and enlargement of ”island of nodes” of the
same types. Once created, these islands are then able to
apply the load-balancing techniques like in a homogeneous
(single type) configuration, that is the ideal scenario for this
kind of algorithms. Figures 6e and 6f show respectively a
situation in which we evaluate the throughput of the algo-
rithm in presence of a node churn (arrival/departure) of 10%
every 10 seconds, and when the nodes have different job pro-

cessing power (30% of the nodes process a job in 3s, 70% of
the nodes in 7s) but the same overall ideal throughput. In
both experiments we obtain throughputs similar to the one
in Figure 6d. This means that the algorithm is able to recon-
figure the network in such a way that it becomes easier for
a node to find a compatible node for sharing its workload.
Network overhead. When we use rewiring the number of
messages exchanged by nodes increase compared to the plain
application of load balancing because of the need to build
and preserve the clustered topology. In all our experiments
the rewiring communication overhead was independent from
the evolution of the network and was constantly equal to 5
rewiring messages per second per node. Instead, the num-
ber of messages needed by the load balancing algorithm was
much smaller, equal to 0.033 messages/second. However,
the lower number of messages could be compensated by the
size of each message. In the case of rewiring such size is con-
stant and very small, while in the case of load balancing it
can depend on the size of jobs if these need to be transfered
from node to node.

5.3 Discussion
As we have argued in the previous section, the adoption

of rewiring introduces some network overhead. Such over-
head can be kept under control by reducing the frequency of
rewiring iterations, of course, at the expenses of the struc-
ture of the various network domains. In general, properly
dimensioning such frequency is a design problem that de-
pends on the nature of the specific application domain and
especially on the network heterogeneity and node churn.
This study, and particularly the penalties associated with
rewiring, will be the subject of future work.

From the simulation results we can see that the proposed
approach shows self-healing proprieties with respect to the
organization of its topology. This is especially true in pres-
ence of churn, where the constant self-reconfiguration allows
the network to continue balancing and executing its jobs. It
is particularly interesting to notice that having such appear-
ing/disappearing of nodes introduces some additional ran-
domness into the system that is also able to improve slightly
its performance since our churn experiments kept the num-
ber of nodes, jobs, and links constant. We expect that an
increase or a decrease in the number of links/nodes would
impact the results in a proportional way, this will be the
subject of a future study.

The most critical limitation of our approach is the fact
that in the case of particular topologies the churn may re-
move some of the nodes with the highest degree. In this sit-
uation the network will be split into isolated domains that
cannot exchange their jobs. However the dynamicity of the
network, especially the arrival of new nodes, can make this
problem transitory.

6. RELATED WORK
In this section we briefly review the current approaches in

the areas covered by our approach, namely self-aggregation
and load balancing techniques.

Self-aggregation techniques are based on the principle
of identifying homogeneous subgroups of cases in a popula-
tion. The responsibility among the individual entities is the
following: no single entity is in charge of the overall aggrega-
tion, but each contributes to a collective behavior. Following
this philosophy, mainly inherited from natural adaptive sys-



(a) No rewiring (number of processed jobs (b) Static jobs (number of processed jobs)

(c) Dynamic jobs (number of processed jobs) (d) Dynamic jobs (throughput)

(e) Dynamic jobs with churn (throughput) (f) Dynamic jobs with different service time (throughput)

Figure 6: Experiments. (a) shows the number of processed jobs in experiments that have been performed without

rewiring; (b) shows an experiment with rewiring and a fixed static load of jobs; (c), (d) show what happens to the

situation in (b) if we keep adding jobs to the nodes; (e) and (f) show how the throughput is affected by network churn

or by different processing times among the nodes.

tems, the local behavior rules applied in all entities lead,
with a certain probability, to the desired global behavior.
Examples of application of these rules can be found in the
area of communication networks: for example for the con-
trol of the topology in wireless multi-hop networks [6], or
the computation of a maximal independent set in radio net-
works [18]. Several kinds of applications of self-organization
techniques in communication networks can be found in [9,
22, 19]. Moreover, in the research area of peer-to-peer com-
puting there are different approaches like Cyclon [29] pro-
tocol in which self-organization of the overlay is achieved
by shuffling nodes’ neighbors periodically, thus achieving a
connected overlay without disrupting randomness.

Different lines of research apply methods based on the
use of genetic algorithms or neural networks to define and
to study the problems related to cluster formation, e.g., [1]
or the multi-agent approach like in [26].

Load Balancing The literature in the load balancing
domain has been focusing mainly on networks composed of
homogeneous nodes. In this context, [3] is investigating dy-
namic networks by extending the classical load balancing
algorithm to this purpose. Different approaches have been
proposed in [20, 11] in which load balancing is achieved in
a wireless ad hoc network using the routing infrastructure,
rather than changing the logical overlay as we have proposed

in this work. Indeed, also in these cases nodes are assumed
to be homogeneous. Nodes are still homogeneous in [17, 8]
that propose bio-inspired load balancing algorithms.

[15] deals with heterogeneity interpreted as the different
processing power of nodes. Instead, we say that nodes are
heterogeneous if they can process different types of jobs.

7. CONCLUSIONS
In this paper we have introduced the usage of self-aggre-

gation algorithms to support load balancing in the context of
highly dynamic and distributed systems. The use of these al-
gorithms makes it possible to dynamically create and main-
tain groups of similar nodes that are able to know their
neighbors and to execute the needed load balancing algo-
rithms.

The study of these combined algorithms has been per-
formed by simulating their execution through a distributed
simulator.

Our experiments show that the introduction of self-aggre-
gation improves the overall load balancing and does not in-
troduce a significant overhead in terms of execution time,
even if it requires the exchange of a higher number of mes-
sages between nodes.

The work can be expanded in several directions, serving
as a base upon which more refined architectures and im-



plementations can be developed. More adaptive clustering
algorithms can be defined taking into account changing en-
vironments and goals. The combination of load balancing
and clustering algorithms can also be generalized so to be
able to deal with domains in which the nodes have multiple
types. Another future work would be to support these algo-
rithm with a mechanism to dynamically adapt the frequency
of the algorithm iterations, keeping into account the cost of
sending messages, the convergence time, and other quality
parameters.
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