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ABSTRACT 
The DNA sequence design is a crucial problem in DNA based 
computations. In the literature there is evidence that many input 
sets should not be used for real DNA computations. This 
approach might lead to high probabilities of incurring in 
biological faults which make computations  unsafe. In this paper 
we present an intermediate tool between strand logical design and 
practical computations, that allows scientists to approach in-vitro 
computations reducing the probability of biological mistakes in 
the phase of theoretical input design for practical  computations. 

Keywords 
DNA Computing, in-vitro computations, codeword design 
problem. 

1. INTRODUCTION 
Many theoretical models of DNA computing assume that the 
computation is errorless. Adleman [1] and Lipton [20-21], for 
instance, in their experiments used as input  random strands 
supposing that the probability of errors due to undesired and 
unexpected behaviors of filaments during computation was 
negligible. However, it was empirically proved [26] that random 
sequences are inappropriate for an efficient computation, 
especially when the input solution size increases. The codeword 
design problem, defined in 2004 by Garzon and Deaton [10], 
consists in mapping the input instance of a problem in DNA 
strands that might ensure, with a high reliability level, that 
chemical reactions such as mismatched hybridization, shift 
hybridization and hairpin are avoided. Unfortunately, the 
codeword design problem has been proved to belong to NP-
Complete class [10], and, thus,  many scientists use evolutionary 
and probabilistic approaches, or genetics algorithms in order to 
obtain nearly optimal sequences [2, 15, 25, 29, 30].  
In this paper we present a simple tool specifically devised for 
helping in the input sequences design; this application allows 
users to create, modify, visualize, evaluate, and store a pool of 
input sequences complying with a set of well defined project 
constraints, and obtain stepwise reports about their effectiveness  
for  real biological computations (in laboratory). Differently from 
already known applications [15, 25, 29], it is not a sequence 
generator, that doesn’t respect the specification of the problem to 

handle, but an auxiliary process that improve the input sequence 
design. 

2. BIOLOGICAL CONSTRAINS 
The DNA computing uses short  DNA single strands 
(oligonucleotides) as memorization and processing unities. The 
aim of the computing path is simply that of allowing the  assembly 
of single strands in longer DNA molecules by means of the 
hybridization process: the solution to a problem is, in fact,  an 
extended DNA strand whose chain depends on the input 
filaments. However, the hybridization process requires that the 
oligonucleotides combine themselves in a selective mode well-
suited to the computation goals. The hybridization between a 
DNA sequence and its base-pair complement is, indeed,  the most 
important factor to retrieve the information stored in  the DNA 
sequences and activates correctly the computation processes. For 
this reason, DNA computations need a set of  DNA sequences 
which form stable double strands on one side, and ensure, on the 
other, that two no complementary sequences do not interact. Non 
interacting or unstable sequences should be even forbidden; 
perfectly matched double strands should be, on the contrary, 
brought about [5]. Namely, partially complementary sequences 
(mismatched hybridization), sequences matching as a result of 
shifts (shifted hybridization), and sequences interacting with 
themselves up to form a secondary structure (hairpin) should be 
avoided, as well as sequences that do not present uniform 
chemical attributes. 
Since the sequence design is an essential prerequisite for 
successful  DNA computations, some project constraints have 
been introduced with the aim of  forcing  oligonucleotides to 
exhibit features which can avoid, or at least reduce, the 
occurrence of computation errors, such as wrong hybridizations, 
undesired secondary structures, and inconsistency among 
sequences. As shown in [9] and in [15], project constraints can be 
classified with respect to four evaluation criterions. 

1) Preventing undesired reactions: this criterion forces the set 
of sequences to form the duplexes (i.e. double helix) between a 
given DNA sequence and its complement, only. It includes the 
following measures: the Hamming distance, defined as number of 
corresponding places where two bases are complementary; the H-
measure, defined as the minimum of all Hamming distances 
obtained by successively shifting and lining up two tested 
sequences; the Similarity, defined as the inverse of the H-measure 
between two given DNA sequences (the H-measure compares 
sequences in opposite directions 3’-5’ and 5-3, and the similarity 
compares sequences in the same direction 3’-5’ or 5’-3’. ); the 3’-
end complementarity that, in some cases, imposes complementary 
3’-ends words for hybridization (in a sticky-end computation, a 
3’-end miss-hybridization can break the whole computation). 
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2) Controlling secondary structures: secondary structures are 
usually formed by bad interactions of single DNA strands. They 
include internal loops and hairpin loops, deriving from bad 
evaluation of self complementarity and continuity criterions. Self 
complementarity occurs when complementary subsequences 
compose the same strand; this is a crucial fact that directly derives 
from the H-measure definition, since self complementarity 
induces a single DNA strand to anneal itself making unfeasible 
the sequence. Continuity occurs when a nucleotide contiguous 
occurrence in a strand is high: the structure of the sequence, 
indeed, becomes unstable, and the probability of loops or 
accidental hybridization increases.    

3) Controlling chemical attributes: in many cases, it is desirable 
to control DNA sequences to have similar chemical 
characteristics. Measures for this criterion include GC-content and 
melting temperature. GC-content is the percentage of guanine and 
cytosine in a whole DNA strand; increasing this value it provides 
a rise of the energy allowed to realize annealing and melting 
procedures. So, sequences with different GC-content necessitate 
of different energy for biological steps, altering the computation. 
Melting temperature is defined as the temperature at which the 
50% of the oligonucleotides and their perfect complements couple 
themselves, whereas the remaining 50% split themselves. 
Different compositions or sizes of DNA strands can affect the 
temperature in the solution. 

4) Restricting DNA sequences: this criterion restricts the 
composition of a DNA sequence. In some cases a list of 
oligonucleotides can be used  for special purposes. Also, special 
DNA subsequence, such as restriction enzyme sites, should be 
controlled for proper reactions of nuclease or ligase [15]. 

3. DNAEdit Tool 
DNAEdit is the acronym of Deoxyribose Nucleic Acid Editor, a 
sequence design system  useful as a middle-process tool between 
logical sequences design and biological implementation. The aim 
of DNAEdit is two-fold:  creating ex novo a library of DNA 
sequences, and evaluating input sequences with respect to the 
above mentioned constraints. As shown in [29], and widely 
discussed in other works, a sequence design system must satisfy at 
least two collections of  requisites. First of all,  users must be able 
to define the sequence sizes without any limit of length, to select 
the design constraints to be exploited in the evaluation process, to 
point out sequence positions to be spent as possible restriction 
sites, and eventually to examine the righteousness of the obtained 
sequences in sight of a probable reuse of the system. Second, the 
design system must guarantee reliability, analysis resources, and 
reuse of sequences, as well as a very friendly interface.  
Many design systems have been implemented since the codeword 
design problem was defined. NACST (Nucleic Acid Computing 
Simulation Toolkit) [15] is among the best known ones. By means 
of a genetic algorithm, it generates a fixed number of pools of 
sequences optimizing  a multiobjective fitness function. However, 
it massively uses a pre-existent set of sequences,  restricts a pool 
to have the same length for all sequences,  does not allow to 
recognize the library elements which could be invalidated by 
sequences non complying with the constraint thresholds, and 
requires users that are very familiar with evolutionary approaches 
to optimization. 
DNAEdit provides a different approach to the sequence design 
problem: the user, indeed, absolutely arbitrates the decision about 

the sequences he wants to work with, creates his own library,  
and, thereafter, proceeds with the sequence evaluations 
establishing whether the design has been satisfactory or needs a 
further elaboration in order to improve the sequence quality.  That 
is to say, the sequence generation does not depends on the system, 
but exclusively on the user. Moreover, no limits at all are imposed 
on the length of the sequence pools, no uncertainty is introduced 
on possibly mismatching sequences since the effective value of 
each constraints is clearly given in the final report, as well as a 
comparison of values (i.e. H-measure, similarity, etc.), when 
necessary, no a priori technical knowledge is required to the user 
apart from those concerning the sequence design. 

3.1 Input procedure 
The user can introduce a new set of sequences into the system or 
enlarge an old one, either by simulating the artificial synthesis of 
DNA or making use of facilities that allow to have a complete list 
of sequences recognized by restriction enzymes, add new 
sequences at the end of the existing ones, specify a high number 
of sequences to be repeated almost similarly, and make available 
classical operations of cut, copy and paste. Obviously, the library 
itself can be fully visualized and modified, once it has been build 
up. During this initial procedure sequences are scanned, in run 
time, in order to point out substrings representing restriction sites 
or special purpose words, in accordance with the fourth above 
mentioned constraint class. 

3.2 Constraints evaluation 
After the sequence library creation, the user can decide to evaluate 
its righteousness with respect to one or more design constraints. 
Formally, the DNA sequence design problem can be written as 
follows [15]: 

Minimize F(x)=(f1(x), f2(x),…, fn(x));  
fi(x)∈{Biological Constraints} 

Our goal is to point out constraints that prevent the minimization 
of F(x). In the following, the behaviour of our system beside 
biological constraints is described.  

3.2.1 Preventing Undesired Reactions 
DNAEdit is designed in order to test Hamming Distance, H-
measure, Similarity, and 3’-end Complementarity.  
Hamming Distance procedure: let x and y be two no 
complementary sequences, for example x=5’-AGGCTTTAGC-3’ 
and y=5’-CGAAATCGAA-3’. The Hamming distance is 
computed by lining up x and the reverse complement of y (WC 
complement) and subtracting the positions in which bases are the 
same: 

5’-AGGCTTTAGC-3’ 
3’-TTCGATTTCG-5’ 

In our case, it results that H(x, y) = 2. In a good computation, 
each pair of no complementary sequences should have a minimal 
value of H(x, y). 
H-Measure evaluation: The H-measure is calculated by starting 
from Hamming distance and shifting x against y for all the 
possible positions. So a large H-measure indicates a good 
probability that y anneals with x. Our system illustrates the 
Hamming distance and the H-measure for each pair of input 
sequences at the same time. The H-measure is defined formally 



below: 
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H(*,*) denotes the Hamming distance, σk the right (left) shift in 
case of k > 0 ( k < 0), k the number of shifts, and y  the 
complementary pair. 
Similarity check: The similarity check procedure is implemented 
at the same of H-measure check procedure, apart from the fact that 
sequences are not compared  in the reverse mode, but in the same 
direction (3’-5’ or 5’-3’). Results are reported in a windows 
outline.  
3’-end complementarity check: This procedure, directly deriving 
from the Hamming distance evaluation, checks all the input 
sequences that have 3’-end complementary extremities. The goal 
of this procedure is to indicate whether 3’-end complementarity 
exists between sequences, and the user is allowed to decide 
whether or not it is convenient to modify input strands according 
to his  kind of computation. The 3’-end complementarity check 
procedure is very efficient in sticky-end and on-surfaces 
computations. 

3.2.2 Secondary Structures 
DNAEdit allows to evaluate the presence of secondary structures 
in the input sequences; as already mentioned, the secondary 
structures might strongly threat the computation success. Once 
again, the report is shown to the user leaving to him  the faculty to 
change the input sequence in accordance with the computation. 
Self Complementarity evaluation: It is the main cause of hairpin 
in DNA structures. It depends on sections of sequences that are 
complementary among themselves. Self complementary 
evaluation procedure determines the parts of a sequence that are 
complementary themselves and the distance between them. 
Obviously, the probability of hairpins or the deterioration of the 
sequence increases as the distance increases. The formal definition 
of the procedure is the following: 

( )( )}{ i
k

nkni
xxHnSelf s,maxmax −=

<<−
 (2) 

Continuity evaluation: if the same bases occur many times in a 
DNA strand, the sequence can show an unexpected structure. 
DNAEdit simply evaluates continuity by counting substring 
formed by the same base (A, C, G, T), and reporting it. below the 
used procedure for continuity is proposed: 
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where Ni denotes the number of times the same base 
appears j-times contiguously in the DNA sequence xi. 
Figure 1 shows a report of this procedure. 

3.2.3 Chemical Attributes  
DNAEdit calculates, for each set of input sequences, the GC 
content ant the melting temperature.  
GC content evaluation: It is  one of the main causes of fault in 
DNA computations. DNAEdit simply calculates the GC content 
by scanning each input sequence and counting the number of CG 
bases. The procedure returns this value in percentage. Figure 1 
shows the report for the GC content procedure. GC content is 
defined as: 
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where GCuser_defined is the target value of GC content of sequence 
xi. Usually it is chosen as the 50% of strands in solution. 

 
Figure 1. Continuity and GC evaluation. Continuity is 
expressed for each base in each sequence. Report shows 
the number of adjacencies for each base and the greats is 
assigned as “continuity”. GC content is expressed in 
percentage;  the user can choose (minimal or maximal)  
limit values in according with  his computation.  

Melting Temperature evaluation: the Melting Temperature (MT) 
is one of the most important features for laboratory experiments. 
There are many theoretical methods to calculate the melting 
temperature, and we have chosen three different methods: GC 
ratio [33], Salt Adjusted [32] and Nearest Neighbour model [34]. 
In the GC ratio model, the MT  depends only on the percentage of 
G and C bases in the sequences. In the Salt Adjusted it depends 
on the salt concentration in the solution. In the Nearest Neighbour 
model it depends on the salt concentration in the solution and on  
the quantity of DNA. The Melting Temperature check process 
allows to choose among these three methods and  gives default 
values for each method. General procedure is defined as  follows:    
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where Tmuser_defined is the target value of TM for the DNA 
sequence xi  that biologists can set with respect to the computation 
[29]. Figure 2 shows a report of the Basic method. 

4. EXPERIMENTAL RESULTS 
DNAEdit was used to test a variety of DNA sequences, which 
were proposed as input of DNA computations in scientific works 
from 1994 to 2006. The sample of sequences analyzed refers to 
papers 3, 4, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19, 20, 23, 24, 27, 28, 
31. Results shows that many of the pool set used for theoretical 
computations can’t be used for real procedures in laboratory, 
because biological fault should incur with more probability. Bar 
chart, in figure 3, shows the probability of biological faults, in 
works pre and post 2000. It is evident that input sets, developed 
after the year 2000 (time when studies on the codeword design 
problem were born), are more streamlined than the input sets 



designed at the end of the past century. It is also interesting to 
notice the remarkable difference among physical constraints such 
as Hamming distance, H-measure etc., and chemical ones such as 
GC content, MT, etc. Figure 4 shows the trend of sequences that 
do not satisfy the constraints imposed by the four criterions of 
section 2. It is important to notice that most structural constraints 
decrease until about the 20%, whereas for chemical constraints 
(CG content e Melting Temperature) the percentage is still about  
40% . The results of tests clearly show the importance of a design 
framework, such as DNAEdit,  able to evaluate in real time the 
features of the input pool that the user is going to generate in such 
a way that the biological computation turns to be out correctly.  

 
Figure 2. MT evaluation. The report shows the melting 
temperature in three different unit of measurement (C, K, 
F). The process returns the melting temperature by using 
three different methods. Temperatures out of limits are 
signed with red color. 
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Figure 3. Graphical representation of biological faults in 
DNA computations since 1994. The constraints order is: 1) 
Hamming Distance, 2) H-measure, 3) Similarity 4) 3’-end 
Complementarity,  5) Self Complementarity, 6) 
Continuity,  7)GC Content, 8) Melting Temperature, 9) 
Use of restriction sites. The sets of DNA input strands have 
been taken from DNA computing works since 1994 to 
2006. 
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Figure 4. Graphical representation of the error 
performance due to a missed management of input 
constraints. Constraints have been grouped in the four 
classes related in section 2.  The data sample tested with 
DNAEdit refers to papers  since 1994 to 2006. 

5. CONCLUSIONS 
The DNA sequence design problem is  actually an open problem 
and many scientists aim to resolve it by implementing sequences 
generators or compilers. DNAEdit is a simple application which 
takes in input DNA sequences as strings and returns a report in 
which biological constraints are evaluated and possible mistaken 
computations are highlighted. The goal is not replace the input 
designer, but simply helps him in modeling sequences that resolve 
the primary computer science problem, minimizing the probability 
of mistakes during the computation. We have also seen that in the 
last years, scientists have designed input strands more compliant 
with biological constraints while resolving problems with in-vitro 
computations. On this assumption, we consider this kind of 
applications as an important step towards practical DNA 
computation without faults.   
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