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ABSTRACT

The inherently decentralized nature of artificial chemical
computing models makes them particularly attractive for
building bio-inspired software with self-organizing and emer-
gent properties. Yet it is not straightforward to construct
such chemical programs, either manually or automatically.

We are exploring the potential of chemical programming
models for automatic programming, in the context of au-
tonomic environments where software must operate unsu-
pervised for unlimited periods of time. We are enhancing
the Fraglets chemical language to support intrinsic genetic
programming, such that programs can replicate and modify
themselves during execution.

The Fraglets language was originally designed to express
communication protocols. We first show a few extensions
towards more generic computations, then show how self-
replicating and self-modifying programs can be created.
This is a first step towards programs that can repair and
optimize themselves in an autonomic way. We reveal a num-
ber of features and shortcomings of the language, suggesting
fixes and future directions.
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1. INTRODUCTION

Artificial chemical computing models are gaining increas-
ing prominence in the design of bio-inspired software with
self-organizing and emergent properties [2, 4, 8, 11], The
inherently parallel and decentralized nature of the chemical
computing metaphor makes it an attractive alternative to
classical programming methods.

We are exploring the potential of chemical programming
models in the context of autonomic environments where
software must operate unsupervised for unlimited periods
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of time. Systems in these environments must be able to
autonomously interact with the external world and among
themselves. They must also be able to detect and repair
their own failures, and to adapt their behaviour to new
situations. Ultimately, the system should be able to re-
program itself, creating new behaviours and functionalities.
The long-term goal is to obtain an intrinsic, code-level self-
healing and self-optimizing system. The self-healing ability
refers to detecting and repairing failures in the system’s own
code base, during execution. The self-optimizing ability im-
plies the online evolution of its own code base, which could
be envisaged via a resilient form of genetic programming.

The first step towards such long-term goal is to have a pro-
gramming language that facilitates code self-modification.
We are currently working with the Fraglets language [32],
in which code and data are represented as virtual molecules
that are transformed using a chemical reaction metaphor.
These virtual molecules represent computation fragments
that can be easily dispersed over several nodes in a net-
work, offering a natural model for self-replicating and mo-
bile code. Fragments are consumed and produced during
execution, thus the code is naturally self-modifying.

Although the language has promising elements, it also has
many limitations, which we discuss and try to overcome in
this paper. First of all, we report our efforts in extend-
ing the language towards generic computations, beyond the
original communication scope. After that, we show how a
Fraglets program can operate on itself, benefiting from a flat
code and data representation, and use this as a basis for im-
plementing self-modification and self-replication. These two
properties can be combined into self-reproduction and later
evolution, however, this has not been achieved yet. Self-
replication in a quine style is surprisingly easy. However,
the self-modification procedure faces some difficulties, due
to the characteristics of the Fraglets language. In spite of
its simple syntax, which was designed for easy manipulation
by automatic means, the semantics of operations is such that
naive random transformations are most of the times lethal,
although the resulting structures are always syntactically
correct. We then propose a few fixes for problems encoun-
tered, and point to future directions on how to make the
language realistic for full self-modification, and potentially
later on for self-reproduction and evolution.

This paper is structured as follows: Section 2 introduces
self-replicating, -modifying, -reproducing systems, and re-
lated chemical models. Section 3 briefly explains the
Fraglets model and instruction set, highlighting some re-



cent language extensions. Section 4 shows how such self-
replicating, -modifying, -reproducing programs can be built
in Fraglets, from simple quines up to genetic operators. This
exercise highlights the strong and weak points of the lan-
guage in implementing such self- operations. We conclude
the paper with some discussions on potential fixes and future
research directions.

2. BACKGROUND AND RELATED WORK

The search for potential models of machines that can pro-
duce copies of themselves can be traced back to the late
1940’s, with the pioneering work by John von Neumann on
a theory of self-reproducing automata [33]. He described a
universal constructor, a machine able to produce a copy of
any other machine whose description is provided as input,
including a copy of itself, when fed with its own description.
Both the machine and the description are copied in the pro-
cess, leading to a new machine that is also able to replicate
in the same way.

The definition in [24] makes the distinction between repli-
cation and reproduction clear: Replication involves no vari-
ation mechanism, resulting in an exact duplicate of the par-
ent entity; deviations from the original are regarded as er-
rors. On the other hand, reproduction requires some form
of variation, for instance in the form of genetic operators
such as mutation and crossover, which may ultimately lead
to improvement and evolution. These operators change the
description of the machine to be copied, requiring a self-
modification mechanism.

Replication, reproduction and variation in living beings
are performed as chemical processes in the DNA. In the
computer science context, they map therefore well to arti-
ficial chemical computing models, which attempt to mimic
such processes in a simplified way. Numerous such artifi-
cial chemistries have been proposed [11], with the most var-
ied purposes from studying the origins of life to modelling
chemical pathways in cells, or simply providing inspiration
for new, highly decentralized computing models.

In this section we discuss related research in models able
to express replication, reproduction and variation in com-
puter programs.

2.1 Self-Replicating Code

Since von Neumann set the basis for a mathematically
rigorous study of self-replicating machines, many instances
of such machines have been proposed and elaborated. An
overview of the lineage of work in the area of self-replication
can be found in [13, 23].

Self-replication is a special case of universal construction,
where the input to the constructor (description) contains
a description of itself. However, while universal construc-
tion is a sufficient condition for self-replication, it is not
a necessary one. Indeed Langton [18] argued that natural
systems are not equipped with a universal constructor. He
relaxed the requirement that self-replicating structures must
treat its stored information both as interpreted instructions
and uninterpreted data. With this he showed that simple
self-replicating structures based on dynamic loops instead
of static tapes can be built. This spawned a new surge of
research on such self-replicating structures [22, 23].

Most of the contributions to self-replication were done
within the cellular automata (CA) framework, introduced
by von Neumann. Self-replicating code was a later branch

appearing in the 1960’s, focusing on replication of textual
computer programs. The work on self-replicating code was
motivated by the desire to understand the fundamental
information-processing principles and algorithms involved in
self-replication, even independent of their physical realiza-
tion.

The existence of self-replicating programs is a consequence
of Kleene’s second recursion theorem [16], which states, that
for any program p there exists a program p’, which generates
its own encoding and passes it to p along with the original
input.

The simplest form of a self-replicating program is a quine,
named after the philosopher and logician Willard van Or-
man Quine (1908-2000). A quine is a program that prints
its own code. Quines exist for any programming language
that is Turing complete. The Quine Page [30] provides a
comprehensive list of such programs in various languages.

2.2 Self-Modifying Code

In a system that is required to constantly evolve and
adapt, the ability to automatically modify or update its
own code parts is essential. Since reliable and secure self-
modification is still an open issue, self-modifying code has
been banished from good practice software engineering.

However, self-modifying code plays a key role in Evolu-
tionary Computation (EC) and Artificial Life (ALife), where
evolution still occurs mostly in offline simulated worlds. In
the case of EC, only the best programs which have been
thoroughly tested via multiple fitness cases can be safely
used. In the case of ALife, the main role of programs is
simply to survive, and since they remain in a virtual world
there is no risk for the end user.

Evolvable instruction set virtual machines are used in
most well-known ALife systems, such as Tierra and Avida
[20]. They resemble assembly language, which is easily self-
modifiable: one can write on memory positions that include
the own memory location of the code. This is used to evolve
software that self-reproduces, adapts, seeks to survive, etc.
A precursor of such machine language approach was Core
Wars [7].

In Ontogenetic Programming [28] programs include self-
modification instructions that enable them to change during
the run. This was shown to be an advantage for adaptation
to the environment [27].

The Push family of programming languages [25] is de-
signed for a stack-based virtual machine in which code can
be pushed onto a stack, where it can be manipulated as
data, and later popped for execution. A variant of Push was
used in Autoconstructive Evolution [26], where individuals
take care of their own reproduction, and the reproduction
mechanism itself can evolve (showing self-modification at
the level of reproduction strategies). Recently [25], the self-
modification aspect of the language has been enhanced by
permitting the explicit manipulation of an execution stack,
which has been shown to be an advantage in evolution.

2.3 Self-Reproducing Code

Since self-reproduction requires variation and thus self-
modification, it must also include resilience to harmful repli-
cation errors in the form of a self-repair mechanism, or
a selection mechanism able to detect and discard harmful
code. Resilience is however not sufficient to ensure self-
reproduction. The method must produce viable offspring



programs with high probability, i.e. programs that are syn-
tactically correct and can also reproduce on their own. Oth-
erwise the system spends most of its time trying to recover
from bad mutations and does not optimize itself. The chal-
lenge is then how to design such viable self-reproducing
schemes, or whether they could evolve from the interaction
of simple molecules. The latter is associated to the origin of
life problem which is intensively studied in ALife: reproduc-
tion was not a predesigned feature, it emerged out of chem-
ical interactions in the primordial soup [12]. In complement
to ALife systems, systems such as Autoconstructive Evolu-
tion [26] couple self-reproduction with a functional purpose
in the algorithmic sense, beyond simple survival. This is
also the line of research that we adopt.

2.4 Chemical Computing Models

Artificial chemical computing models [1, 5, 8, 21] express
computations as chemical reactions that consume and pro-
duce objects (data or code). Objects are represented as ele-
ments in a multiset, an unordered set within which elements
may occur more than once.

In [11] chemical computing models are classified as ap-
plications of Artificial Chemistry, a branch of Artificial Life
(ALife) dedicated to the study of the chemical processes re-
lated to life and organizations in general. In the same way
as ALife seeks to understand life by building artificial sys-
tems with simplified life-like properties, Artificial Chemistry
builds simplified abstract chemical models that nevertheless
exhibit properties that may lead to emergent phenomena,
such as the spontaneous organization of molecules into self-
maintaining structures [10, 12]. The applications of artificial
chemistries go beyond AlLife, reaching biology, information
processing (in the form of natural and artificial chemical
computing models) and evolutionary algorithms for opti-
mization, among other domains.

Chemical models have also been used to express replica-
tion, reproduction and variation mechanisms [9, 11, 15, 29].
From these, we focus on models that apply these mecha-
nisms to computer programs expressed in a chemical lan-
guage, especially when these programs are represented as
molecular chains of atoms that can operate on other molec-
ular species, as opposed to models where a finite and well-
known number of species interact according to predefined,
static reaction rules. The interest of such molecular-chain
models is two fold: first of all, complex computations can
be expressed within molecule chains; second, they can more
easily mimic the way in which DNA, RNA and enzymes
direct reproduction, potentially leading to evolution in the
long run.

Holland’s Broadcast language [14] was one of the very ear-
liest computing models resembling chemistry. It also had
a unified code and data representation, in which broadcast
units represented condition-action rules and signals for other
units. They also had self-replication capacity, and the abil-
ity to detect the presence or absence of a given signal in the
environment. The language seems to have never been imple-
mented until recently [6], when it was shown to be helpful
in modelling real biochemical signalling networks.

In [11], several so-called artificial polymer chemistries are
described. In these systems, molecules are virtual polymers,
long chains of “monomers” usually represented as letters.
Polymers may concatenate with each other or suffer a cleav-
age at a given position. The focus of those models was to

model real chemistries or to study the origin of life. More
recently [31], a chemistry based on two-dimensional molecu-
lar chains (represented as strings of lines) has been proposed
to model molecular computing, and has been shown to be
able to emulate Turing machines.

Other chemistries based on strings that can represent code
or data include [3, 9]. In [3] binary strings encode artificial
regulatory networks able to perform complex functions. In
[9] pairs of simple fixed-length binary strings react with each
other: one of them represents the code and the other the
data on which the code operates. The authors show the
remarkable spontaneous emergence of a crossover operator
after some generations of evolutionary runs.

We conjecture that a chemical language can express pro-
grams that can be more easily transformed and can be-
come more robust to disruptions due to alternative execu-
tion paths enabled by a multiset model. Therefore they
lend themselves more easily to self-modification, replication
and reproduction. However, there are difficulties: the non-
deterministic, decentralized and self-organizing nature of the
computation model make it difficult for humans to control
such chemical programs.

3. THE FRAGLET REACTION MODEL

A fraglet, or computation fragment, is a string of atoms
(or symbols) [s1 s2 s3 ... sn] that can be interpreted as
a code/data sequence, as a virtual “molecule” used in a
“chemical reaction”, or as a sequence of packet headers, or
yet as an execution thread.

Fraglets are injected into a virtual reaction vessel where
they are probabilistically selected for reaction, according to
a well-stirred tank reactor algorithm. When selected, each
fraglet only has its first (header) tag processed at a time.
No deeper inspection within the fraglet is allowed. This
ensure fairness across multiple execution threads represented
by different fraglets in the reactor.

There are two types of reactions: first-order reactions or
transformations, involving only one input molecule (reac-
tant); and second-order reactions involving two reactants.
The instruction set implementing the rules for such reac-
tions will be described next.

3.1 Notation Conventions

Throughout this paper a number of conventions will be
adopted to explain the language. These conventions are not
part of the language itself, and are provided only to facilitate
the explanations. An actual line of code in the Fraglets
language is denoted by a line in the format £ [ ... 1].
Here is the set of conventions:

e Lower case words represent language keywords or other
symbols appearing literally in the code.

e Single capital letters are wildcards for single atoms
(e.g. 8).

e Fully capitalized words of more than one letter (e.g.
T1, TAIL) are placeholders for a sequence of zero or
more atoms.

e Arithmetic expressions and conditions follow a C-like
convention within parenthesis, e.g. (cond? sl : s2) for
“if cond is true, then use sl else use s27.



e The definition operator ::= means that the left side
expands into the right side; the left side is used in the
text for conciseness, while the expanded form is the
one that should appear in the actual code.

3.2 Basic Instruction Set

Table 1 shows the basic Fraglets instruction set, which
includes the original instructions in [32] plus some new ones.

Table 1: Fraglet reaction and transformation rules

‘ Reaction ‘ Input ‘ Output ‘
match [match S U T1], [U T1 T2]
[s T2]
append [append S U T1], [U T2 T1]
[s T2]
matchp [matchp S U T1], [matchp S U T1],
[s T2] (U T1 T2]
‘ Transf. ‘ ‘ ‘
dup [dup U V TAIL] [U V V TAIL]
exch [exch U V W TAIL] | [U W V TAIL]
nop [nop TAIL] [TAIL]
nul [nul TAIL] (fraglet is removed)
pop [pop U V H TAIL] (U H], [V TAIL]
split [split U ...V * (U ...V],[TAIL]

TAIL]

Transformations are standalone reactions: the operator
keywords act on the fraglet itself. The general format of
a transformation rule is: [K U V W TAIL] where K is the
keyword for the operation; U is the output tag, the tag that
will be the head of the resulting fraglet; V and W are input
parameters to the operation; and TAIL represents the rest of
the fraglet which is not processed by the current rule. For
example, the transformation exch flips two input symbols,
while dup takes one input symbol and duplicates it. The
keyword is consumed in the process and the output tag U
becomes the new head of the fraglet. Apart from split
which splits one fraglet in two, all other transformations
work alike.

The reaction rules basically merge the tails of two fraglets
under the condition that their head tags match exactly. The
difference between the original match and the new append
instruction (introduced for convenience) is the order of the
tails in the result. The matchp rule is a persistent version
of match in which the rule itself is not consumed during the
reaction (analogous to a catalyst in chemistry); this is useful
for recurring code.

[split match x result * dup x twicel

[dup x twice]

[match x result] [x twice twice]

[result twice twice]

Figure 1: Execution flow of a fraglet

Figure 1 shows the execution flow of a fraglet which con-
sists of several different instructions. The split instruction
first split the fraglet into two parts. The resulting fraglets
are processed independently, i.e. the dup instruction trans-
forms one of the fraglets by duplicating its third atom. Fi-
nally, the match instruction defines a reaction rule that joins
the execution flow by combining the two fraglets as described
in table 1.

3.3 Arithmetic Operators and Conditionals

Fraglets were extended with basic arithmetic and condi-

tional operators expressed as transformations as listed in
Table 2.

Table 2: Arithmetic Operators
‘ Keyword ‘ Input ‘ Output ‘

sum [sum R A B TAIL] [R (A+B) TAIL]

eq [eq Y N U V TAIL] | [((U==V) 7 Y : N)
U V TAIL]

1t [1t Y N U V TAIL] | [((U<V) 7Y : D
U V TAIL]

Several arithmetic operators are implemented: sum, sub,
mult, div, mod, pow (sum, subtraction, multiplication, divi-
sion, modulo, power, respectively). For conciseness, Table 2
shows only the example of sum. All the other operators have
a similar syntax.

These operators can be combined into arbitrary arith-
metic expressions as in the simple example below:

f [match x match a mult t] # t = a*x
f [match t match b sum fx] # f = b+t

The code above implements the function f(x) = ax + b.
The input parameters are expected in tags a and b, and the
function argument in tag x. Tag t guards the intermediate
result of ax. The result will be stored in a fraglet with head
fx. As an example, when [a 3], [b 4], and [x 10] are
provided then the result [fx 34] is obtained.

Two conditionals are supported, eq (equal) and 1t (less
than). They return the results of the comparisons into either
of the two front tags: if the comparison is true, the first tag
is used, otherwise the second. Example:

f [eq yes no water fire rest]
f [1t yes no 2 3 rest]

The first line will produce [no water fire rest] while
the second line will produce [yes 2 3 rest]. Note that the
compared atoms are not discarded, such that they can be
used afterwards if necessary. This is useful since there is no
explicit way to encode variables in Fraglets.

3.4 Supplementary Instructions

Some frequently used operations are implemented as in-
structions in Fraglets for convenience. These instructions
could be implemented with the instruction set explained in
previous sections (basic instructions, arithmetic, condition-
als). However, they would require to iterate over the entire
fraglet string, by tearing it apart and reconstructing it. Ef-
ficiency can be gained by implementing them directly in the
interpreter.



Table 3: Supplementary instructions

| Keyword [ Input [ Output ‘
length [length U TAIL] [U length(TAIL) TAIL]
empty lempty Y N TAIL] | [((TAIL == [1) ?
Y : N TAIL)]
fork [fork U V TAIL] [U TAIL], [V TAIL]

Table 3 shows these supplementary instructions. They be-
have as follows: length returns the length of a fraglet’s tail
in symbols. For instance, [length 1 a b c] returns [1 3].
empty checks whether the tail of a fraglet is empty, and if yes,
returns the first tag; else it returns the second tag followed
by its non-empty tail. fork duplicates an entire fraglet and
prepends different head tags to them, such that they can be
separately identified and processed independently.

4. SELF-GENERATION OF CODE

In this section we provide examples of self-replication and
self-modification in the Fraglets framework. We use quines
as templates for self-replicating programs, show how to em-
bed useful functions into them, and how to attach self-
modification properties to them. Then we provide ideas
of how to design evolutionary operators like mutation and
Crossover.

4.1 Self-Replication

Quines are programs that produce their complete source
code as output. On this note quines are ideal objects by
which we can study self-replication properties.

In general, a quine consists of two parts, one which con-
tains the executable code, and the other which contains the
data. The data represents the blueprint of the code. The in-
formation that is stored in the blueprint is used twice during
replication: First it serves as instructions to be interpreted
by the quine to construct a new quine. Then the same in-
formation is attached to the new offspring, so that it is able
to replicate in turn.

The usage of the information to build instructions can
be compared to the translation of genes occurring in cells,
where RNA chains carrying the genotype are translated into
proteins. The latter use of the blueprint resembles the DNA
replication.

Self-Replication in Fraglets

In Fraglets it is easy to implement both translation and repli-
cation of data “molecules”, since the Fraglets language has a
flat code/data representation. The following example shows
a reaction trace of a data fraglet x that is translated (inter-
preted as executable code) by a match rule.

[match x],[x sum result 4 5] — [sum result 4 5]

This translation process in Fraglets is performed as an ex-
plicit removal of the passive header tag which activates the
rule such that it can be executed. During execution, the ac-
tive and the passive parts react together, resulting in a new
fraglet that calculates the sum. Information replication, on
the other hand, can be achieved by using a fork instruction.
Hence a simple quine can be built by finding a code and a
data fraglet that react and, in doing so, replicate both.

Here is a first example of a simple quine:

f [ match x fork nop x]
f [x match x fork nop x]

In this example, depicted in figure 2, two copies of the
information are present: the first is the executable (active)
copy, and the second is the code storage (blueprint), guarded
by tag x. Their reaction produces a fraglet with fork in-
struction, which performs translation and replication of the
information at the same time. One copy is executed again,
restarting the cycle, and the other reinstalls the original
blueprint.

[nop match x fork nop x]

[match x fork nop xI
(active)

[x match x fork nop x]
(blueprint)

[fork nop x match x fork nop x]

(bootstf'apping)

Figure 2: Execution flow of a quine

We observe that the active and the passive parts look
similar. In fact, they only differ in their head symbol: the
passive part is tagged with a tag x, whereas the active part
directly starts with the match instruction. The following
fraglet “bootstraps” the quine shown above:

f [fork nop x match x fork nop x]

The quine presented in this section is an example for sim-
ple self-replication. It does not do any useful computation
and spends cycles only to regenerate itself.

Self-Replication with Embedded Functionality

The next example can compute any function expressed as a
CONSUME and PRODUCE part:

[ QUINE]
[x QUINE]
where:
QUINE = CONSUME REPLICATE PRODUCE
REPLICATE ::= split match x fork nop x *

For example, to generate a quine replacement for the
header rewriting catalyst [matchp in out], we can define

CONSUME ::= match in
PRODUCE ::= out

which results in:

f [ match in split match x fork nop x * out]
f [x match in split match x fork nop x * out]



Like in the previous case, the information is copied dur-
ing execution: one copy is replicated to the passive form [x
match in ...] and the other is translated and executed.
At the same time, the program performs its intended func-
tionality, i.e. to rewrite the input tag to the output tag.
Quines that perform more complex computations can be
written by just specifying the production and consumption
sides accordingly. The following example yields a quine that
multiplies two numbers:

CONSUME ::= match inl match in2
PRODUCE ::= mult out
One difference between a quine and the [matchp ...]

rule is the late reproduction of the quine’s code compared
to the built-in catalyst. While the rule [matchp inl in2
mult out] persists after consuming the first input ini1, the
corresponding quine replicates later, after consuming both
inputs. Late reproduction is useful to prevent the rule from
binding to multiple inl inputs without existing in2 fraglets.

4.2 Self-Modification

The next stage is to build a self-modifying program. Start-
ing with the previous example, the quine now uses a simple
mutation operator that changes the production side dur-
ing information replication. At the same time, a copy of the
blueprints is made available as messenger blueprints for later
translation into the active parts. This can be compared to
the DNA to RNA transcription in cells, where RNA chains
act as messengers, which are translated into proteins by ri-
bosomes.

e ™
(1,3) blueprints 2
(1-3)
replication &
transcription .
(4-6) production
messenger blueprint
. (G
messenger blueprints
(1-3)
Y
translation
(7)
[inl...] i [out...]
operation L
[in2...] =z
-
_ S

Figure 3: Self-Modifying Quine

Figure 3 depicts the principle of the self-modifying quine.
The resulting program is more complex than the previous
examples, because it needs to regenerate multiple fraglets:

[consume CONSUME]
[produce PRODUCE]
[replicate REPLICATE]
[REPLCONS]

[REPLPROD]

[REPLREPL]

[GENERATE]

O U W =

where:

10
11
12
13
14
15

CONSUME ::= match inl match in2

PRODUCE ::= mult out

REPLICATE ::= split REPLCONS * split REPLPROD *
split REPLREPL * split GENERATE *

REPLCONS ::= match consume fork qcons consume

REPLPROD ::= match produce fork gprod mprod

REPLREPL ::= match replicate fork qrepl replicate

GENERATE ::= match gcons match qrepl match gprod

The mutation operator for the production messenger is:

[matchp
[matchp
[matchp
[matchp

mprod split getop * match reop mprod2]
mprod produce] 9

mprod2 pop mprod3]

mprod3 exch produce]

H Hh Hh Hh

f [matchp
f [op sum]
f [op mult]

getop match op fork op resop]
£ [op diff]
f [op div]

The three passive fraglets (1-3) contain the blueprints for
the consumption and the production rules, as well as the
blueprint for the code that replicates the remaining rules (4-
7). The purpose of fraglets 4-6 is to replicate the blueprints
(1-3), and to make a copy of them (1’-3’) available to rule 7.
Rule 7 plays the role of translation by building the actual
operation. This operation consumes input data, produces
output data, and then regenerates the quine’s code.

The execution flow is as follows:

1. The active fraglets 4-6 immediately react with fraglets
1-3, respectively. Each reaction:

(a) Consumes the respective blueprint.

(b) Duplicates the embodied information. One copy
becomes the blueprint again (replication), while
the other copy becomes the messenger blueprint
(transcription to 1’-3’), which is later consumed
by rule 7.

2. However, fraglet 5 does not replicate the blueprint it-
self, but handles another copy (2*) to the mutation
operator.

3. The mutation operator changes the arithmetic oper-
ation of the production messenger blueprint with a
probability of 10 percent. This is done by having two
competing rules that process the production messenger
blueprint (2*). The first (8) performs the modification
by picking an arithmetic operator (14,15) randomly,
while the second (9) leaves the operator untouched.
The relative concentrations of these two rules define
the probability of mutation (in the example, 1 muta-
tion rule against 9 non-mutation ones, leading to 10%
mutation probability).

4. Rule 7 consumes the messenger blueprints (1-3’) gen-
erated by fraglets 4-6, and generates a new active fra-
glet (translation) that performs the following actions:

(a) Consumes both input fraglets inl and in2.

(b) Performs the arithmetic calculation specified by
the production blueprint.

(c) Regenerates the three replication and transcrip-
tion fraglets 4-7 using the embedded messenger
blueprint (3’).



At the end, the whole quine has been reproduced, while
the production side has potentially been modified.

In this example we used a controlled mutation, in which
an arithmetic operator at a well-defined position was ex-
changed with another operator of the same arity. This al-
lowed viable mutations. In the following section we show the
issues involved in building general-purpose genetic operators
like mutation and crossover in the Fraglets language.

4.3 Towards Self-Reproduction

The step from code variation by controlled mutation
(as showed in the previous section) towards generic self-
reproduction requires that a program undergoing mutation
and crossover must be inherently robust to the application
of these operators. In this section we focus on the imple-
mentation of mutation and crossover operators in Fraglets,
which can manipulate long fraglet chains, as opposed to sin-
gle operators as in the previous section. Naive operators
lead to code disruption, but the construction of intelligent
operators leading to viable code is an open issue.

4.3.1 Mutation

At first glance it appears to be fairly easy to mutate a
fraglet as the set of operations and the reaction model offer
the basic features required for this task.

The general idea is to copy the sequence of symbols of an
input fraglet into its blueprint, symbol by symbol. Every
time the head is split from the input fraglet we apply the
same mutation principle as in our quine example in Subsec-
tion 4.2. There are multiple rules which compete for the
head symbol to be copied. The concentration of these rules
influences the probability with which they are going to pro-
cess the selected symbol.

These rules have the same structure: they consume the
head symbol and generate a new head with tag newhead.
Consequentially, the simplest rule is:

f [matchp head newhead]

This rule is equivalent to rule 9 in Section 4.2, which pre-
serves the fraglet. The higher its concentration the less likely
the mutation of a symbol is. A low mutation rate requires a
low concentration of the competing rules that actually mu-
tate symbols. An example of such rule is:

f [matchp head split newhead x * nul]

This sample mutation rule deletes the head and generates
the new symbol x, thus mutating the original symbol to
x. Of course, x can be replaced by any other symbol, an
instruction, or the result of a complex computation.

The fraglet with tag newhead is finally appended to
the current blueprint. After consuming all symbols, the
blueprint is a mutated version of the input fraglet.

Obviously, this mutation is uncontrolled: mutated sym-
bols may yield fraglets which do not have coherent execu-
tion flows. This is one of the major problems which we have
to face in this language. They are discussed in more depth
in Section 5.

4.3.2 Crossover

A crossover operator exchanges genetic code between two
parents and generates new offsprings which share code of
both parents. For this purpose the parents are split at one

[inl...] [in2...]

[outl...] [out2...]
bp1:=bp1’ bp2:=bp2’
$ )\ ‘ isempty? ‘ ‘ isempty? ‘ $
bpl bpl’ T T bp2 bp2’
1 1
‘app.head H gethead ‘ ‘gethead Happ.head ‘
A A
[x0el] [x0e2] J
o
L
(>) \ wait |
9] %
%]
g t:=bpl
&) bpl:=bp2
FLIP bp2:=t
N J

Figure 4: Execution flow of crossover

or two point(s) (1/2-point crossover) and their front parts
are exchanged.

Figure 4 illustrates an abstraction of a possible implemen-
tation of the crossover operator. The rectangles represent
modules which group fraglets associated with a specific task.

The crossover uses two instances of a copy module. Sim-
ilar to the mutation described above, this module splits
(gethead) the head h from the input fraglet one at a time.
If the input fraglet is completely consumed, i.e. it is empty
(isempty?), the result is passed to the output. The result
is the blueprint (bpz) which is modified in each step by ap-
pending (app.head) head h.

At gethead we again use the same method as in the quine
and mutation implementations. Several rules compete for
symbol h. These are the rules in modules app.head and
wait. If rules of the first module consume h the execution
flow stays in the copy module. Otherwise the execution
continues in module flip. Consequentially, the concentration
of the fraglets in these modules also control the probability
of a crossover during the copy process.

The flip module waits (wait) until the second copy module
passes its head symbol to the flip module. If this happens,
the actual crossover can take place. It exchanges the current
blueprints, thus distributing parts of the parents to the new
offsprings. Afterwards, the heads are passed back to the
copy modules and the copying process proceeds.

Depending on the match instruction executed first, the ex-
ecution flow will branch at random into the copy or the f1ip
module. Without any restrictions on this process one may
end up with a fraglet which consists of a random number
of fragments from each input fraglet. Thus, to implement
a l-point crossover the branching of the execution flow to
the flip module has to be controlled in some way. We do
this by providing fraglets [xoel] and [xo0e2] as triggers for
the matching rules in wait. One pair of them can trigger
one crossover. In this way, we can also implement 2-point
Crossovers.

Similarly to the mutation operator we were able to show
that a crossover can be implemented using Fraglets. How-
ever, this implementation suffers from the same problems.
Although we are able to control the number of crossover
points and despite the fact that we can implement matching



rules in wait that more intelligently pick a crossover point,
it is not possible to guarantee that the generated offsprings
possess a coherent execution flow. On the contrary, perform-
ing a crossover on two fraglets implies merging two execution
flows which possibly use different symbols as matching tags
and thus generating new fraglets which can not execute at
all.

Hence, although we can show that Fraglets can easily im-
plement basic genetic operators it becomes obvious that the
invasive character of these operations requires more work
to ensure that programs subject to these manipulations are
still executable. The following section discusses some possi-
bilities to achieve this.

S. DISCUSSION

Section 4.2 showed how simple and controlled mutations
can lead to viable programs, however the scope of the trans-
formations is limited to replacing an operator with another
one with equivalent arity. Section 4.3 then showed how more
generic genetic operators can be implemented in Fraglets,
which could modify them at arbitrary places. However a
prevalent problem with these intrusive manipulations of fra-
glets is the destruction of the execution flow.

A possible solution to be considered is the implementation
of simple symbol rewriting instructions in Fraglets. They
would have to analyze the execution flow of a fraglet. Based
on this information they could detect possible disruptions of
the execution flow and rewrite instructions or symbols ac-
cordingly. As dynamically generated fraglets may influence
the execution, the analytical part of this process is very com-
plicated. We have already identified simple heuristics which
may be used to analyze whether a fraglet or a fraglet set, for
example, produces the symbols it is going to consume and
vice versa. Second, code which is able to analyze the struc-
ture of fraglets can also be used to improve the quality of
genetic operators. For example, it could support a crossover
which only exchanges code fragments which are located in
similar contexts [19]. In this way we would already limit the
destructive behaviour of the genetic operators. Similarly,
we could perhaps use this structural details to support GP
schemata [17].

A related problem is how to get rid of invalid or unused
active reaction rules. A decay mechanism for these fraglets
could be a possible solution. This would require an accompa-
nying selection mechanism that would determine which rules
maintain themselves via self-replication, and which ones de-
cay. This in turn would require a resource control mecha-
nism, possibly based on mass conservation, that would en-
sure that resources are distributed according to some fitness
criterion. This would reflect nature where limited resources
create competition between individuals, which drives selec-
tion and evolution.

6. CONCLUSIONS AND OUTLOOK

Our goal in this paper was to show how self-replicating
and self-modifying programs can be created using Fra-
glets as a chemical programming language. Obtaining self-
replication and self-modification properties is a first step
towards self-reproducing programs. Self-reproduction is an
important property for future autonomic systems. We de-
scribed general methods to develop self-replication and -
modification structures using Fraglets.

In particular we showed how Fraglets programs are able to
replicate due to the flat code/data representation. Starting
from simple quines, we elaborated on self-replicating pro-
grams of increasing complexity. The resulting programs are
still able to execute the intended computation.

We also subjected self-replicating programs to simple and
controlled mutations. The resulting mutants were viable
yet modified offspring of their parents. We also showed
how more generic variation operators, like mutation and
crossover, can be expressed in Fraglets.

A full self-reproduction scheme is still not demonstrated
due to the problem of obtaining general-purpose variation
operators that produce viable Fraglets programs with a high
probability. Currently, naive genetic operations disrupt the
execution flow of Fraglets programs, which is heavily depen-
dent upon matching tags to trigger reactions.

Our long-term objective is to create stable, yet self-healing
programs that survive internal (mutations) and external (at-
tacks) perturbations. To this end, genetic operators that
can produce viable offspring automatically are needed. As
a future work, we plan to examine dynamic properties of
the Fraglets framework and to further investigate biochem-
ical reaction networks, in order to stabilize execution paths
within a Fraglets program.
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