
U-Hopper: User-centric Heteogeneous Opportunistic
Middleware

Iacopo Carreras and David Tacconi
CREATE-NET

Via alla Cascata 56/C
Trento, Italy

name.surname@create-net.org

ABSTRACT
This demonstration presents U-Hopper, a user-centric het-
erogeneous opportunistic middleware specifically tailored to
the diffusion of user centric information, such as contex-
tual and entertainment data, in opportunistic environments.
The proposed platform exploits proximity wireless interfaces
available on most commercial mobile devices for disseminat-
ing data among mobile users. Such diffusion if driven by
the specific interests of mobile users, combined with the in-
trinsic locality of data being generated in such pervasive en-
vironments. The prototype is developed over java-enabled
smartphones and relies on Bluetooth connectivity for achiev-
ing proximity communications. In this paper, U-Hopper is
described in all its functional components, together with the
details of its software implementation.

Keywords
opportunistic communications, middleware platform, mobile
phones, bluetooth, J2ME.

1. INTRODUCTION
Opportunistic networking [1] refers to the possibility of

delivering data applying an epidemic-like forwarding mech-
anism, without the need for any dedicated infrastructure.
Such communication paradigm received great attention in
the last few years as an emerging technology for dissemi-
nating data in challenged environments, where due to en-
vironmental constraints it is not possible to build an alter-
native communication infrastructure, or in pervasive envi-
ronments, where data exchanges are driven by the “social
interactions” of mobile users [2]. In particular, the latter
case is a direct consequence of the fact that mobile devices
(e.g., smartphones or PDAs) are nowadays largely available
among people and of the constantly increasing computing,
communication and storage power of such devices. Several
mobile phones are in fact equipped with Bluetooth, Wi-Fi
and Wibree (in the near future), technologies that are di-
rectly accessible for programmers through freely available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics’07 December 10-13, 2007, Budapest, Hungary
Copyright 2007 ICST 978-963-9799-11-0.

and easy-to-use APIs. Further, mobile phones are now ca-
pable of intensive processing operations and of storing large
amounts of data in their internal memory.
However, although opportunistic networking has been deeply
investigated from a theoretical point of view, only few real
deployments have been proposed, with the main goal of un-
derstanding the networking performance of the implemented
protocols [3] or the social aspects related to proximity com-
munications [2].
Following these considerations, we have developed a User-

centric Heterogeneous Opportunistic Middleware (U-Hopper),
running on any java-enabled smartphone and leveraging Blue-
tooth connectivity for exchanging data. Such platform com-
bines the user preferences with the requirements imposed
by the pervasive services hosted on users’ portable device in
order to gather and disseminate data. Such process is fully
distributed and self-organized, as it does not require any hu-
man supervision.
In the proposed demo, we will present a prototype of the
U-Hopper platform. The demonstration will comprise three
classes of devices. The first one is constituted by sensors
embedded in the environment and constantly broadcasting
localized information such as snapshots of the conference
site or advertisements. Such information is gathered by the
second class of devices, which consists of a limited number
of smartphones acting as mobile nodes and running the U-
Hopper platform. Through these devices the information
will flow around by means of P2P data exchanges among
mobile nodes running the U-Hopper middleware. Finally,
information is displayed over a laptop, the third class of de-
vices, which provides a richer user-interface through which
the information captured by the U-Hopper platform is dis-
played.

2. SYSTEM OVERVIEW
The considered system architecture consists of two classes

of nodes: User-Nodes (U-Nodes), which are resource-rich
mobile devices (e.g., smartphones, PDAs) carried around
by users during their daily activities, and Tiny-Nodes (T-
Nodes), which are resource-constrained devices embedded
in the environment and providing localized information [4].
A part from their technological differences, the 2 classes of
devices play a different role in the network. T-Nodes act
as providers of information, constantly broadcasting local-
ized information such as advertisements, or snapshots of the
surrounding environment. Conversely, U-Nodes act as con-

sumers of information, reading T-Nodes in their communi-
cation range, and augmenting pervasive services with such



data. The data generated by T-Nodes is first stored in the
U-Nodes internal memory, and then diffused by means of
opportunistic peer-to-peer data exchanges. Users’ mobility
is therefore exploited in order to achieve system-wide com-
munications. In this demo, we will present a U-Hopper, a

T−NODES

PROFILE
MANAGER

SERVICE
CONTAINER

MANAGER

CONTENT

USER INTERFACE MANAGER

INTEREST MANAGER

CONTEXT ACQUISITION MANAGER

OPP. COMM. MANAGER

U NODES

Figure 1: Block diagram and interconnections of the

U-Hopper platform.

User-centric Heterogeneous Opportunistic Middleware ini-
tially introduced in [5]. Such platform resides on U-Nodes
and exploits any proximity communication interface (i.e.,
Bluetooth, Wi-Fi) in order to (i) gather localized informa-
tion originating from T-Nodes embedded in the environment
(ii) opportunistically disseminate the stored data to other U-
Nodes. The information diffused includes data received from
T-Nodes as well as any other information shared by the user
(e.g., music, videos, etc.).
As depicted in Fig. 1, the U-Hopper middleware is composed
by six distinct components.
The User Interface Manager (UIM) handles any human-to-
machine interaction such as data insertion and visualization.
The Service Manager (SM) is the execution environment
where pervasive services are running. This component al-
lows services deployment, deprecation and update.
The Interest Manager takes into account (i) the user prefer-
ences and (ii) the requirements deriving from the pervasive
services hosted by the SM, and produces a list of “interests”,
which are a high-level description of the information the user
is interested in. Such interests regulate the way according
to which information is exchanged between any 2 U-Nodes
accordingly.
The Content Manager (CM) manages the persistent storage
available on mobile devices. In particular, it provides con-
text data insertion/deletion, update and search functional-
ities. In addition, the CM runs appropriate “data aging”
algorithms that are needed in order to discard outdated in-
formation and preserve the available resources. Such tech-
niques implement information filtering rules that trade off
data locality (both in the time and space domains) for avail-
able resources (i.e., storage, communication, etc.) [6]. As
an example, we can think at a special sale offer ending at
5 pm of the current day. Clearly, as soon as the offer is no

longer valid, it is useless to store the corresponding informa-
tion. The CM is in charge of detecting such situations and
of determining when to remove data from the users’ device
permanent storage.
The Context Acquisition Manager (CAM) takes into account
the information deriving from the Interests Manager, and
applies data filters on the incoming and outgoing data flows.
The Opportunistic Communication Manager (OCM) moni-
tors the availability of data sources in the surrounding en-
vironment, and seamlessly performs any networking oper-
ation needed for gathering the discovered data. This in-
cludes data originating from T-Nodes as well as from other
U-Nodes. Please, refer to [5] for a more detailed description
of U-Hopper system components.
Fig. 2 depicts the handshake regulating the data exchange
between any 2 nodes meeting. The data exchange is trig-
gered by a Node 1 receiving a beacon message used for dis-
covering neighboring peers. In response, Node 1 sends its
own interests (Interests 1 MSG), which are a description of
the information Node 1 is interested in. Node 2 responds
with the data stored in its own internal memory matching
Node 1 interests (DATA 2 MSG), and subsequently, with its
own interests (Interests 2 MSG). Finally, the data exchange
is terminated with Node 1 sending any data matching Node
2 interests. The corresponding system components interac-

Node 1 Node 2

Beacon MSG

Interest 1 MSG

Data 2 MSG

Interest 2 MSG

Data 1 MSG

Figure 2: Data handshake between any 2 nodes

meeting.

tion flow, when generating the user interests, is presented
in Fig. 3. When a beacon message is received by the OCM,
a request for the user interests is invoked. Such request is
then captured by the IM, which gathers the user profile,
the service constraints and returns the user interests. It is
worth remarking that the described actions are performed
by the U-Hopper platform transparently to the user, thus in-
creasing the system usability of the system, since it does not
require any human intervention. On the counterpart, when
the interests from an encountered node are received, the data
stored in the internal memory is searched accordingly, and
information matching the received interests is send back.
The corresponding system components interaction flow is
depicted in Fig. 4.

3. IMPLEMENTATION DETAILS
The main goal of the proposed demo is to show a pro-

totype implementation of the described system over widely
diffused software/hardware platforms. In order to embrace
the largest number of “potentially available” mobile devices,
we selected smartphones as the target platform over which
we developed U-Hopper. In fact, smartphones are nowadays



Manager
Interests Profile

Manager
Service

Manager
Communication

Manager

Beacon MSG

getInterests()

getProfile()

getServConstr()

ServiceConstraints

Interests

Profile

Interests MSG

Figure 3: System components interaction flow, when

generating the user interests.

Communication
Manager Manager

Content

getData()

Data

Interests

Figure 4: System components interaction flow when

retrieving data, starting from user’s interests.

typically carried around by users during their daily activi-
ties and at the same time, they have reached a sufficiently
large computing and communication power to perform very
complex operations. We also decided to use some laptops for
broadcasting advertisement information or collecting appli-
cation’s statistics.
In order to leverage on a widely diffused and standardized
computing environment, we choose to develop U-Hopper as a
java Midlet running over J2ME (MIDP profile 2.0) [7], which
is currently available on most of the smartphones shipped
today. By implementing U-Hopper as a java component,
we are guaranteed that the software will be portable over a
large set of devices.
The fist technological issue to be solved in developing a mid-
dleware for opportunistic environment is given by the selec-
tion of the proper network interface. In fact, as detailed
in Sec. 2, opportunistic communications are the primary
mean by which information is diffused in the described envi-
ronment. Currently, Bluetooth is the largest available net-
work interface on mobile phones and can be easily accessed
through J2ME dedicated APIs, such as the well-known JSR
82 ([8]). Hence, we choose to rely on this technology for
achieving localized peer-to-peer data exchanges among mo-
bile nodes. Obviously, Bluetooth is not properly designed
for opportunistic communications, given the amount of time
typically required for establishing a connection between two
devices. To shorten up this connection time, we leveraged
on some assumptions and on few properties of the Bluetooth
technology. At first, we have assumed that all the devices
running U-Hopper are assigned with a friendly name starting
with a given prefix (for instance they all start with ’uhop-
per’): this simple assumption allows U-Hopper clients to rec-
ognize immediately a candidate that runs the same service,
avoiding useless attempts of connection with other devices.
We assume also that all devices keep a list of recently visited
devices in order to avoid too frequent connections with the
same peers. A peer is periodically removed from this list,
when a given timer is elapsed.
In U-Hopper, each device is always working in server mode,

i.e. it is waiting for incoming connections from U-Hopper
clients. Alternately, a device can work in client mode, pe-
riodically inquiring close-by devices, and consequently in-
hibiting its server mode until the client operations are not
completed. Whenever another device is found during an in-
quiry, if its friendly name starts with the given prefix and it
was not recently visited, the inquiry process is stopped and
the service discovery operation is performed on that device.
This peer is now inserted in the list of recently visited de-
vices. If the U-Hopper service is found and it is available, a
connection is established and the communication handshake
previously described can start. The node working in server
mode updates its list of recently visited devices, in order to
avoid a new exchange of information with the same peer in a
brief time. Following this procedure, two peers can establish
a connection in approximately 1 or 2 seconds (depending on
the number of Bluetooth devices in radio range), a time suit-
able for having opportunistic communication on Bluetooth
enabled devices.
The second issue we had to face was to design a proper per-
sistent storage on each device. Typically, in smartphones
data are saved locally using the Record Management Store
(RMS), where information can be easily stored as an array
of bytes and retrieved using easy-to-use matching methods,
similar to common data base queries. We design then a
RMS storage for each device, allowing U-Hopper to main-
tain persistent data, interests and profiles through different
execution of a service running on top of the middleware.
Concerning the implementation of U-Hopper on laptops, we
used the Avetana Bluetooth library, an open source Blue-
tooth stack that allows applications designed for JSR-82 to
run on Linux devices. Although we had to adapt some of
the components to a not-embedded environment, as for in-
stance the local storage and the user interfaces, most of the
modules of U-Hopper were easily installed and run on sev-
eral laptops. Laptops were used as T-Nodes generating ad-
vertisement information or as collection points, for show-
ing application statistics, running the same communication
module described before.
Tab. 1 presents a concise summary of the technologies and
devices used in this demonstration.

HW platform Nokia E65, Nokia N80, Dell600
OS Symbian OS 9.1, Ubuntu 6.11

SW platform J2ME (MIDP 2.0), J2SE 1.5
BT version Bluetooth 1.2

Table 1: The demo in a nutshell.

4. DEMONSTRATION OVERVIEW
The proposed demonstration is depicted in Fig. 5. It

consists in (i) few smartphones and laptops acting as data
sources (T-Nodes), (ii) 4 smartphones running U-Hopper
(U-Nodes), (iii) 1 laptop acting as a mobile node (U-Node)
for collecting application’s statistics. In order to reproduce
the considered pervasive application domain, we have used
a few Bluetooth enabled smartphones acting as environmen-
tal data sources (T-Nodes). Such smartphones are regularly
broadcasting physical data, such as measured temperatures
or snapshots of the conference site periodically taken by
smartphones’ cameras. Few laptops are broadcasting con-
text data such as conference social and technical activities.



U N 1U N 1 U N 2
T i n y N o d e 1

U N 3U N 4
N o d e M o v e m e n tO p p o r t u n i s t i c D a t aE x c h a n g eB l u e t o o t h

U N 5T i n y N o d e 2
Figure 5: Demonstration scenario.

Context data is then collected by other smartphones (U-
Nodes) passing by, as for instance UN1 gathering data from
Tiny Node 1 in Fig. 5. Information is then epidemically dif-
fused by means of opportunistic P2P data exchanges among
U-Nodes that take place transparently to the user.
After installing and starting the application, users will be
asked to select their preferences. Such preferences will influ-
ence the data gathering and data exchange process. Users
can then visualize the collected information, such as snap-
shots and advertisement information, at any time on the
smartphone’s graphical interface Furthermore, U-Hopper users
will have the opportunity to share some information in a to-
tally P2P fashion, directly acting as source of data. For
instance they can share some personal midi files (e.g. ring
tones), exchange them with other peers if interested in en-
tertainment information and then listen to the received files
through a simple UI. In Fig. 6 two users are shown while
using U-Hopper.
In order to show the outcomes of the demo (such as col-

Figure 6: U-Hopper on Nokia E65 smartphones.

lected information and statistics on users P2P communica-
tions) in a more user-friendly way, users can visualize at any
time such information through an application running on
the laptop acting as a user node shown in Fig. 7), available
for everyone interested in our application .

5. CLOSING REMARKS
The developed U-Hopper is an attempt to provide a reusable

software platform capable to transparently handle oppor-
tunistic data dissemination among mobile nodes over off-
the-shelf hardware and software platforms. Fully distributed
pervasive services can leverage such disappearing network in-

Figure 7: The laptop interface, showing contacts

among 4 users and data gathered from T-nodes tak-

ing snapshots of the site.

frastructure [4] for retrieving context data without the need
of any human supervision. In the presented demo, we have
shown a simple application of the U-Hopper middleware. In
particular, it is the capability of U-Hopper to exploit the
physical mobility of user in order to gather information and
diffuse it to other mobile nodes. The platform has been
developed over java-enabled smartphones, leveraging Blue-
tooth connectivity for achieving proximity communications.

6. ACKNOWLEDGMENTS
This work has been partially supported by the EC within

the framework of the BIONETS project IST-FET-SAC-FP6-
027748, www.bionets.eu

7. REFERENCES
[1] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic

networking: data forwarding in disconnected mobile ad
hoc networks,” IEEE Comm. Mag., vol. 44, no. 11,
Nov. 2006.

[2] M. Nicolai, N. Behrens, and E. Yoneki, “Wireless rope:
An experiment in social proximity sensing with
bluetooth,” in Proc. of PerCom, March 2006.

[3] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and
H. Zhang, “Study of a Bus-Based Disruption Tolerant
Network: Mobility Modeling and Impact on Routing,”
in Proc. of Mobicom, September 2007, pp. 195–206.

[4] BIONETS, “Biologically-inspired autonomic networks
and services,” http://www.create-net.eu, 2005.

[5] I. Carreras, D. Tacconi, and D. Miorandi, “Data-centric
information dissemination in opportunistic
environments,” in In Proc. of MASS, Pisa, Italy,
October 2007.

[6] I. Carreras, I. Chlamtac, F. D. Pellegrini, and
D. Miorandi, “Bionets: Bio-inspired networking for
pervasive communication environments,” IEEE Trans.

on Vehicular Technology, vol. 56, no. 1, pp. 218–229,
Jan. 2007.

[7] Jsr-000118
mobile information device profile 2.0. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr118/

[8] Jsr-000082 javatm apis for bluetooth. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr082/


