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ABSTRACT 
The study of epidemics is a crucial issue to several areas. An 
epidemic can have devastating economic and social 
consequences. A single crop disease in Kansas could destroy the 
yearly income of many farmers. Previous work using graph 
theory has determined a universal epidemic threshold found in 
the graph topology for a binary contact network in the 
compartmental Susceptible-Infected (SI) analysis. We expand 
this threshold to a more realistic measure. A binary uniform level 
of contact within a society is too idealistic and an improved 
threshold is found in allowing a spectrum of contact within a 
contact network.   The expanded contact network also allows for 
asymmetric contact such as a mother caring for her child. Further 
study in this area should lead to improved simulators, disease 
modeling, policies and control of infectious diseases and 
viruses.* 
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1. INTRODUCTION 
   Compartmental models are the most widely studied class of 
epidemics models. The Susceptible-Infected (SI) model assumes 
no immunity or recovered state. This allows the agents to be re-
infected repeatedly, thus switching back and forth between the 
two states. This could occur with certain malicious viruses or in 
an agricultural setting where either there is no immunity 
associated with the disease or the agent represents a crop that 
can be re-infected again. In the SIR compartmental model, first 
formulated (though never published) by Reed and Frost in the 
1920s, each node represents an individual who can belong, in a 
given time, to one of three compartments, Susceptible, Infected, 
or Recovered (SIR).  Key parameters in this model are the 
infection rate � β, which captures the aetiology of the infection 
process, and the recovery rate δ of an infected node [2]. The 
SEIR model adds an Exposed compartment increasing its 
effectiveness at modeling biological diseases. 

    In graph theory, a graph consists of a set of points called nodes 

or vertices. The interconnections among the nodes are known as 
links or edges, and in a contact network, they represent a form of 
contact or relation. The neighbors of a node are those connected 
to the node. A node’s degree is the number of neighbors it has. 
We can define a node to represent a single individual or group, a 
small location or county, or a computer or computing group. A 
graph can be described mathematically by an adjacency matrix A 
where row i contains the neighbors j of node i by a 1 in the 
appropriate jth columns with the remaining entries 0. 

    In this paper, we expand an SI epidemic threshold to 
accommodate asymmetric and variable contact by weighting the 
links of the contact networks. The introduced threshold brings to 
light two interesting topics. First, the assignment of the weights 
and how they are distributed can have significant effects on the 
epidemic resistance of the topology. A single topology can obtain 
a spectrum of virus resistance for different weight placements. 
Secondly, as weights are assigned the can form regions of higher 
weights that are much more conducive to epidemic spreading. 
These regions behave as disease “highways” across the network. 

    We take and expand the binary-contact threshold of [22] to 
include weighted asymmetric contact in Section 3.1, where we 
utilize weighted links to take the contact out of the disease 
parameter β and place it on the graph. Section 3.2 discusses the 
simulation tools we are constructing to model epidemical 
spreading and transfer, and their application to this work. We 
expound on the weights in Section 3.3 and investigate how they 
differentiate topologies in Section 4, with further insight and 
conclusions in Section 5. 

2. RELATED WORK 
    The epidemic threshold of an SI system is the line between the 
existence of infected nodes and their non-existence as time tends 
to infinity. Spectral analysis is used in [22], where the authors 
present a model of virus propagation on a given realistic topology 
to demonstrate that the topology of the underlying network has a 
strong impact on the speed of propagation.  Using a probabilistic 
model and by some approximations, they found the epidemic 
threshold 
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where β is the average rate of infection along a link, δ is the 
curing rate on an infected node, and λ1,A is the largest eigenvalue 
of the adjacency matrix of the network topology. If the above 
condition is met, there is no epidemic. Using this model, they 
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confirmed the result in [20] stating that an infinite power law 
graph has a threshold which tends to zero. More rigorous results 
on the same topic are presented in [14], where the question of 
what makes an epidemic either weak or potent is addressed.  
More precisely, the authors have identified topological properties 
of the graph that determine the persistence of epidemics. In 
particular, they showed that if the ratio of cure to infection rates 
is smaller than the spectral radius of the graph, then the mean 
epidemic lifetime is of order log n, where n is the number of 
nodes, so the epidemic dies out quickly.  Conversely, if this ratio 
is bigger than a generalization of the isoperimetric constant of 

the graph, then the mean epidemic lifetime is of order en
a
 for a 

positive constant a, resulting in the epidemic dying out slowly. 

    The main focus of this paper is a study of the effects of 
weighting the network’s links. The application of an infection 
rate that varies among the links has been investigated previously 
with a few fixed β’s [17][8],  βij(distance) [12][16], β(time) [15], 
randomly generated βij [19], and βij from a bimodal Gaussian 
distribution [21]. In all of the above, the contact measures are 
part of the respective β and not the topology. Historically, the 
components of disease related contact have been included in the 
β parameter and not as part of the graph and its links. 

    Researchers have developed a number of simulators to model 
and predict the spread of diseases. Two notable ones are the 
Epidemiological Simulation System (EpiSims) [9][11] from Los 
Alamos National Laboratory and the Spatiotemporal 
Epidemiological Modeler (STEM) [13] from IBM. EpiSims is an 
exhaustive simulation tool that provides precise results; however 
this creates an extremely large simulation. EpiSims provides 
details about every simulated person and the significant event 
that happens to each person during the simulation—including 
infection, incapacitation, and treatment—along with a time 
stamp and current location [9]. STEM is a dual of EpiSims as an 
aggregate simulator that divides the details down to a county 
level, yet can provide disease predictions for an entire country. 

3. MODEL AND SIMULATION 
 

3.1 Model 
    We develop an initial SI model based on the one of [22]. With 
the two states, Susceptible and Infected, we have the three 
probabilities for the state p, for not receiving an infection ζ, and 
for a cure and return to the susceptible state δ. Starting with the 
probability ζ of a node vi not receiving infections from its 
neighbors vj, 

                    ∏ −
−=

j
tjati p )1( 1,, βζ               (2) 

Where pi,t is the probability of node vi being sick at time t, we 
follow a probability tree to form the core SI model in Equation 3. 
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This selection of probabilities produces the same initial 
equations as those of [22]. They derive Equations 2 and 3, and 
compare these to a simulation to prove their modeling accuracy. 

 
 

 

 

Using small-value approximations and converting to a matrix 
notation, they work out Equation 1. Our initial model differs 
from theirs by adding a weight ω in Equation 2. 

∏ −
−=

j
tijfijti p )1( 1,, βωζ           (4) 

Equation 3 remains unchanged except in the value of ζ. The 
adjacency matrix now becomes a weighted matrix W, where a ωij 
between 0 and 1 replaces every 1 in A. When we absorb the 
average weight ω  into W, we define W’ = W/ω . Deriving a 
threshold in a similar manner, we have the expanded threshold 

W

a

′

≤
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λδ
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where W ′,1λ  is the largest eigenvalue of the weighted and scaled 

matrix W’. 

3.2 Simulation 
     The thresholds are verified by parallel simulations run on our 
SI simulator. We are designing algorithms and software for 
parallel network simulation and topology analysis with mobile 
agents that allow dynamic environmental inputs. We work to 
design efficient, realistic simulations that allow real-time 
implementation of virtually any contagious virus. Simulation 
topics include networks composed of humans, animals, biological 
cells, computers, and crops with disease related spreading. For 
rural graphs, we plan to interface them with GIS software. We 
test the thresholds on several un-weighted topologies with the SI 
model to verify their accuracy. Using the road structure of a 
northeast Kansas Indian reservation, we designed a simple farm 
contact graph (PIR) to investigate rural epidemics. We collected 
a layout of the Abilene [1] backbone network for an internet 
analysis. The largest graph we analyzed comes from the 
Cooperative Association for Internet Data Analysis (CAIDA) [6] 
and their analysis of autonomous systems from March 12, 2007 
with over 24,000 nodes. We also utilize classic topologies: star, 
mesh, Erdös-Rényi ER [10], scale free SF [4], and a ring with 

Figure 2. The Probability Structure of an SI Model 

We neglect the terms which switch states twice and reduce 
the probability of the sequenced terms. 



node degree 100. Of these, the ER and SF are designed to model 
realistic networks. We depict these graphs in the appendix. Note 
that the use of these graphs is not an attempt to model a realistic 
system, but to verify the accuracy and universal property of the 
model on several different types of graphs. We intend to study 
the relationships between other graph metrics and the differences 
observed among the disease propagation in the graphs. Although 
the graphs tested here are static, we are working on “intelligent” 
graphs that can demonstrate the effects of various policies in 
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response to a disease or virus, even as simple as nodes that 
reduce contact with sick nodes. 

    Figures 3 through 5 demonstrate how the model aligns with 
the SI threshold for each un-weighted contact network 
respectively. Initially, a fourth of the nodes are infected, and then 
simulated over 1000 discrete time segments. The thresholds are 
depicted in yellow. The simulation is the oscillating lines, while 
the model predicts the smooth ones. The threshold is easy to 
identify in the SI model, being the lowest line not reaching zero. 
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Figure 3. Simulation and threshold of Abilene Backbone network (93 Nodes) with binary links. 

Figure 4. Simulation and threshold of PIR farms network (102 Nodes) with binary links. 

Figure 5. Simulation and threshold of CAIDA autonomous systems network (24491 Nodes) with binary links. 



3.3 Weights 
    The weight ω gives the ability to model varying levels of 
contact [18]. When we assign ω, we change slightly the 
definition of βa. Initially, βa was a probability that described the 
average infection rate along a link. It contains within it an 
assumed average contact, but now we place this contact on the 
topology. We define  βf as a full contact measure of β as  

af βωβ =  (6) 

So now βa has an adjusted upper bound described in Equation 7. 

1

1

1

≤

≤

≤

ij

ij
a

ijf

ω
ωω

β
ωβ

 

1≤≤ωβa
 (7) 

   Without the ω  introduced into the model, we would always 
produce a higher threshold, indicating that the weights are 
improving the graph’s disease resistance, since when entries  
aij ≤ bij for all i and j, it follows λ1,A≤ λ1,B, where λ1,A and λ1,B 
are the largest eigenvalues of graphs A and B respectively [3]. 
We assigned the contact weights to PIR by the presence of a 
fence or road and the length of the adjacent boundary. For 
Abilene’s weights, we assigned them by the links’ physical 
capacity and where recorded, the traffic. Other graphs’ weights 
are assigned randomly from a normal distribution of weights to 
investigate their thresholds as weighted graphs. For 
homogeneous graphs, it is noted that the weighted graphs appear 
to have at best the same threshold as the corresponding adjacency 
graph. We observed that as the standard deviation of the weight 
distribution tends to zero on homogeneous graphs, the threshold 
comes down to the binary contact threshold. Homogeneous 
weighted graphs were never seen to have a better threshold than 
their binary contact counterparts in the trials run by the authors. 

    With the introduction of weights, there arises a new form of 
clustering, namely, weight clusters. A weight cluster occurs as a 
connected group of highly infectious agents, without requiring 
these agents to be a topological cluster. Such a cluster can serve 
as a virus super-highway through the network. Figures 6 through 
9 are colored by the weights on each link and the normalized 
weight-degree (the sum of the weights on all adjacent links) of 
the nodes. The color order starts with purple as the highest, 
running down through the reds to greens with the black/grey as 
the lowest weights. This representation allows us to see clusters 
that are topology independent, such as a string of highly 
weighted nodes through a community or region. In the Abilene 
cluster map, the link colors range over a smaller set of the 
possible colors due to a tighter weight distribution from the 
hardware capacities. With the addition of the authors’ selection 
of contact weights, the threshold of Abilene changes by only 8%, 
while the PIR threshold swings 30%. A network connection 
between two large groups of nodes could be poorly connected in 
graph theoretic terms; yet if those links comprise some of the 
highest weights, the connection could be easily crossed resulting 
in a larger epidemic. Both types of clustering should be 
considered in future epidemic control and prevention policies. 

 

 

 

 

Figure 6. 

Abilene 

Cluster Map 

Figure 7. 

Erdös-Rényi 

Cluster Map 

Figure 8. 

PIR Farms 

Cluster Map 

Figure 9. 

Star Topology 

Cluster Map 
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4. COMPARING TOPOLOGIES 
    We tested the results of the threshold derived for weighted 
graphs and can see how the weights affect the graph. We record 
the eigenvalues of our graphs in the appendix. Pictured in figures 
10 through 13 are the results for several threshold simulations. 
Each data set is averaged over 20 runs for the simulation for 
1000 discrete time segments, while the model produces identical 
results for each of the 20 runs. For the threshold depictions, we 
show three values of the ratio  βa/δ with one 5% above the 
threshold and one 5% below. Each simulation is started with 
approximately one fourth of the nodes randomly selected to be 
infected state. They contain the same initial setup as figures 3-5, 
all with a δ = 0.2. These results demonstrate the accuracy of the 
expanded threshold. While some of the calculated thresholds are 
lower, seemingly worse, they are merely more realistic. There are 
significant differences among the networks as the factor of the 
threshold changes. Figure 14 contains the simulation until t = 
250 for 6 of the networks when the βa/δ ratio is twice the 
threshold. They are graphed by the fraction of the nodes infected. 
For the CAIDA graph, the fraction is very low, seemingly the 
most robust against a virus. Yet Abilene, which has been 
designed to be an optimal network, is fairly constant. The Mesh 
topology is the highest as it intuitively should be. When above 
the threshold, PIR drops to an unusual and early minimum that is 
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not seen in the other topologies. This might be an aspect of rural 
contact networks. It cannot be attributed to the weight 
distribution because it is found also in the binary simulations 
seen in figure 4. 

    We also include an analysis of asymmetric weights on the 
contact networks. As shown in figures 15 and 16, the asymmetric 
threshold is as precise and accurate as the previous threshold. 
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Figure 10-13 Thresholds with Weighted Links 

Figure 14. Fraction of Graph Infected against time for  

Wa ′= ,12 λδβ  
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    The asymmetric PIR graph is more robust in the sense that it 
has a 2.3% and 33% higher epidemic threshold than the A and 
W’ PIR graphs respectively. Contact weights have a strong 
ability to alter a graph without changing the topology. When a 
government wishes to implement an epidemic prevention policy, 
it can reduce the “weights” and generate similar results without 
having to either destroy several farms and businesses or having 
to completely quarantine entire cities. 
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5. CONCLUSIONS 
    Implementing asymmetric weights on a contact network add a 
significant amount of realism to the contact distribution.  They 
can significantly change your contact network levels of disease 
resistance. Figures 17 and 18 display the differences among the 
thresholds of Abilene and PIR, for the different weighting 
schemes. The SI threshold, while useful for demonstrating the 
results of weighting methods, is limited in application and is not 
well suited to be a basis for a simulation. Still, significant 
differences are readily demonstrated through an SI model, 

Figure 15. Simulation (a), Model (b), and Threshold (c) 
for an asymmetric Abilene (93) graph 

Figure 16. Simulation (a), Model (b), and Threshold (c) 
for an asymmetric PIR (102) graph 



implying that proper weighting is essential to accurate contact 
modeling.  Interestingly, when the only asymmetrical properties 
associated with a given contact network are completely reversed, 
they produce identical thresholds when found by an eigenvalue 
threshold. So if a rural contact network has only wind as an 
asymmetrical factor, then wind from the southwest produces an 
identical threshold as wind from the northeast produces as a 
property of the transpose of a matrix. 

    We introduced asymmetric weights with epidemic spreading 
and verified them with one of the simulation tools we have 
designed. We defined weight clusters as a crucial element of 
disease management policy. Future work exists in the area of 
topology related thresholds for these models, in the study of the 
effects of the weight distribution and assignment on the epidemic 
resistance of a graph, and, of course, in optimal universal 
simulation technologies. 
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7. APPENDIX 
    Network layouts created by Pajek [5]. Topology figures 
produced through KiNG imaging from Duke University [7]. 
Distortion in CAIDA topology is due to the large number of 
nodes. 

7.1 Network Figures 

 

 

 

  

 

 

 

  
 

 

 
 

 

 

Abilene Backbone 

93 Nodes 

CAIDA 3/12/2007 
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Erdös-Rényi 
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Mesh Topology 

750 Nodes 

PIR Farms 
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Ring Topology 
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Scale-Free Topology 

500 Nodes 

Star Topology 

1000 Nodes 

Figure 17. Nodes Infected at Time = 1000 on Abilene W’ 

Figure 18. Nodes Infected at Time = 1000 on PIR W’ 



7.2 Network Eigenvalues 
 

 

Symmetric Adjacency A Weighted, Scaled W’ 

Abilene 5.0156 5.4164 

CAIDA 69.50 78.00 

Erdös-Rényi 6.4111 6.8166 

Mesh 749.00 749.2478 

PIR 7.5044 9.7529 

Ring 100.00 100.3050 

Scale-Free 7.5568 7.9739 

Star 31.6070 35.3921 

Asymmetric   

Abilene _____ 5.0337 

PIR _____ 7.3334 
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