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ABSTRACT 
In order to accurately measure the gene expression levels in 
oligonucleotide microarray experiments, it is crucial to design 
“unique”, highly specific and sensitive probes for the 
identification of biological agents such as genes in a sample. It is 
difficult to design unique probes for very closely related genes, 
such as the known strains of HIV genes.  The “non-unique” probe 
selection problem consists of determining a set of probes, not 
necessarily unique, that can uniquely identify targets while 
containing a minimal number of probes.  In this paper, we 
describe a simple model-based method to obtain a near minimal 
non-unique probe set. Preliminary experimental results are 
encouraging and at least comparable, if not better, to those 
obtained by two recently published methods.  

Keywords 
Probe selection, Probabilistic model, Hybridization, 
Microarray. 

1. INTRODUCTION 
Oligonucleotide microarrays, commonly known as gene chips, are 
widely used techniques in molecular biology, providing a fast and 
cost-effective method of performing thousands of DNA 
hybridization experiments simultaneously [2][16].  Short 
(typically around 24 base pairs) strands of known DNA sequence, 
called probes, are affixed to specific positions on a chip’s surface. 
A fluorescently labeled RNA sample is then washed over this 
surface. Some of this RNA will hybridize to complementary 
strands of DNA. The amount of RNA hybridized to each position 
on the microarray can be inferred from fluorescence 
measurements [14].  

In order to measure the expression level of a specific gene in a 
sample, we must design a microarray containing DNA strands 
complementary to the gene. Typically, the total length of probes 
used to hybridize a gene is only a small fraction of the length of 

the gene [16]. The success of a microarray experiment depends on 
the quality of probe sets that are used [13]. Expression levels can 
only be accurately measured if a good set of probes is chosen. 
However, choosing good probes is a difficult task since different 
sequences have different hybridization characteristics.  

A probe is unique if it is designed to hybridize to a single target. 
However, there is no guarantee that unique probes will hybridize 
to their intended targets. Cross-hybridization, (hybridization to 
non-target sequences), self-hybridization (a probe hybridizing to 
itself) and non-sensitive hybridization (a probe may not hybridize 
to its present target) are hybridization errors that usually occur 
and must be taken into consideration for accurate measurement of 
the expression levels. Many parameters such as secondary 
structure, salt concentration, GC content, hybridization energy, 
melting temperature and so on, also affect the hybridization 
quality of probes [15] and their values must be carefully selected 
in the design of high quality probes.  The design of unique probes 
is particularly difficult when targets to be identified are closely 
related and very similar to each other. Examples of difficult 
targets to be identified in a microarray experiment are the 
different strains of HIV or HPV viruses. One way around this 
problem is to devise a method that can make use of non-unique 
probes, which hybridize to more than one target. Non-unique 
probes are designed to hybridize to multiple targets, and this 
paper focuses on the non-unique probe selection problem. 
Applications include the detection of pathogenic bacteria in foods, 
laboratory diagnosis of bacteria responsible for infections 
including acute upper respiratory infections, detection of many 
human viruses, and the detection of viral RNA or DNA that is 
relevant to pathologies of the central nervous system [5]. 

Previous studies [1][3][5][9][10][11] applied various methods to 
unique and non-unique probe selection problems as well as other 
related probe selection problems, such as the String Barcoding 
method described by Rash et al. [9], the Maximum Distinguishing 
Probe Set (MDPS) and the Minimum Cost Probe Set (MCPS) 
problems [1]. Klau et al. [3] presented an Integer Linear Program 
(ILP) formulation for solving real and artificial instances of the 
non-unique probe selection problem. Meneses et al. [5] proposed 
a greedy non-random heuristic that produced at least comparable 
(and sometimes better) solutions than ILP solutions. 
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2. NON-UNIQUE PROBE SELECTION 
PROBLEM 
A probe is said to separate two sequences a and b if it is a 
substring of exactly one of a or b.  For example, if a = 
AGGCAATT and b = CCATATTGG, the probe pi = GCAA 
separates a and b since it is only a substring of a. While the probe 
pj = ATT does not separate a and b since it is a substring of both a 
and b [5].  

Assume we are given the target-probe incidence matrix H = [hij] 
where hij =1 if and only if probe pj hybridizes to target ti and hij = 
0 otherwise. Table 1 shows an example of a target-probe 
incidence matrix. Given a target-probe incidence matrix H, the 
goal is to select a minimal subset of probes that determines the 
presence or absence of specified targets. In Table 1, if only one of 
the targets t1,…, t4 is in the sample, then the goal is to select a 
minimal set of probes that allow us to infer the presence of a 
single target. In this case, the set with probes p1, p2, p3 is 
sufficient for detecting the presence of a single target, because for 
t1, probe p1 and p2 hybridize while p3 does not; for t2, probe p1 and 
p3 hybridize while p2 does not; for t3, probe p2 and p3 hybridize 
while p1 dose not; and finally for t4, probe p3 hybridizes but not p1 
or p2. 

The problem becomes more complicated when both targets t1 and 
t2 are in the sample. Suppose we use the set p1, p2 and p3. This 
will cause a problem because the set hybridizes to all of the 
targets t1,…,t4 and no distinction can be identified between the 
case where only  t1 and t2 are in the sample and where t3 is also in 
the sample. One possible solution is to select probes p1,…,p6, but 
selecting all probes is not an economical solution, because the 
number of probes is proportional to the cost of experiment. In this 
case, using probes p2, p3 and p5 instead of entire probe set will 
resolve this particular experiment. If we require that all pairs of 
targets be distinguishable, the entire probe set will not be 
sufficient and additional probes will be added.  

Table 1. Target-probe incidence matrix 

 p1 p2 p3 p4 p5 p6 
t1 1 1 0 1 0 1 
t2 1 0 1 0 0 1 
t3 0 1 1 1 1 1 
t4 0 0 1 1 1 0 

 

Due to errors in microarray experiments, it is usually required that 
two targets be separated by more than one probe and that each 
target has more than one probe hybridized.  

Two targets a and b are said to be s-separable if there exist s 
probes such that each separates a and b. A target a is  said to be 
covered by a probe p if p hybridizes to a.  

The non-unique probe selection problem consists of determining a 
minimal subset P = {p1, p2, …, pn} of probes such that: 

1. All probes exhibit high specificity and sensitivity, and satisfy 
the criteria of homogeneity. 

2. All targets in T = {t1, t2, …, tm} are covered by at least c 
probes from P. 

3. All pairs of targets from T are separated by at least s probes 
from P.  

Here specificity means that each probe should only hybridize to 
its subset of targets Tp and should not cross-hybridize to targets in 
T − Tp. Sensitivity means that each probe should hybridize to its 
low-abundant targets in Tp with clear signal. Homogeneity means 
that all probes are designed under the same experiment conditions 
such as hybridization temperature, melting temperature, salt 
concentration and so on. We assume that the probes are already 
designed to meet the criteria of specificity, sensitivity and 
homogeneity, and that the hybridization matrix is constructed. We 
are therefore only interested to determine an optimal subset of 
probes given the hybridization matrix, the initial probe set, and 
the target set. 

Klau et al. [3] formulated the non-unique probe selection problem 
as an Integer Linear Program (ILP). Let P = {p1… pn} denote the 
set of candidate probes, T = {t1…tm} denote the set of targets, and 

}1:),{( mkikiC ≤≤≤= denote the set of all combinations of 
target indices. Let xj be 1 if probe  is chosen and 0 

otherwise. Then the non-unique probe selection is a constraint 
satisfaction problem [3] with objective function 
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Where || kjij hh − in the separation constraints stands for the 

absolute value of the difference between hij and hkj. To satisfy the 
separation constraints, any two rows of the hybridization matrix 
should have a Hamming distance of at least hmin. Likewise, each 
target must be covered by at least cmin probes, to satisfy the 
coverage constraints. These two parameters, called coverage and 
separation parameters, are fixed constant in this paper. 

Klau et al. [4] proved that the non-unique probe selection problem 
is NP-hard using a reduction from the set cover problem. Note 
that the coverage and separation constraints can easily be checked. 
If they are not satisfied then there is no feasible solution and the 
probe set is empty. It maybe necessary to add unique virtual 
probes into the initial probe set in order to ensure that feasible 
solutions will exist [3]. For example, when the coverage 
parameter is not satisfied for a given target then unique virtual 
probes, which hybridize only to that target, are added in order to 
meet the coverage requirements for the target. 



3. MODEL-BASED APPROACH 
The Bayesian optimization algorithm [6][7][8] combines the idea 
of using probabilistic models to guide optimization with methods 
for learning and sampling Bayesian networks. In Pelikan [6][7], 
Bayesian optimization algorithm evolves a population of 
candidate solutions to given optimization problem. The initial 
population is generated at random. The population is then updated 
for a number of iterations using selection and variation operators. 
We define probabilistic models in a way similar to [6] but without 
evolution or learning. The models represent the ability of the 
probes to satisfy the minimum coverage and separation 
constraints. We use the models only to guide our search for 
minimal non-unique probe sets. We designed a non-random 
greedy heuristic, guided by our models, to search for near optimal 
non-unique probe sets. The models are updated in an iterative 
manner. 

3.1 Coverage Probabilistic Model 
Given the target-probe incidence matrix H, the minimum 
coverage parameter cmin and a set of candidate probes Psol, we can 
define for each target a uniform probability distribution over the 
set Psol as 
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where Pt is the set of probes that hybridize to target t, and prob(p, 
t) is the amount of energy that p contributes in order to satisfy the 
coverage constraint for target t. For instance, given H in Table 1 
and Psol = {p1,…, p6}, we obtain the coverage probability 
distribution matrix shown in Table 2.  

We want to choose a minimum number of probes such that the 
minimum coverage constraint is satisfied for each target. The 
“greedy” strategy is to select probes that cover the largest number 
of targets. For example in Table 1, the best choice between p2 and 
p6 is p6 because p6 covers more targets than p2. In Table 2, we can 
use the maximum probability value in column p2 and in column p6 
as the objective value needed to make decision between p2 and p6. 
We define the coverage probability vector C over the set Psol as 
C(pi) = Ci = , where Tpi is 

the set of targets covered by pi. Each entry Ci in C represents the 
maximum amount of energy that pi can contribute to satisfy the 
minimum coverage constraint, given cmin and all targets. Better 
definitions of C is possible, however this definition is simple and 
gives excellent results. Note that if cmin > | Pt | for a given t, we 
add (cmin − | Pt |) unique virtual probes which hybridize only to t, 
this ensure that our solution is feasible (or non-empty). 

|}|1,|),(max{ solpi PiTttpprob
i
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Table 2. Coverage Probabilistic Model 

 p1 p2 p3 p4 p5 p6 
t1 cmin/4 cmin/4 0 cmin/4 0 cmin/4 
t2 cmin/3 0 cmin/3 0 0 cmin/3 
t3 0 cmin/5 cmin/5 cmin/5 cmin/5 cmin/5 
t4 0 0 cmin/3 cmin/3 cmin/3 0 
C cmin/3 cmin/4 cmin/3 cmin/3 cmin/3 cmin/3 

3.2 Separation Probabilistic Model 
We define a separation probabilistic distribution matrix and a 
separation probability vector S in a similar way as in previous 
section. In Table 3, tx-y is the target pair (tx, ty), myx ≤≤≤1 , 
and the probes that separate pair tx-y  have non-zero values in that 
row. As for the coverage constraint, we also want to select the 
minimum number of probes that satisfy the minimum separation 
constraint. Therefore we define Si as the maximum value in 
column pi. Again, better definitions of S are possible. Also, if hmin 
> | |, for a given pair tx-y, we add (hmin − | |) unique virtual 

probes which separate only tx-y, in order to generate the feasible 
solution (  is the set of probes that separate pair tx-y). 

yxt
P

− yxt
P

−

yxt
P

−

Table 3. Separation Probabilistic Model 

 p1 p2 p3 p4 p5 p6 
t1-2 0 hmin/3 hmin/3 hmin/3 0 0 
t1-3 hmin/3 0 hmin/3 0 hmin/3 0 
t1-4 hmin/5 hmin/5 hmin/5 0 hmin/5 hmin/5 
t2-3 hmin/4 hmin/4 0 hmin/4 hmin/4 0 
t2-4 hmin/4 0 0 hmin/4 hmin/4 hmin/4 
t3-4 0 hmin/2 0 0 0 hmin/2 
S hmin/3 hmin/2 hmin/3 hmin/3 hmin/3 hmin/2 

 

If Ci  = 1 or Si  = 1 then probe pi must be selected to satisfy the 
coverage or separation constraints since it contributes 100% of its 
energy. 

4. MODEL-BASED ALGORITHM 
As in Meneses et al.[5], our algorithm filters out probes that can’t 
contribute to an optimal solution. The decision to exclude such 
probes is made locally. That is, it depends only on the current 
candidate probe set and the current models, in a given generation. 
The heuristic uses no past or global information to find a minimal 
set. Our method consists of three phases: Initialization Phase, 
Construction Phase, and Reduction Phase. 

In the Initialization Phase, given the set of probes P and the 
incidence matrix H we build the initial model vectors C and S as 
described in previous section and create another vector V as Vi = 
max(Ci, Si) that combines C and S. V is defined in such a way that 
only probes that contribute 100%, in either the coverage 
satisfaction or the separation satisfaction, are selected. All probes 
that are necessary to satisfy at least one constraint should be 
included in the initial solution set; such probes have values Vi = 1. 
V is then used to guide the construction and reduction phases. The 
reason of using V is that a probe needs to be selected to satisfy the 
coverage and separation constraints at the same time.  

In the Construction Phase, we initially start with a candidate set 
Psol that contains only probes with values V(p) = 1. We then add 
probes into Psol from P − Psol to generate the feasible solution. 
There maybe some redundant probes in Psol, but they will be 
deleted during the Reduction Phase to generate a near minimal 
final solution set.  

TtPp t∈ , ∈  
, if cmin > | Pt | 



In the Reduction Phase, we re-build the model vector V, using the 
current solution Psol and the new incidence matrix implied by Psol. 
We then attempt to delete probes p from Psol, in increasing order 
of their values V(p), such that Psol − { p } remains feasible. We 
only try to delete those probes with value V(p) < 1. Next is our 
algorithm. 

 

Initialization Phase: 

1. Given incidence matrix H, probe set P = {p1… pn}, and  
target set T = {t1…tm} 

a. Compute the coverage probabilistic model vector  
C = [C1, C2, …, Cn]; 

b. Compute the separation probabilistic model vector 
S = [S1, S2, …, Sn]; 

2. Set V = [V1, V2,…, Vn], Vi = V(pi) = max(Ci, Si) 

3. Add unique virtual probes, if necessary.  

4. Generate initial solution set of probes as  
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Construction Phase: 

1. For each target t not covered by at least cmin probes, add one 
probe p from P − Psol into Psol, such that p hybridizes to t and 
has the highest possible value v(p). Repeat this process one 
target at a time until the coverage constraint is satisfied for 
all such targets.  

2. For each pair of targets not separated by at least hmin probes, 
add one probe p from P − Psol into Psol, such that p 
distinguish this pair of targets and has the highest possible 
value v(p). Repeat this process until the separation constraint 
is satisfied for each pair of targets. 

 

Reduction Phase:  

1. Update the incidence matrix H as hij = 0 for 
each

sol
, mi , nj ≤≤1 . Then re-compute 

new C, S and V models from H as in the Initialization Phase.  
j PPp −∈ ≤≤1

2. Set Pdel = { 1)(| <  } and sort Pdel in increasing 
order.  

∈ pvPp sol

3. Repeat: select p from Pdel , if Psol − {p} is feasible then 
delete p from Psol, until every probe in Pdel has been tried. 

4. Return final Psol obtained in Step 3.  

In the final solution, the selected probes are such that all the 
constraints are satisfied and Psol is near minimal.  

In the algorithm, there is no random selection and variation at any 
point. The candidate probes are sorted using v(p) and attempted 
for deletion in that order. The final solution may not be an 

absolute optimal set since this algorithm uses a greedy selection 
strategy.     

5. EXPERIMENTS 
Experiments were conducted on two groups of data, which will be 
described in detail in the following section. Programs were 
implemented in C language and ran on a cluster of two SunFire 
V880 under Sun Solaris 10. Each machine has 8 SPARC 1.2GHz 
processors and 16 GB memory. 

5.1 Data Description 
Two groups of data have been used in the experiments. All the 
date sets described below were kindly provided to us by Dr. 
Pardalos [5]. Here we use the same data description and 
classification as in [5]. 

5.1.1 Group 1 
This group is comprised of both artificial and real (Meiobenthos) 
data sets. Benthoses are the organisms that reside on the sea floor 
and at the bottoms of lakes and rivers [5].  

A data set of 679 target Meiobenthos sequences was constructed 
by clustering 1230 28S rDNA sequences from different organisms 
present in the Meiobenthos and arbitrarily selected a 
representative from each cluster. 149 clusters contained two or 
more sequences each, and were representative of approximately 
56% of all Meiobenthos sequences. Schliep et al. [12], Klau et al. 
[3] and Meneses et al. [5] used the same data set in their 
experiments.  

The Random Evolutionary Forest Model (RANFOR) software 
was used to generate the artificial data in this group. In total, ten 
independent data sets were generated using two different Forest 
models. Sets a1-a5 with 256 targets each were constructed from 
one model, and sets b1-b5 with 400 targets each were constructed 
from the second model.  The probes for each of the ten artificial 
data sets were generated using Promide software [5]. A detailed 
description of the artificial data set construction is given in Klau 
et al. [3]. Table 4 details the number of targets and probes for 
each data set.  

Table 4. Numbers of targets and candidate probes for each 
data set in Group 1 

Set Targets Probes 
a1 256 2786 
a2 256 2821 
a3 256 2871 
a4 256 2954 
a5 256 2968 
b1 400 6292 
b2 400 6283 
b3 400 6311 
b4 400 6223 
b5 400 6285 
M 679 15139 



5.1.2 Group 2 
The second group of data consists of one HIV-1 data set and one 
HIV-2 data set. The HIV-1 and HIV-2 sequences were chosen in 
particular because of their biological significance and because the 
sequences were very closely related and similar within each set. 
This made them good candidates for the non-unique probe 
selection problem.  

Two hundred sequences of each type were downloaded from 
NCBI (the National Center for Biotechnology Information). 
Candidate probes for the sequences were generated using Primer3 
with default parameters, which included: length between 18 and 
27 nucleotides, melting temperature between 57 and 63 ℃, and 
GC content between 20 and 80%. 40 probes for each sequence 
were generated for each data set, and duplicate probes were 
deleted before the target-probe incident matrix was constructed. 
Table 5 details the number of targets and probes for HIV-1 and 
HIV-2 data set used in experiments. 

Table 5. Numbers of targets and candidate probes for each 
data set in Group 1 

Set Targets Probes 
HIV-1 200 4806 
HIV-2 200 4686 

 

5.2 Results 
The input parameters for all experiments were cmin = 10 and hmin = 
5. We first discuss results for Group 1 data, which were also used 
in [3][5].  Then we will discuss the results from the Group 2 data, 
which were used only in [5].  

5.2.1 Results for Group 1 Data 
In Table 6, we compared our results with that of [3] and [5] on the 
same Group 1 data sets. In the table, Art is the number of virtual 
probes added to obtain the final solution set; ILP, Me and W show, 
respectively, the size of the final solution obtained by ILP [3], Me 
[5], and W (our approach) on these data sets. The last three 
columns are the pairwise comparisons between the three methods, 
given as differences (N - O); where N is the newer method and O 
is the older method; the percentage of improvement, Imp%, of N 
over O is also given in parenthesis (a negative value signifies that 
N is Imp% better than O in terms of size of solution (also, the 
smaller is the percent improvement, the better is method N). 

Our method W performed significantly better than ILP and Me on 
the Meiobenthos data (which is the only real and large data set 
here); we performed substantially better than Me on the a data 
sets, but very close to Me on the b data sets. Note that ILP still 
performs better on the artificial a’s and b’s data sets than Me and 
W. In ILP [3], the absolute running times are in the range of 50-
1700s, while in our method W, the absolute running times are 
reduced to 20-748s.  

In ILP [3], the candidate probe sets were first reduced in size by a 
greedy heuristic algorithm and then CPLEX software was used to 
find the final solution. CPLEX 
(http://www.ilog.com/products/cplex/) is one of the leading 
mathematical programming software packages. Because only the 
probes from the reduced set were used by CPLEX, CPLEX was  

Table 6. Comparison of results for Group 1 

Set Art. ILP Me W (Me-ILP) (W-Me) (W-ILP) 

a1 6 503 568 549 +65 
(+13%) 

-19 
(-3%) 

+46 
(+9%) 

a2 2 519 560 552 +41 
(+7%) 

-8 
(-1%) 

+33 
(+6%) 

a3 16 516 613 590 +97 
(+19%) 

-23 
(-4%) 

+74 
(+14%) 

a4 2 540 597 579 +57 
(11%) 

-18 
(3%) 

+39 
(+7%) 

a5 4 504 605 583 +101 
(+20%) 

-22 
(-4%) 

+79 
(+16%) 

b1 0 879 961 974 +82 
(+9%) 

+13 
(+1%) 

+95 
(+11%) 

b2 1 938 976 1013 +38 
(+4%) 

+37 
(+4%) 

+75 
(+8%) 

b3 5 891 951 953 +60 
(+7%) 

+2 
(+0.2%) 

+62 
(+7%) 

b4 0 915 1001 1019 +86 
(+9%) 

+18 
(+2%) 

+104 
(+11%) 

b5 3 946 1022 1019 +76 
(+8%) 

-3 
(-0.3%) 

+73 
(+8%) 

M 75 3158 2336 2084 -822 
(-26%) 

-252 
(-11%) 

-1074 
(-34%) 

 

not aware of the additional candidate probes in the original pool. 
For the M data set, the candidate probes were reduced from 
15,139 to 3851 by the greedy heuristic. CPLEX could only 
choose from the 3851 probes [5], whereas Me and W were both 
allowed to choose from all 15,139 probes. 

In Me [5], there is no random selection at any point in the 
algorithms, but they only use the number of the targets to which 
each probe binds to sort the probes, and there is no other 
additional information used to direct the searching process. In the 
data sets, the range of the number of targets to which each probe 
binds is very small ([1, 40] for the M data set) and many probes 
have the same number of targets to hybridize. Thus given two 
candidate probes, it is not easy to identify which probe is better 
than another for inclusion into a candidate solution. In our method, 
the models store information about the current probe set in such a 
way that the algorithm can decide which probes to consider best 
for selection.  

To see why we performed worse on the b data sets, we plotted the 
value v(p) of probes p of each a data set and b data set. Figure 1 
and Figure 2 show such plot for data set a3 and b2. All the other a 
and b data sets behave similarly to a3 and b2. Also, the a data sets 
contain more larger values v(p) than the b data sets. Moreover, a 
great majority of probes in sets b have a value v(p) below 0.3 
during the Construction Phase. The b data sets were also created 
in such a way that they contain much more unique probes than 
non-unique probes, more than in the a data sets. 
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5.2.2 Results for Group 2 Data 
We compared our results on the Group 2 data sets with those of 
[5]. See Table 7. We performed substantially better than Me. [3] 
on this group.  

Table 7. Comparison of results for Group 2 

Set Art. Me W (W-Me) 
HIV-1 20 531 487 -44 (-8%) 
HIV-2 35 578 506 -72 (-12%) 

 

6. CONCLUSIONS 
In this paper, we described a model-based algorithm to generate a 
near minimal set of non-unique oliginucleotide probes. Our 
approach used probabilistic models of coverage and separation 
constraints to guide the search for non-unique probes. Compared 
with the ILP method of [3] and the approach of [5], we obtained 
at least comparable results on most artificial data sets and better 
results on the real data sets.  

In future work, we plan to use better models for coverage and 
separation constraints, and incorporate probe design factors 
required for high specificity and sensitivity. We are also currently 
developing evolutionary methods for the probe selection problems. 
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