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ABSTRACT
We have focused on the problem of clustering time-series
gene expression data. We present a novel algorithm for
clustering gene temporal expression profile microarray data,
which is fairly simple but powerful enough to find an ef-
ficient distribution of genes over clusters. Using a variant
of a clustering index can effectively decide upon the opti-
mal number of clusters for a given dataset. The clustering
method is based on a profile-alignment approach, which we
propose and that minimizes the (square) area between two
aligned vector profiles, to hierarchically cluster microarray
time series data. The effectiveness of the proposed approach
is demonstrated on two well-known, yeast and serum.
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1. INTRODUCTION
Clustering genes based on the similarity of their tempo-

ral profile expressions is important for many studies, such
as those genes that are functionally related or co-regulated
[6]. Clustering gene expression data given in terms of time
series is different from a general clustering problem, because
exchanging two time points delivers quite different results,
while it may not be biologically meaningful. Many unsuper-
vised methods for gene clustering based on the similarity (or
dissimilarity) of their microarray temporal profiles have been
proposed in the past few years [1, 2, 6, 11]. One of the meth-
ods for clustering microarray time-series data is based on a
hidden phase model (similar to a hidden Markov model) to
define the parameters of a mixture of normal distributions
in a Bayesian-like manner, which are estimated by using
expectation maximization [2]. Other methods based on cor-
relation measures have been proposed for clustering genes
using microarray time series data [3, 7]. The method pro-
posed in [3] requires computing the mean expression levels of
some candidate profiles using some pre-identified, arbitrarily
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selected profiles. In [7], a method for clustering microarray
time series data employing a jack-knife correlation coeffi-
cient with or without using the seeded candidate profiles
is proposed. Specifying expression levels for the candidate
profiles in advance for these correlation-based procedures re-
quires estimating each candidate profile, which is made us-
ing a small sample of arbitrarily selected genes. This makes
it vulnerable to the possibility of missing important genes,
since the resulting clusters depend upon the initially chosen
template genes.

Another method is to select and cluster genes using the
ideas of order-restricted inference, where estimation makes
use of known inequalities among parameters [10]. In this
method, at first, potential candidate profiles of interest are
defined and expressed in terms of inequalities between the
expected gene expression levels at various time points. For a
given candidate profile, the estimated mean expression level
of each gene is computed and the best fitting profile for a
given gene is selected using the goodness-of-fit criterion and
the bootstrap test procedure. In this approach, two genes
x1 and x2 fall into the same cluster if they show similar
profiles in terms of directions of the changes of expression
ratios (e.g. up-up-up-down-down), regardless how big/small
is the change.

In [12], a minimum-square-error profile alignment approach
to cluster microarray time series data was proposed. The
idea is to pairwisely align two temporal profiles in such a
way that the sum of square errors between two aligned vec-
tors is minimized. The alignment procedure, however, does
not consider the length of the interval between two time
points at which individual measurements are taken.

In this paper, we propose a profile alignment approach to
cluster temporal microarray data that minimizes the area
between two aligned profiles. The hierarchical clustering al-
gorithm uses a variant of a well-known clustering validity
index that optimizes the number of clusters [5, 9]. The pro-
file alignment that we propose in this paper is different from
that of [12] in the sense that: (i) the approach proposed in
this paper considers unequal time intervals, which is usu-
ally the case in microarray time-series experiments, and (ii)
the alignment is performed by minimizing the error between
two continuous functions and not the “knot” points. Exper-
iments on serum data and on pre-clustered yeast data show
the effectiveness of the proposed method.

2. AREA-BASED PROFILE
ALIGNMENT

Consider a dataset with n samples D = {x1,x2, ...,xn},



where xi = [xi1 , xi2 , ..., xim ]t is an m-dimensional feature
vector that represents the expression ratio of gene i at m
different time points, t = [t1, t2, ..., tm]t. The aim is to parti-
tion D into k disjoint subsets D1,D2, ...,Dk, where D = D1∪
D2 ∪ ...∪Dk, and Di ∩Dj = ∅, for ∀i, j, i 6= j, in such a way
that a similarity (dissimilarity) cost function φ : {0, 1}n×k →
< is maximized (minimized).

We propose an efficient alignment algorithm that takes
two features vectors, and produces two new vectors in such
a way that the area between “aligned” vectors is minimized.
The idea is described in Figure 1. In Figure 1(a) two vec-
tors are shown before alignment. Figure 1(b) shows the
“aligned” vectors such that the area between the profiles is
minimized, i.e. they were aligned in such a way that the
total area covered by the triangle {u, v, z} and the polygon
{z, w, q, e, r, k, h, g, s} is minimized.
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Figure 1: (a) Two unaligned profiles. (b) The two
“aligned” profiles obtained after applying (1) - (4)
such that the area between each pair of lines is min-
imized.

Let, t = [t1, t2, ..., tm]t be the vector representing the time
points, and the two profiles, x = [x1, x2, ..., xm]t, and y =
[y1, y2, ..., ym]t be two profiles, whose expression ratios were
measured at time points given in t, which are to be aligned.

The aim is to find a scalar a that minimizes the total area
between the two profiles, e.g., between the lines that join
the expression ratios. To do this, we first “slide” down x
and obtain a new vector, x′, as follows:

x′ =
[
x′1, x

′
2, ..., x

′
m

]t ← x− x1 . (1)

Now, assume that the straight line that joins points

(ti−1, x
′
i−1) and (ti, x

′
i) is given by x′i−1 +

(x′i−x′i−1)
ti−ti−1

u, and

for points (ti−1, yi−1) and (ti, yi) is given by yi−1 − a +
(yi−yi−1)

ti−ti−1
u, where u corresponds to the “x–axis”. Let us use

the following notation: ŷi = yi − yi−1, x̂′i = x′i − x′i−1 and
t̂i = ti − ti−1. Since we want to minimize the area between
x and y (aligned), for all t1, t2, ..., tm, we need to find a
that minimizes the sum of square errors between each pair
of lines, equivalent to the following sum of integrals:

f(a) =

m∑
i=2

∫ ti

ti−1

[
x′i−1 + a− yi−1 +

x̂′i − ŷi

t̂i

u

]2

du , (2)

by means of the first and second order conditions, resulting
in:

a = −
∑m

i=2

[
(x′i−1 − yi−1) t̂i +

x̂′i−ŷi

t̂i

t̂2i
2

]

m∑
i=2

t̂i

(3)

Then, a new vector, y′, is computed as follows:

y′ = y − a . (4)

Let fi =
(x′i−x′i−1)−(y′i−y′i−1)

ti−ti−1
. By computing the inte-

grals, the distance between the two new vectors x′ and y′,
d(x′,y′), results in:

d
(
x′,y′

)

=

m∑
i=2

(
x′i−1 − y′i−1

)2
t̂i +

(
x′i−1 − y′i−1

)
fit̂

2
i + f2

i
t̂3i
3

. (5)

The second order condition is satisfied, i.e. ∂2f
∂2a

= ∂
∂a

2
∑m

i=1

(x1i −x2i + a) = 2m > 0. This indicates that a minimum is
reached at a = 1

m

∑m
i=1(x2i −x1i). Using (1) - (4) to obtain

the value of a, we first align two profile vectors and then
compute a distance function in the usual manner. It is not
difficult to show that this alignment, used in conjunction
with any metric d, is also a metric [12]. Note that once the
alignment is applied, any metric d can be used. In this pa-
per, we have used the distance given in (5), since we meant
to minimize the area between two aligned profiles.

The justification of the proposed alignment is depicted in
Figure 2 with examples of temporal profiles for three pairs
of genes. Figures 2(a), (b) and (c) show three pairs of genes
without alignment. Using the Pearson correlation distance
[10], genes in Figure 2(b) are most likely to be clustered
together (as they produce the largest value for correlation
coefficient among all three pairs of genes, which is 0.9053).
Note that the prime interest is to cluster genes based on
the variations of the expression ratios at the different time
points. The aim is to find variations in terms of changes
(or not) between different time points, independently of the
“scale” in which the ratios lie. Then, genes from Figure 2(c)



would be better candidates to be clustered together than
the genes in Figs. 2(a) and (b). However, the value of the
correlation coefficient between the pairs of genes in Figure
2(c) is the minimum (0.8039) among all three pairs of genes.
Figures 2 (d), (e) and (f) show the pairs of genes after align-
ing the genes from Figures 2(a), (b) and (c), respectively.
A simple visual inspection shows that the genes in Figure
2(f) are closer to each other compared to the genes from the
other two figures, Figures 3(d) and (e).
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Figure 2: (a) Two genes that are likely to be clus-
tered as in [10], although the difference among them
in terms of rate of expression ratio changes between
different time points is large. (b) Two genes with
different profiles that are likely to be clustered to-
gether by correlation-based methods. (c) Two genes
with similar profiles in terms of rate of expression
ratio changes between different time points that may
not be clustered together by the method proposed
in [10] and the correlation-based methods. (d) Re-
sult after aligning the two genes from (a). (e) Result
after aligning two genes from (b). (f) Result after
aligning two genes from (c). After applying the pro-
posed profile alignment, the differences between the
genes in (d) and (e) are more notorious than in (f).

3. THE CLUSTERING ALGORITHM
Hierarchical agglomerative clustering is the method used

in this paper. We apply complete linkage or furthest neigh-
bors [4], which computes the distance between the furthest
pair of points for each pair of clusters and merges the pair
of clusters that has the minimum distance among all such
distances between the pair of clusters under consideration.
The generalized algorithm of hierarchical agglomerative clus-
tering is slightly modified to obtain the desired number of

clusters instead of a hierarchy of clusters, which is given in
Algorithm 1, Agglomerative-Clustering.

The Agglomerative-Clustering algorithm receives two pa-
rameters as input, a complete microarray temporal dataset,
D, and the desired number of clusters k, and returns the
dataset after partitioning it into k clusters. The best number
of clusters k∗ is chosen to maximize the I-index as follows:

I(k) =

(
1

k

)q

×
(

E1

Ek
×Dk

)p

(6)

where, n is the total number of samples in the dataset, Ek =∑k
i=1

∑n
j=1 uijd(xj , µi), Dk = maxk

i,j=1d(µi, µj), {uij}k×n

is the partition (or membership) matrix for the data, µi is
the center of cluster Di, k is the number of clusters, and
d(., .) is the distance computed as in (5).

The decision rule is based on the furthest-neighbor dis-
tance between two clusters, which is computed using for-
mula (5). The latter involves the alignment of each pair of
profiles before applying a conventional (formula (5) in our
case) distance function.
Algorithm Agglomerative-Clustering

Input: The dataset, D = {x1,x2, ...,xn}, and k, the de-
sired number of clusters.
Output: k disjoint subsets D1,D2, ...,Dk.

Create n clusters, D1,D2, ...,Dn, where Di = {xi}
DcurrentClustersSet ←− {D1,D2, ...,Dn}
for q ← n down to k do

For each pair of cluster (Di,Dj), find furthest neighbor
(xi,xj), using the (3) and (4) alignment and computing
the distance as in (5).
Select (Dk,Dl) as the pair of clusters with the closest
furthest neighbors.
DmergedClusters ← {Dk ∪ Dl}.
DcurrentClustersSet ←

{DcurrentClustersSet ∪ DmergedClusters} \ {Dk,Dl}
end for
return DcurrentClustersSet.

The partition matrix {uij} is defined as a membership
function such that uij = 1, if xj belongs to cluster Di, and
zero otherwise. To compute the mean of cluster Di, µi,
we follow a greedy approach that computes the mean and
scatter for each cluster. It picks the first profile from the
cluster and assigns it to be the current mean. Then, it picks
the next gene profile from the cluster, applies the pairwise
alignment with this profile to the current mean, and updates
the current mean by taking the average of these two aligned
profiles. The process continues until all the gene profiles are
aligned and the current mean is updated correspondingly
for each profile. Note that it is done in this way, otherwise
it should be done like “multiple alignment”, which is a non-
trivial issue that remains open.

The cluster mean is used to compute the scatter of a clus-
ter. Given a cluster Di = {xi1 ,xi2 , ...,xin}, using (1) - (4)
each xij is aligned with the mean µi producing a set of

aligned profiles D′i = {yi1 ,yi2 , ...,yin}. The scatter is com-

puted as Ei =
∑in

j=1 d(yij , µi), where d(., .) is the distance

computed as in (5).

4. EXPERIMENTAL RESULTS
We have tested the performance of our clustering method



that performs profile alignment combined with agglomer-
ative clustering (PAAC) on two well-known datasets, the
serum [8] and yeast [3] datasets. For the serum dataset,
we conducted experiments on a subset containing 517 out
of 8,613 genes1. We considered a range for potential num-
bers of clusters, which includes values of k that lie between
d
√

n/2e and b
√

3n/2c, i.e. k = 16 to 27. For each k, the
I-index was computed using values of q from 0.3 to 1.0. We
have selected q = 0.7, since we want to favor a large number
of clusters, as q = 0.7 < 2.0 = p. The value 0.7 was found
experimentally and confirmed with pre-clustered yeast data
for which we found our method provides a high classifica-
tion accuracy, as seen later. For q = 0.7, the value of the
index reaches to a maximum level when k = 21. The plots
are shown in Figure 4, where each plot represents a cluster.
The x-axis in each plot represents the time in hours and the
y-axis represents the expression ratio.

We have tested the results of our method with the results
obtained by the Pearson correlation distance and the Spear-
man correlation distance methods. Clustering using the
Pearson correlation distance is given in Figure 4. The com-
parison among the plots for PAAC and Pearson reveals the
effectiveness of the method. For example, PAAC left clus-
ters 1 to 5 containing a single gene each (IDs 328692, 470934,
361247, 147050 and 310406, respectively). The Pearson cor-
relation method, however, placed these genes in clusters 19,
2, 2, 11 and 19, respectively . By visual inspection of all the
temporal expression profiles, we noticed that these genes are
differentially expressed and should be left alone in separate
clusters, which is clearly done by PAAC. Also, PAAC pro-
duced four clusters containing only two profiles each, clusters
9 (IDs 356635 and 429460 ), 11 (IDs 26474 and 254436), 13
(IDs 280768 and 416842) and 16 (IDs 130476 and 130482).
The Pearson correlation method clustered these genes as
follows: 356635 and 429460 in cluster 16, 26474 and 254436
in cluster 21, 280768 and 416842 in cluster 2 and 130476
and 130482 in cluster 16 (Figure 4). Although the Pearson
correlation method placed each pair of genes in the same
cluster, it also placed some other genes with them. By look-
ing at the plots of the profiles of the clusters produced by
the Pearson correlation method and comparing them to the
plots of the clusters of the corresponding genes produced by
PAAC, it is clear that these pairs of genes are differentially
expressed. For the Spearman correlation method, though
non-linear, we observed that it outputs results comparable
to those of the Pearson correlation, and is not able to iden-
tify and separate differentially expressed genes properly as
good as PAAC (plots not shown).

In order to provide a biological significance of our results,
we applied our method to a dataset containing the changes
in gene expression during the cell cycle of the budding yeast,
S. cerevisiae2 [13], in which expression ratios were measured
at seventeen different time points, from 0 min. to 160 min.
with an interval of 10 mins. The experiment monitored 6,220
transcripts for cell cycle-dependent periodicity and 221 func-
tionally characterized genes with periodic fluctuation were
listed in Table 1 of [13]. We applied PAAC to these 221
genes, using the same parameters as those for the serum
dataset, obtaining the best number of clusters k = 28. The
clusters obtained using PAAC are shown in Figure 5. We

1http://genome-www.stanford.edu/serum/.
2http://genome-www.stanford.edu/cellcycle/data/rawdata/
individual.html.

also used the Pearson correlation coefficient to cluster the
dataset (plots not shown). We observed that PAAC sepa-
rates the genes by profiles in a wise manner, while the Pear-
son correlation method is not able to capture all variations
in the time series.

Finally, we list in Tables 1-3, the 221 genes, where for each
gene it is shown the cluster number PAAC assigns and the
class (phase) that the gene is categorized as in Table 1 of
[13]. An objective measure for comparing the two clusterings
has been taken by computing the overall classification accu-
racy, which is computed as the number of genes that PAAC
correctly assigned to one of the phases. The correct class
(phase) is the one that PAAC assigns the largest number
of genes. The overall classification accuracy was computed
as the average of the individual accuracies for each cluster,
resulting in 83.47%, which is very high considering the fact
that PAAC is an unsupervised classification algorithm.

5. CONCLUSIONS
We have proposed a method to cluster gene expression

temporal profile microarray data. On two well-known real-
life datasets, we have demonstrated that using hierarchical
clustering with our method for similarity measure produced
superior results when compared to that of the Pearson and
Spearman correlation similarity measures.

We have applied a variant of the I-index that can make a
trade-off between minimizing the number of useful clusters
and keeping the distinctness of individual clusters. We have
also shown the biological significance of the results obtained
by computing the classification accuracy of our method in
pre-clustered yeast data - the accuracy was over 83%.

PAAC can be used for effective clustering of gene expres-
sion temporal profile microarray data. Although we have
shown the effectiveness of the method in microarray time-
series datasets, we are planning to investigate the effec-
tiveness of the method as well in dose-response microarray
datasets, and other time series microarray data.
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Figure 3: Different clusters obtained using PAAC on the 517 gene temporal expression profiles, where k = 21.
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Figure 4: Different clusters obtained using the Pearson correlation distance on the 517 gene temporal ex-
pression profiles, where k = 21.
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Figure 5: Different clusters obtained using PAAC
on the 221 gene temporal expression profiles from
Table 1 of [13], where k = 28.
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PAAC Gene Phase PAAC Gene Phase PAAC Gene Phase

1 YBR067c/TIP1 Early G1 15 YEL061c/CIN8 S 22 YLL002w/ Late G1
2 YGL055W/OLE1 Early G1 15 YGR140W/CBF2 S 22 YLR457C/NBP1 Late G1
3 YDL227C/HO Late G1 15 YHR172W/ S 22 YPL057C/SUR1 Late G1
4 YAL001C/TFC3 S 15 YLR045c/STU2 S 22 YPL124W/NIP29 Late G1
5 YJL115W/ASF1 S 15 YNL126W/ S 22 YBR275c/RIF1 S

6 YDL198C/SHM1 G2 15 YPR141C/KAR3 S 22 YCR065w/HCM1 S

6 YDR146c/SWI5 M 15 YJR006W/HUS2 S 22 YDL197C/ASF2 S

7 YKL049C/CSE4 G2 15 YER001w/MNN1 S 22 YKL127W/PGM1 S

7 YKL048C/ELM1 G2 15 YER003c/PMI40 S 22 YDL095W/PMT1 S

7 YER069w/”ARG5,6” G2 16 YNL225C/ Late G1 23 YLR210W/CLB4 S

7 YJR112W/NNF1 G2 16 YDR224c/HTB1 Late G1 23 YDR150w/NUM1 M

7 YPR167C/MET16 M 16 YDR225w/HTA1 Late G1 23 YMR198W/CIK1 S

8 YFL008W/SMC1 Late G1 16 YGL200C/EMP24 Late G1 23 YBL052c/ S

8 YMR078C/CHL12 Late G1 16 YNL272C/SEC2 Late G1 23 YIL126W/STH1 S

8 YPL209C/IPL1 Late G1 16 YDR488c/PAC11 S 23 YCR035c/ S

8 YGR152C/RSR1 Late G1 16 YBL002w/HTB2 S 23 YIL050W/ G2
8 YIL159W/ Late G1 16 YBL003c/HTA2 S 23 YBL097w/ G2
8 YNL233W/ Late G1 16 YKL067W/YNK1 S 23 YJL099W/CHS6 G2
8 YKL045W/PRI2 Late G1 16 YER118c/SSU81 S 23 YJR076C/CDC11 G2
8 YNL312W/RFA2 Late G1 17 YJL074C/SMC3 Late G1 23 YCR084c/TUP1 G2
8 YML061C/PIF1 Late G1 17 YGR041W/ Late G1 23 YGL255W/ZRT1 G2
8 YLR233C/EST1 Late G1 17 YNL082W/PMS1 Late G1 23 YJL137c/GLG2 G2
8 YOR026W/BUB3 S 17 YOL090W/MSH2 Late G1 23 YCR073c/ G2
9 YDL179w/ Early G1 17 YHR153c/SPO16 Late G1 23 YDR389w/SAC7 G2
9 YLR079w/SIC1 Early G1 18 YCR005c/CIT2 Early G1 23 YKL068W/NUP100 G2
9 YJL157C/FAR1 Early G1 18 YCL040w/GLK1 Early G1 23 YGR092W/DBF2 M

9 YKL185W/ASH1 Early G1 18 YLR258W/GSY2 Early G1 23 YOR058C/ASE1 M

10 YJL194W/CDC6 Early G1 18 YNL173C/ Late G1 23 YPL242C/ M

10 YLR274W/CDC46 Early G1 18 YOR317W/FAA1 Late G1 23 YCL037c/SRO9 M

10 YPR019W/CDC54 Early G1 18 YNL073W/MSK1 S 23 YKL130C/ M

10 YHR005c/GPA1 Early G1 19 YIL106W/MOB1 G2 23 YNL053W/MSG5 M

10 YGR183C/QCR9 Early G1 19 YCL014w/BUD3 G2 23 YIL162W/SUC2 M

10 YLR273C/PIG1 Early G1 19 YGR108W/CLB1 M 23 YDL048c/STP4 M

10 YLL040c/ Early G1 19 YPR119W/ M 23 YHR152w/SPO12 M

10 YHR038W/ Late G1 19 YBR138c/ M 23 YKL129C/MYO3 M

10 YAL040C/CLN3 M 19 YHR023w/MYO1 M 24 YPL058C/PDR12 Early G1
11 YDR277c/MTH1 S 19 YOL069W/NUF2 M 24 YBR038w/CHS2 G2
11 YML091C/RPM2 S 19 YJR092W/BUD4 M 24 YGL116W/CDC20 M

12 YDL127w/PCL2 Late G1 19 YLR353W/BUD8 M 24 YGR143W/SKN1 M

12 YPR120C/ Late G1 19 YMR001C/CDC5 M 25 YLR286C/CTS1 Late G1
12 YDL003W/RHC21 Late G1 19 YGL021W/ALK1 M 25 YGL089C/MF(alpha)2 Late G1
12 YAR007C/RFA1 Late G1 19 YLR131c/ACE2 M 26 YBR200w/BEM1 Early G1
12 YBL035c/POL12 Late G1 19 YOR025W/HST3 M 26 YBL023c/MCM2 Early G1
12 YBR088c/POL30 Late G1 20 YGR109C/CLB6 Late G1 26 YBR202w/CDC47 Early G1
12 YDL164C/CDC9 Late G1 20 YNL289W/PCL1 Late G1 26 YEL032w/MCM3 Early G1
12 YML102W/ Late G1 20 YLR313C/ Late G1 26 YLR395C/COX8 Early G1
12 YPR175W/DPB2 Late G1 20 YPR018W/RLF2 Late G1 26 YMR256c/COX7 Early G1
12 YDR097C/ Late G1 20 YPL153C/SPK1 Late G1 26 R281W/YOR1 Early G1
12 YLR032w/RAD5 Late G1 20 YBR070c/ Late G1 26 YOR316C/COT1 Late G1
12 YML027W/YOX1 Late G1 21 YJR159W/SOR1 G2 26 YCR042c/TSM1 M

12 YMR179W/SPT21 Late G1 21 YBR104w/YMC2 G2 26 YOR229W/ M

13 YJL187C/SWE1 Late G1 21 YLR014c/PPR1 G2 26 YDL138W/RGT2 M

13 YPL256C/CLN2 Late G1 21 YOR274W/MOD5 G2 26 YIL167W/ M

13 YMR076C/PDS5 Late G1 21 YDR464w/SPP41 G2 27 YNR016C/ACC1 Early G1
13 YER070w/RNR1 Late G1 21 YLL046c/RNP1 G2 27 YBR160w/CDC28 Late G1
13 YLR103c/CDC45 Late G1 22 YER111c/SWI4 Early G1 27 YBR252w/DUT1 Late G1
13 YNL102W/CDC17 Late G1 22 YOR373W/NUD1 Early G1 27 YBR278w/DPB3 Late G1
13 YOR074C/CDC21 Late G1 22 YKL092C/BUD2 Early G1 27 YDR297w/SUR2 Late G1
13 YKL113C/RAD27 Late G1 22 YMR199W/CLN1 Late G1 27 YDL155W/CLB3 S

13 YLR383W/ Late G1 22 YKL042W/ Late G1 27 YFR037C/ S

13 YML060W/OGG1 Late G1 22 YLR212C/TUB4 Late G1 27 YPL016W/SWI1 S

13 YIL140W/SRO4 S 22 YPL241C/CIN2 Late G1 27 YDL093W/PMT5 S

13 YAR008W/ S 22 YDR507c/GIN4 Late G1 27 YKR001C/SPO15 S

14 YDL181W/INH1 Early G1 22 YGL027C/CWH41 Late G1 27 YER016w/BIM1 S

14 YML110C/ Early G1 22 YJL173C/RFA3 Late G1 27 YER017c/AFG3 S

14 YIL009W/FAA3 Early G1 22 YNL262W/POL2 Late G1 27 YPR111W/DBF20 G2
14 YBR083w/TEC1 Early G1 22 YDL101C/DUN1 Late G1 27 YOR188W/MSB1 G2
14 YPL187W/MF(alpha)1 Late G1 22 YLR234W/TOP3 Late G1 27 YJL092W/HPR5 G2
14 YJR148W/TWT2 Late G1 22 YML021C/UNG1 Late G1 27 YKL032C/IXR1 G2
15 YPL127C/HHO1 Late G1 22 YLR382C/NAM2 Late G1 28 YMR190C/SGS1 S

15 YLL021w/SPA2 Late G1 22 YJL196C/ Late G1 28 YIR017C/MET28 S

15 YBL063w/KIP1 S 22 YBR073w/RDH54 Late G1 28 YHR086w/NAM8 S

15 YDR113c/PDS1 S 22 YKL101W/HSL1 Late G1 28 YJR137C/ S

15 YDR356w/NUF1 S 22 YKL165C/ Late G1

Table 1: Genes from Table 1 of [13], clustered using PAAC, where k = 28.


