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ABSTRACT 
This paper presents an effective method for designing structures 
using cellular automata, representing a simple conceptual basis 
for the self-organization of structural systems. The method is 
sufficiently simple to solve topology optimization problems as 
pure 0-1 problems, and yet sufficiently complex to express a wide 
variety of complicated topologies. A local rule about birth and 
death of cells, that is a new idea from pheromone’s properties of 
ants, is introduced in order to search for solutions. The 
effectiveness of the present method is demonstrated through 
numerical examples of the typical topology optimization problem. 
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1. INTRODUCTION 
The structural optimization problem can be classified into two 
different sub-problems, namely shape optimization problem and 
topology optimization problem. The shape and topology of a 
structure are defined by a set of design variables, and these design 
variables are adjusted in order to achieve some objectives, such as 
minimum volume. Such optimization problems can be solved 
iteratively, using gradient-based techniques. Introducing more 
design variables increases the complexity of the optimization 
problem. Therefore, it becomes difficult to solve the optimization 
problem by using gradient-based MP techniques. 

Heuristics like genetic algorithms as an example overcomes such 
difficulties associated with traditional techniques. Genetic 
algorithms are based on the random mutation and natural 
selection. On the other hand, self-organization is also considered 
to be one of the most important mechanisms of evolution. In 
addition to natural selection, self-organization plays an important 
role in generating the detailed structure of life. 

Some species of ants can discover the shortest path from their nest 
to food source as shown in Figure 1. It has already become clear 

that the chemical called pheromone plays important role for the 
search. The pheromone has two characteristics. One is 
accumulation, and the other is evaporation. Accumulation of the 
pheromone acts on learning and evaporation acts on forgetting. 
These two characteristics are also important for searching the 
optimal solution. The method to be presented here is a heuristic 
method of using such accumulation and evaporation, namely, 
learning and forgetting, for structural optimization. This is a kind 
of cellular automata. This is a simple concept of self-organization 
of structural systems. The proposed methods applying cellular 
automaton theory are sufficiently simple to solve the topology 
optimization problem just as pure 0-1 problems, but sufficiently 
complex to express a wide variety of complicated topology. A 
local rule about birth and death of cells, that is a new idea from 
pheromone’s properties of ants, is given in this method. The 
proposed method in this paper offers a new approach to structural 
optimization, and overcomes most of the problems associated 
with traditional techniques. 

 
Figure 1: Paths from their nest to food source 

2. ALGORITHM 
First a design domain is divided into regular lattice of square cells, 
which are identical to the finite elements. A piece of material is 
then given in the design domain as an initial design consisting of 
connecting elements that transfer loads to the supports, as shown 
in Figure 2. A stress analysis is carried out to determine the 
response of the structure using a finite element method. The stress 
level at each point can be measured by the von Mises stress, 
which is one of the most frequently used criteria for isotropic 
materials. For plane stress problems, the von Mises stress is 
defined by the following equation:  

222 3 xyyxyx τσσσσσ +−+=   (1) 

Where σx and σy are the normal stresses in x and y directions, 
respectively, and τxy is the shear stress.  
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Figure 2: Design domain and regular lattice of cells 

 

The procedure is summarized as follows: 

Step 1. Divide design domain into regular lattice of square cells. 

Step 2. Give an arbitrary initial design so that load is transferred 
to the supports. 

Step 3. Carry out a stress analysis using a Finite Element Analysis. 

Step 4. Update the existence of the material elements based on the 
local rule and measured stress. 

Step 5. Repeat steps 3 and 4. 

3. LOCAL RULE 
In the evolution of cellular automaton, the value of the center cell 
is updated according to a rule that is dependent on the values of 
cells in the surrounding neighborhood. In this study, the 
neighborhood of a specified cell is defined as the cell itself and 
the four cells immediately adjacent to it, as shown in Figure 3.  
 

 
Figure 3: Target and Neighbor cells 

 

An expected value σE of the von Mises stress is introduced to 
define a cellular automaton rule. When the von Mises stress of a 
cell in the neighborhood is over the expected value σE, it is 
considered that the cell sends signal to the target cell as expressed 
in equation (2).  
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On the other hand, when the stress is not over the expected value, 
the cell sends no signal. This is the binary characteristic of inputs. 
The inputs accumulate on each cell, and we call the accumulated 
quantity a potential. As the result, the sum total of input signal is 
added to the potential of the target cell as expressed by the second 
term in equation (3).  

)( )1( 432101 xxxxxtutu kk ++++Δ+Δ−=+ ωλ   (3) 

where Δt is time interval, λ and ω are coefficients calculated from 
the period of loading by using equation (4) and (5), respectively. 
In these equations, us and ε means a saturation of the potential and 

a threshold, respectively. If a period T is given in a problem, we 
can determine λ by equation (4). Then, we can determine ω by 
equation (5). 
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In equation (3), uk and uk+1 are the potential at discrete time k and 
k+1, respectively. The primary term of the equation means that 
the potential is decreasing with time. This is the temporal 
summation characteristic of inputs. The second term means the 
spatial summation characteristic of inputs. 
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Figure 4: Inputs and Potential 
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Figure 5: Output Function 

 
Therefore, if there are some inputs, the potential will increase 
with time. Increase of the potential acts on learning. If there is no 
input, the potential will decrease with time. Decrease of the 
potential acts on forgetting. We can see that the potential value 
increases, while some inputs are continuing, and discontinuation 
of inputs begins to decrease the potential value as shown in Figure 
4. When the difference of potential and threshold u-ε is positive, a 
material element will be added to the target cell of the present 
structure. On the other hand, when the potential is less than the 
threshold, a material element will be removed from the present 
structure as shown in Figure 5. This is the nonlinear threshold 
function. 



Characteristics of the local rule conceived from properties of 
pheromone are summarized as follows: 
1) Binary characteristic of inputs 
2) Spatial summation characteristics of inputs 
3) Temporal summation characteristics of inputs 
4) Nonlinear threshold function 
 

4. EXAMPLES 
In order to show effectiveness of the method, we consider some 
structural optimization problems. The first are minimum weight 
problems as shown in paragraph 4.1, and the second are structures 
under periodic conditions as shown in 4.2.  
 

4.1 Minimum Weight Problems 
The minimum weight problem is a typical problem of structural 
optimization. The shape and topology of a structure are adjusted 
so that weight of the structure may be the minimum, but without 
violating certain constraints. 

4.1.1 Two-bar frame structure 
A well-known optimization problem is two-bar frame subjected to 
a single load as shown Figure 6. The rectangular design domain is 
1,000mm x 2,400mm, as shown in Figure 6, and is divided into 25 
x 60 four-nodes plane stress elements of equal size. The thickness 
of the plate is 10mm. Young’s modulus E=100GPa and Poisson’s 
ratio ν=0.3 are assumed. A vertical load of P=800N is applied at 
middle of the free end.  

 
Figure 6: Design Domain and Structural Conditions 

The initial design is composed of connecting elements that 
transfer loads to the supports, as shown in the left of Figure 7. In 
this problem, the expected value σE of von Mises is specified as 
0.25MPa.  In Figure 7, the stress concentration on the left end of 
the beam can be seen in the initial design. The beam bifurcates 
into a two-bar frame after a certain number of iterations. The final 
result, as shown in the right side, is similar to the two-bar frame 
that can be derived analytically. The iteration histories of the 
maximum, minimum and average von Mises stress are plotted in 
Figure 8. When this problem is calculated by using the personal 
computer of Pentium III, the solution can be obtained in about 60 
seconds. 

 

 
Figure 7: Evolving towards the two-bar frame structure 
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Figure 8: Histories of von Mises stress 

 

4.1.2 Michell type structure 
Next, we consider a Michell type structure with two fixed 
supports. The rectangular design domain is 10,000mm x 5,000mm, 
as shown in Figure 9. The design domain is divided into 50 x 25 
four-nodes plane stress elements of equal size. The thickness of 
the plate is 100mm. Young’s modulus E=100GPa and Poisson’s 
ratio ν=0.3 are assumed. The two corners of the bottom are fixed. 
A vertical load of F=1000N is applied at the middle of lower span. 
The initial design is composed of connecting elements that 
transfer loads to the supports, as shown in Figure 10. In this 
problem, the expected value σE of von Mises is specified as 8kPa. 
Figure 10 shows selected stages of evolution. The final result is 
shown in the bottom. 

 
Figure 9: Design domain for Michell type structure 
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Figure 10: Stages of evolution 

 

4.1.3  3-Dimensional problem 
In this section, we describe a design problem for a symmetrical 
bridge in three-dimensional space. The design domain of 
rectangular parallelepiped is  260m×40m×120m,   as  shown  in 

  
Figure 11: Design domain for a bridge 

Figure 11, and is divided into 260×40×120 cubic elements. The 
Young’s modulus E=200GPa, Poisson’s ratio ν=0.3 and the 
expected stress σE =8MPa are assumed. The road surface of the 
bridge is subjected to uniformly distributed load 20kN/m2. The 
existence of the material elements is not allowed on the road 
surface, namely the space on the road of the bridge is defined 
non-design domain. A design of the bridge corresponding to the 
60th iteration is given in Figure 12. 

Figure 12: Proposed optimal design for the bridge 

 

4.2 Structures under Periodic Conditions 
Now, we consider minimum weight problem of structure 
subjected to periodic conditions. The proposed method for 
optimization has temporal summation characteristics of inputs as 
mentioned above. So the proposed method is able to apply to 
problems of structure subjected to periodic forces. 

4.2.1 Structure under periodic force 
In order to show effectiveness of the method, we consider a 
structural optimization problem; a two-bar frame subjected to a 
single load mentioned above, but the direction of load varies 
periodically as shown in Figure 13. Threshold ε=1, saturation 
us=2 and time interval Δt=0.1 are assumed. When the period is 
10sec, appropriate values of the coefficients λ and ω are 0.0693 
and 0.139, respectively. Figure 14 shows the stages of evolution.  

 

 
Figure 13: Structure under Periodic Force 
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Figure 14: Stages of evolution 

 

4.2.2 Structure revolving at high speed 
Next, we consider the optimization problem of a structure, which 
rotates at high speed as shown in Figure 15. Inertia force acts on 
the structure by rotation at high speed. Since inertia force also 
increases with increase of rotation speed, it is important to design 
by understanding the dynamic behavior of such a structure that 
rotates at high speed. However, since the inertia force changes 
complexly with time, the optimization problem in consideration 
of such external force is a very difficult problem. In the example 
shown here, point A of Figure 15 rotates on a circle of a radius r 
by angular velocity Ω, and point B moves on the X-axis. The 
purpose of this problem is to generate optimal structures in the 
design domain shown in the gray rectangle. 

 
Figure 15: Structure in periodic motion 

 
Accelerations of a point on the coordinates x and y can be 
expressed by equations (6) and (7). Here, u and v are the 
acceleration in x and y directions by the x-y coordinate system 
fixed to the structure, respectively. In the equations, Dx and Dy 
mean position coordinates on the circle, and can be expressed as 
equations (8) and (9). 

yxDDu yx ϕϕϕϕ &&&&&&&&& −−+= 2sincos  (6) 

xyDDv yx ϕϕϕϕ &&&&&&&&& +−+−= 2cossin  (7) 

trDx Ω= cos  (8) 

trDy Ω= sin  (9) 

Figure 16 shows an initial shape of a revolving structure, the 
elements shown by blue mean non-design elements. The point 
marked by x in the structure means that an additional mass exists 
on the location. Figure 17 shows an obtained shape of the 
revolving structure shown by Figure16. Figures 18, 19, 20 also 

show each approximate solution of the problems, respectively. On 
each problem, the design domains and the positions of additional 
mass which were shown by x mark differ from each other. 

 

 
Figure 16: Initial shape of revolving structure 

 

 
Figure 17: Obtained shape of revolving structure (a) 

 

 
Figure 18: Obtained shape of revolving structure (b) 

 

 
Figure 19: Obtained shape of revolving structure (c) 

 

 
Figure 20: Obtained shape of revolving structure (d) 
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5. CONCLUSIONS 
In this paper, an effective method for designing structures using a 
cellular automaton was presented. This provides a simple 
conceptual basis for the self-organization of structural systems. 
The effectiveness of the method was demonstrated through 
numerical example of the typical topology optimization problem. 
Moreover, the proposed method can be applied to also shape 
optimization of structures under periodic forces. 
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