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ABSTRACT
In molecular communication, messages are conveyed from a
transmitter to a receiver by releasing a pattern of molecules
at the transmitter, and allowing those molecules to propa-
gate through a fluid medium towards a receiver. In this pa-
per, achievable information rates are estimated for a molec-
ular communication system when information is encoded us-
ing a set of distinct molecules, and when the molecules prop-
agate across the medium via Brownian motion. Results are
provided which indicate large gains in information rate over
the case where the released molecules are indistinguishable
from each other.

Keywords
Molecular communication, information theory, channel ca-
pacity

1. INTRODUCTION
There has been much interest in the field of molecular

communication [6], in which messages are encoded as a stream
of molecules in order to convey a message from a trans-
mitter to a receiver. Spurred by recent work in nanotech-
nology, molecular communication is intended to mimic the
form of communication used by biological organisms at the
nanoscale, such as bacteria and cells within the body. Re-
cent successes in the new field of systems biology [7], in which
microorganisms are engineered and designed to perform spe-
cific tasks, has given the field of molecular communication
greater impetus.

The means of constructing communication devices capa-
ble of performing molecular communication has been in-
vestigated in several recent papers. The earliest work was
done by Weiss [11], who adapted chemical pathways in mi-
croorganisms to construct simple “circuits” that communi-
cate with each other, such as logic gates. The features of a
bacterial signaling pathway were characterized as a commu-
nication channel in [3]. Work has also been done to analyze
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the suitability of intercellular signaling pathways [9] and fil-
amental cellular structures [5] for molecular communication.

The present work is less concerned with the means of
molecular communication, and more with its capabilities
and limits from an information theoretic perspective. Bounds
on information rates were first explored by Shannon [10],
and are heavily used in traditional communication chan-
nels, giving the maximum information rate per unit cost
(e.g., bits per second) that can be reliably achieved through
a given channel. Although sophisticated signal processing
is generally required to achieve the Shannon bounds (which
is impractical for contemporary molecular communication
systems), these bounds give an idea of the ultimate limits
of these channels, as well as a loose idea of what can be
done with basic techniques. This problem was considered
in a general way in [1], and achievable information rates
were calculated in [4] for channels that admit indistinguish-
able molecules, showing promising results. We say that a
system’s molecules are indistinguishable if only one kind of
molecule can be transmitted; in the case where more than
one kind of molecule is allowed (and these types can be dis-
tinguished by the receiver), we say the molecules are distinct.

In this paper, we extend the framework and results of [4]
by considering the information rates that are possible when
information is encoded using distinct molecules, an arrange-
ment that has been assumed in previous papers (such as [6,
9]). Although there are complexity advantages, and possibly
energy advantages, associated with using a communication
scheme with indistinguishable molecules (as the transmitter
can keep a reservoir of messenger molecules, since it need not
synthesize every new molecule as it is required), we show
that the potential gains in information rate from using a
scheme with distinct molecules are significant.

2. MODEL
Suppose a transmitter, at the origin, and a receiver, lo-

cated unit distance away, are connected by a fluid medium.
The transmitter has a message m ∈M, where M is the set
of all possible messages. The transmitter conveys m to the
receiver by releasing a pattern of molecules into the fluid
medium. The molecules propagate through the medium via
Brownian motion. The receiver observes the arrivals of the
molecules, and from the pattern of arrivals, guesses that m′

was the message sent by the transmitter. If m = m′, the
transmission is successful; if m 6= m′, an error is made.

We largely follow the modeling assumptions given in [4] for
the discrete-time case. Let X represent a set of molecules
that the transmitter is capable of synthesizing and releas-



ing. At each time t ∈ {0, 1, 2, . . .}, the transmitter releases
a single molecule xt ∈ X . Once a molecule is released, it
propagates under Brownian motion in the medium, which is
defined on the interval (−∞, 1] (recalling that the transmit-
ter is located at 0, and the receiver is located at 1). We as-
sume that the Brownian motions of the molecules released by
the transmitter are independent and identically distributed;
furthermore, after release, the transmitter does not influ-
ence the Brownian motion of the molecules in any way. At
each time t ∈ {0, 1, 2, . . .}, the receiver observes yt; letting
at represent the number of arrivals at the receiver during
the interval t to t + 1, yt ∈ X at consists of the identities
of the molecules that arrived during the tth interval. Once
a molecule arrives at the receiver, it is removed from the
system. We will write x = [x0, x1, . . .] and y = [y0, y1, . . .]
to represent the sequences of channel inputs and channel
outputs, respectively.

Each molecule has a transmission time (i.e., the first hit-
ting time at the receiver for the Brownian motion), where
nt is the transmission time associated with the molecule re-
leased at time t. We may write

ut = t + nt

to represent the arrival time of the molecule released at time
t (i.e., the arrival time of xt). Thus,

yt = {xτ : t < uτ ≤ t + 1, τ ∈ {0, 1, 2, . . .}}. (1)

We choose to model nt as the first hitting time of a Wiener
process, which is not the best model for a physical Brownian
motion, but which has the advantage of having a PDF that
can be expressed in closed form, as follows:

fNt(nt) =
dp

2πσ2n3
t

exp

„
−d2

2σ2nt

«
.

The remainder of our results can be easily adapted to any
other PDF fNt(nt).

3. INFORMATION RATES

3.1 Mutual information
Suppose any message in M can be transmitted with T

molecules. Since any message in M can be uniquely repre-
sented with log2 |M| bits, the information rate R is defined
as

R =
log2 |M|

T
,

measured in bits per molecule (from henceforth, it will be
assumed that all logarithms are base 2). Note that this is
also the number of bits per unit time, since one molecule is
transmitted at every time unit. As a result of the random
transmission time nt, the observations yt in (1) are stochas-
tic. Thus, when the receiver guesses m′, there is some prob-
ability that m 6= m′, known as the probability of error, with
symbol Perr. The goal of the system designer is to maximize
R while keeping Perr arbitrarily small.

A message m ∈ M is transmitted over the channel by
encoding it as a sequence x ∈ X T of T molecules. Shannon
[10] showed that, as T → ∞, there exist codes which allow
communication at rates R ≤ I(X; Y ) with arbitrarily low
Perr, where I(X; Y ) is the mutual information, given by

I(X; Y ) = lim
T→∞

1

T
E

»
log

fY|X(y | x)

fY(y)

–
,

where fY|X(y | x) and fY(y) are probability density func-
tions, and E[·] represents expectation (in this case the ex-
pectation is taken over both x and y).

In the case of the Brownian motion channel, it is known
that neither fY|X(y | x) nor fY(y) can be tractably calcu-
lated [4]. However, suppose that there exist tractable ap-
proximations g(y | x), and g(y) for fY|X(y | x) and fY(y),
respectively, which have the following properties:

1.
R
y

g(y |x) = 1 and g(y |x) ≥ 0 for all x,y (i.e., g(y |x)

is a valid probability density function); and

2. Given the true input distribution fX(x), g(y) is found
by

R
x

g(y | x)fX(x).

Then it can be shown that a lower bound on mutual infor-
mation is given by

I(X; Y ) ≥ lim
T→∞

1

T
E

»
log

g(y | x)

g(y)

–
. (2)

This bound was proved in [2] and elsewhere, and was previ-
ously used in [4]. Since it is relatively easy to generate in-
stances of x and y, and since g(y |x) and g(y) are tractable
(by assumption), the bound in (2) may be calculated by
Monte Carlo simulation.

In fact, g(y |x) and g(y) need not be close approximations
of fY|X(y|x) and fY(y), as the bound is valid for any g(y|x)
and g(y) that satisfy the given properties. However, the
tightness of the bound is governed by a term related to the
Kullback-Leibler distance between the approximation and
the true distribution, so better approximations will likely
lead to better bounds. Furthermore, the bound in (2) has
the interesting physical interpretation as the best achievable
rate for a decoder that assumes that g(y | x) is the correct
distribution. As a result, the bound in (2) is an achievable
bound, in that we could (in principle) construct a device
to achieve reliable communication at the rate given by the
bound.

3.2 Approximate Model
Bearing the previous section in mind, we need to find a

model which provides a reasonably good, yet tractable, pair
of approximations g(y | x) and g(y). We take a similar ap-
proach to [4], by assuming that:

1. A particle released at time t arrives between time t and
t + 1 with probability pa, where

pa =

Z 1

nt=0

fnt(nt).

If a particle does not arrive in this interval, it is as-
sumed to be lost.

2. For each type of particle x ∈ X , there is some prob-
ability of an arrival of a particle of type x from the
“background”. These arrivals are Poisson distributed
with an identical intensity λ = (1 − pa)/|X | for all
x ∈ X . Background arrivals are assumed to be inde-
pendent of x and each other.

Assumption 1 implies that the arrivals are independent of
each other, since a particle either arrives before the next
particle is transmitted, or it is lost. Meanwhile, assumption
2 accounts for the “lost” particles by making them part of
the background.



Let nx(yt) represent the number of particles of type x ∈ X
that are in the set yt, i.e., the number of particles of type x
that arrive at time t. Furthermore, for any integer k, let

φ(k; λ) =


λke−λ

k!
, k ≥ 0;

0, k < 0.

represent the Poisson PDF. As a result of the two modeling
assumptions, we have that

g(y | x) =

TY
t=1

g(yt | xt), (3)

where

g(yt | xt) = (1− pa)
Y
u∈X

φ(nu(yt); λ)

+paφ(nxt(yt)− 1; λ))
Y

u∈{X\xt}

φ(nxt(yt); λ),

where the notation {X\xt} signifies the elements of X except
xt. One may then find g(y) by marginalizing (3) over x, in
accordance with the necessary properties of g(y).

4. RESULTS AND DISCUSSION
Results are shown in Figure 1, plotted against a log scale.

In these plots, the parameters of the Wiener process are nor-
malized with respect to the arrival probability pa. Unsur-
prisingly, we see improved performance as pa increases. Fur-
thermore, from the figure, the achievable information rate is
proportional to log |X | for sufficiently large |X |.

In [4], using indistinguishable molecules, a method was
given to achieve rates of around 1.2 bits per molecule, or
around 0.1 bits per unit time. Compared to results for in-
distinguishable particles in [4], these results represent a sig-
nificant improvement. Indeed, these results suggest large in-
creases in achievable rate may be possible by using a larger
|X |, which may be realistic in some scenarios. For exam-
ple, if information is to be conveyed using carbohydrates,
there are roughly 38,000 distinct trisaccharides made up of
3 hexoses; if functional group substitution is allowed, the
number of distinct molecules increases into the millions [8],
with corresponding increases in information capacity.

Achieving the bounds given in this paper is likely to be be-
yond contemporary technology at the nanoscale. However,
the results give a loose idea of what may be accomplished
using basic techniques. For example, supposing |X | is 64,
and pa is 0.3, we see from Figure 1, that a system using our
simplified model for particle detection could achieve a rate
of around 1 bit per particle. However, the transmitter is
generating log2 64 = 6 bits per particle. Thus, the transmit-
ter should expect to send at least six molecules to convey
eacy information bit, although in practice, many more would
be required in the absence of sophisticated error-correcting
codes.
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Figure 1: Mutual information per molecule (or per
time unit) versus log2 |X |.
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