
Antares: an Ant-Inspired P2P Information System
for a Self-Structured Grid

Agostino Forestiero
Institute for High Performance

Computing and Networks
ICAR-CNR

87036 Rende (CS) Italy
forestiero@icar.cnr.it

Carlo Mastroianni
Institute for High Performance

Computing and Networks
ICAR-CNR

87036 Rende (CS) Italy
mastroianni@icar.cnr.it

Giandomenico Spezzano
Institute for High Performance

Computing and Networks
ICAR-CNR

87036 Rende (CS) Italy
spezzano@icar.cnr.it

ABSTRACT
This paper introduces Antares, a bio-inspired algorithm that
exploits ant-like agents to build a P2P information system in
Grids. The work of agents is tailored to the controlled repli-
cation and relocation of metadata documents that describe
Grid resources.

These descriptors are indexed through binary strings that
can either represent topics of interest, specifically in the case
that resources are text documents, or be the result of the ap-
plication of a locality preserving hash function, that maps
similar resources into similar keys. Agents travel the Grid
through P2P interconnections and, by the application of ad
hoc probability functions, they copy and move descriptors
so as to locate descriptors represented by identical or simi-
lar keys into neighbor Grid hosts. The effectiveness of the
Antares algorithm has been verified by event-driven sim-
ulation which proves that ant operations allow to achieve
replication and spatial sorting of descriptors.

The resulting information system is here referred to as
self-structured, because it exploits the self-organizing char-
acteristics of ant-inspired agents, and also because the as-
sociation of descriptors to hosts is not pre-determined but
easily adapts to the varying conditions of the Grid. This
self-structured organization combines the benefits of both
unstructured and structured P2P information systems. In-
deed, being basically unstructured, Antares is easy to main-
tain in a dynamic Grid, in which joins and departs of hosts
can be frequent events. On the other hand, the aggregation
and spatial ordering of descriptors can improve the rapidity
and effectiveness of discovery operations, and also enables
range queries, which are beneficial features typical of struc-
tured systems.
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1. INTRODUCTION
Grid computing [11] is an emerging computing model that

provides the ability to perform higher throughput computing
by taking advantage of many networked computers and dis-
tributing process execution across a parallel infrastructure.
Modern Grids are based on the service oriented paradigm;
for example, in the Globus Toolkit 4 based on the Web Ser-
vices Resource Framework (WSRF [17]), resources are of-
fered through the invocation of Web services, which boast
enriched functionalities such as lifecycle and state manage-
ment.

The information system is an important pillar of a Grid
framework, since it provides information that is critical to
the operation of the Grid and the construction of applica-
tions. In particular, users turn to the information system
to discover suitable resources or services that are needed
to design and execute a distributed application, explore the
properties of such resources and monitor their availability.

Due to the inherent scalability and robustness of P2P al-
gorithms, several P2P approaches have been recently pro-
posed for resource organization and discovery in Grid envi-
ronments [18]. The ultimate goal of these approaches is to
allow users to rapidly locate Grid resources or services (ei-
ther hardware or software) which have the required charac-
teristics; this is generally reduced to the problem of finding
related descriptors, through which it is possible to access
the corresponding resources. A descriptor may contain a
syntactical description of the resource/service (i.e. a WSDL
- Web Services Description Language - document) and/or
an ontology description of resource/service capabilities. In
a Grid, after issuing a query, a user can discover a number of
descriptors of possibly useful resources, and then can choose
the resources which are the most appropriate for their pur-
poses.

In P2P systems, descriptors are often indexed through bit
strings, or keys, that can have two different meanings. The
first is that each bit represents the presence or absence of a
given topic [5, 15]: this method is particularly used if the
resource of interest is a document, because it is possible to
define the different topics on which this document focuses.
Alternatively, a resource or service (for example a compu-
tation resource) can be mapped by a hash function into a
binary string. The hash function is assumed to be locality
preserving [3, 14], which assures that resources having sim-
ilar characteristics are associated to similar descriptor keys.
Similarity between two resources can be measured as the co-
sine of the angle between the bit vectors through which the



corresponding descriptors are indexed.
In this paper, we propose Antares (ANT-based Algorithm

for RESource management in Grids) a novel approach for
the construction of a Grid information system, which is
inspired by the behavior of some species of ants [2]. The
Antares algorithm is able to disseminate and reorganize de-
scriptors and, as a consequence of this, it facilitates and
speeds up discovery operations. More specifically, Antares
concurrently achieves multiple objectives: (i) it replicates
and disseminates descriptors, with the possibility of foster-
ing the dissemination of descriptors associated to dynamic
and/or high QoS resources 1; (ii) it spatially sorts descrip-
tors, so that descriptors indexed by similar keys are placed
in neighbor hosts; (iii) thanks to the self-organizing nature
of the ant-based approach, the reorganization of descriptors
spontaneously adapts to the ever changing environment, for
example to the joins and departs of Grid hosts and to the
changing characteristics of resources.

The Antares approach can be positioned along a well known
research avenue whose objective is to devise possible appli-
cations of ant algorithms, i.e., algorithms inspired by the
behavior of ants [2, 6]. We recently proposed an approach
for the reorganization and discovery of resources which are
pre-classified in a given number of classes [8, 9]. This en-
ables the creation of Grid regions specialized in a particular
class, which improves the performance of discovery opera-
tions, but does not allow for the spatial sorting of descrip-
tors, thus preventing the possibility of efficiently managing
range queries.

Antares has been specifically designed to tackle the case in
which the access keys of resource descriptors are bit strings
and, since similar resources are assumed to be mapped into
similar strings, it is possible to define a similarity measure
among resources, through the comparison of related keys. In
this sense our work is partly inspired by the work of Lumer
and Faieta [13], who devised a method to spatially sort data
items through the operations of simple robots.

However, the approach of Lumer and Faieta has been
adapted to our purposes, by making the following main mod-
ifications: (i) descriptors are not only sorted, as in [13], but
also replicated, in order to disseminate useful information
on the Grid and facilitate search requests; (ii) each cell can
contain a number of descriptors, not just one item as in [13];
(iii) since Antares operates in a distributed computing envi-
ronment, agents must limit the number of P2P hops in order
to reduce traffic and computing load.

The ant-inspired agents of Antares replicate and move
descriptors, and tend to place descriptors with similar (or
equal) keys into the same host or neighbor hosts. This is
achieved by ants’ pick and drop operations which are driven
by corresponding pick and drop probability functions. The
obtained rearrangement and spatial ordering of descriptors
facilitates resource discovery and enables range queries.

The Grid information system constructed with Antares is
basically unstructured, in the sense that descriptors are not
required to be mapped onto specified hosts (for example,
hosts determined by a hash function, as in most structured
P2P systems), but they are freely placed by ants through
their pick and drop operations. This assures valuable fea-
tures such as self-organization, adaptivity, and ultimately

1this possibility is not discussed here, but the reader can
refer to [10] to see how this issue is tackled in a similar
context.

scalability.
Nevertheless, Antares features a self-emerging organiza-

tion of descriptors, which has some ”structured” properties,
since descriptors are aggregated and spatially sorted. There-
fore, the resulting information system is referred to as self-
structured, because it exploits the self-organizing character-
istics of ant-inspired agents, and also because the association
of descriptors to hosts is not pre-determined but adapts to
the varying conditions of the Grid.

In actual fact, Antares retains important benefits, which
are typical of structured systems. In particular, our ap-
proach enables the use of a semi-informed discovery pro-
tocol, that is executed in two phases. In the first phase,
a discovery message travels the network in a blind fashion,
but discovery becomes informed as soon as this message
approaches a potentially interesting region. This event is
detected when the hosts encountered by the message pos-
sess descriptors whose keys are very similar (within a given
range) to the key(s) specified in the query. In the informed
phase, the discovery algorithm exploits the spatial sorting of
descriptors and drives the discovery message towards hosts
that possess descriptors which are more and more similar
to those specified in the query. Therefore, the goal of the
blind phase is to discover a Grid region that may later been
explored with the informed mechanism to find as many de-
scriptors as possible.

In this paper, we show that the Antares algorithm suc-
ceeds in the spatially replication and sorting of descriptors.
In fact, event-based simulation proves that agents success-
fully generate and disseminate several replicas of each re-
source, and at the same time that the homogeneity of de-
scriptors located in each small Grid region is notably in-
creased, meaning that descriptors are effectively reorganized
and sorted on the Grid.

2. THE ANTARES ALGORITHM
The main purpose of the Antares algorithm is to dissemi-

nate resource descriptors over the Grid and at the same time
achieve a logical organization of Grid resources by spatially
sorting the corresponding descriptors according to the their
keys.

The Grid system uses P2P interconnections to enable com-
munication and exchange of descriptors among Grid hosts.
This is coherent with the recent trend of adopting P2P tech-
niques in Grid frameworks, in order to enhance efficiency and
scalability features of large-scale Grids [12, 18].

The Antares information system is progressively and con-
tinuously constructed by a number of ant-inspired agents
which travel the Grid through these P2P interconnections,
possibly pick resource descriptors from a Grid host, carry
these descriptors, and drop them into other hosts. Pick and
drop operations are based on the evaluation of the corre-
sponding probability functions. Though these operations
are very simple, and agents are unaware of the significance
of what they do, a sort of swarm intelligence emerges from
their combined work, which is typical of ant systems, and of
bio-inspired systems in general.

2.1 Pick Operation
Periodically, an agent performs a small number of P2P

hops among Grid hosts (see the pseudo-code of the algorithm
later reported in Figure 1). Whenever an agent arrives at
a new Grid host, and it does not carry any descriptor, it



evaluates the pick probability function and decides whether
or not to pick one or more descriptors from the current host.

Specifically, the agent checks each single descriptor main-
tained in the current host, and evaluates its average similar-
ity with all the descriptors maintained by the hosts located
in the visibility region. The visibility region includes all the
hosts that are located located within the visibility radius,
i.e., that are reachable from the current host with a given
number of hops. This radius is an algorithm parameter, and
is set here to 1, in order to limit the amount of information
exchanged among hosts.

Actually, the agent evaluates the similarity of the binary
key of the descriptor under consideration with the keys of
the centroids of the current host and of the neighbor hosts,
and then takes the average. A centroid of a host is a virtual
descriptor whose key is representative for the descriptors
maintained in the local host. Similarity is evaluated against
centroids (instead of against all single descriptors) in order
to reduce the information exchanged among hosts. In fact
each host must only know the keys of the centroids of the
neighbor peers, instead of the keys of all the descriptors.

The probability of picking a descriptor must be inversely
proportional to the average similarity of this descriptor with
those located in the visibility region, thus obtaining the ef-
fect of averting a descriptor from co-located dissimilar de-
scriptors. As soon as the possible initial equilibrium is bro-
ken (i.e., descriptors having different keys begin to be accu-
mulated in different Grid regions), a further reorganization
of descriptors is increasingly driven, because the probability
of picking an ”outlier” descriptor increases.

The pick probability function Ppick, is defined in formula
(1) whereas f , defined in formula (2), measures the average
similarity of a generic descriptor d with the other descriptors
located in the visibility region R; the value of f assumes
values ranging between 0 and 1, and so does Ppick. 2.

In more detail, in formula (1) the parameter kp, whose
value is comprised between 0 and 1, can be tuned to mod-
ulate the degree of similarity. In fact, the pick probability
is equal to 0.25 when f and kp are comparable, while it ap-
proaches 1 when f is much lower than kp (i.e., when the
descriptor in question is extremely dissimilar from the oth-
ers) and 0 when f is much larger than kp (i.e., when the
descriptor in question is very similar to the others). Here kp

is set to 0.1.

Ppick =

(

kp

kp + f

)2

(1)

In formula (2), the weight of each term is equal to the
number of descriptors Np maintained in each peer p, while N
is the overall number of descriptors maintained in the region
R, i.e., N =

∑

(pǫR) Np. Note that the similarity between d
and the descriptor of the centroid of the peer p, Cp, is defined
as the cosine of the angle between the corresponding key
vectors. The parameter α defines the similarity scale [13];
here it is set to 0.5.

2actually, with the adopted values of α and kp, the value
of f can range between -1 and 1, but negative values are
truncated to 0: this corresponds to have, in formula (1), a
Ppick value of 1 in the case that the evaluated descriptor is
very dissimilar from the other descriptors.

f(d, R) =
1

N
·

∑

pǫR

Np · (1 −

1 − cos(d, Cp)

α
) (2)

After evaluating the pick probability function, the agent
computes a random real number comprised between 0 and
1, then it executes the pick operation if this number is lower
than the value of the pick function. As the local region ac-
cumulates descriptors having similar keys, it becomes more
and more likely that ”outlier” descriptors will be picked by
an agent.

The pick operation can be performed with two different
modes, copy and move. If the copy mode is used, the agent,
when executing a pick operation, leaves the descriptor on the
current host, generates a replica of it, and carries the new
descriptor until it drops it into another host. Conversely,
with the move mode, an agent picks the descriptor and re-
moves it from the current host, thus preventing an excessive
proliferation of replicas. These two modes and their impact
are better discussed in Section 2.3.

2.2 Drop Operation
As well as the pick function, the drop probability func-

tion Pdrop is first used to break the initial equilibrium and
then to strengthen the spatial sorting of descriptors. When-
ever an agent gets to a new Grid host, it must decide, if it
is carrying some descriptors, whether or not to drop these
descriptors in the current host.

For each carried descriptor, the agent separately evaluates
the drop probability function, which, as opposed to the pick
probability, is directly proportional to the similarity function
f defined in formula (2), i.e., to the average similarity of this
descriptor with the descriptors maintained in the current
visibility region.

In (3), the parameter kd is set to a higher value than
kp, specifically to 0.5, in order to limit the frequency of
drop operations. Indeed, it was observed that if the drop
probability function tends to be too high, it is difficult for an
agent to carry a descriptor for an amount of time sufficient
to move it into an appropriate Grid region.

As for the pick operation, the agent first evaluates Pdrop,
then extracts a random real number between 0 and 1, and if
the latter number is lower than Pdrop, the agent drops the
descriptor in question into the current host.

Pdrop =

(

f

kd + f

)2

(3)

To summarize the behavior of agents, a high-level descrip-
tion of the Antares algorithm is given in Figure 1. Note that
an agent must drop all the descriptors that it maintains be-
fore it can try to pick other descriptors from a new host.

As a final remark concerning pick and drop probability
functions, it is worth specifying that the values of mentioned
parameters (kp, kd, α) have an impact on the velocity and
duration of the transient phase of the Antares process, but
they have little influence on the performance observed under
steady conditions.



// Na = number of agents
// Hmax = max number of P2P hops that an agent
// can perform between two successive operations
// mod = mode of the algorithm (copy or move)
For each agent a do forever {

compute integer number h between 1 and Hmax;
a makes h P2P hops in a random direction;
if (a is unloaded) { // try pick operations

for each descriptor d of the current peer {
compute Ppick, as in formula (1);
draw a random real number r between 0 and 1;
if (r<=Ppick) then {

pick the descriptor d from current host;
if (mod == move)

remove descriptor d from current host;
}

}
}
else { // try drop operations

for each descriptor d carried by the agent {
compute Pdrop, as in formula (3);
draw a random real number r between 0 and 1;
if (r<=Pdrop) then

drop descriptor d into the current host;
}

}
}

Figure 1: The Antares algorithm

2.3 Spatial Sorting of Descriptors
The effectiveness of Antares is evaluated through a spatial

homogeneity function H . Specifically, for each host of the
Grid, we calculate the homogeneity among all the descrip-
tors maintained within the local visibility region, by averag-
ing the cosine of the angle between every couple of descrip-
tors. Afterwards, the values of the homogeneity functions
calculated on all the hosts of the network are averaged. The
objective is to increase the homogeneity function as much as
possible, because it would mean that similar descriptors are
actually mapped and aggregated into neighbor hosts, and
therefore an effective sorting of descriptors is achieved.

Simulation analysis (some details about simulation are
given in Section 3) has shown that the overall homogene-
ity function is better increased if each agent works under
both its operational modes, i.e., copy and move. In the first
phase of its life, an agent is required to copy the descriptors
that it picks from a Grid host, but when it realizes from its
own activeness that the sorting process is at an advanced
stage, it begins simply to move descriptors from one host
to another, without creating new replicas. In fact, the copy
mode cannot be maintained for a long time, since eventually
every host would maintain a very large number of descriptors
of all types, thus weakening the efficacy of spatial reorgani-
zation. The algorithm is effective only if each agent, after
replicating a number of descriptors, switches from copy to
move.

A self-organization approach based on the concept of stig-
mergy [4] enables each agent to perform this mode switch
only on the basis of local information. This approach is
inspired by the observation that agents perform more oper-
ations when the system entropy is high (because descriptors
are distributed randomly), but operation frequency gradu-
ally decreases as descriptors are properly reorganized. The
reason of this is that the values of Ppick and Pdrop func-

tions, defined in formulas (1) and (3), decrease as descriptors
are correctly replaced and sorted on the Grid.

With a mechanism inspired by ants and other insects, each
agent maintains a pheromone base (a real value) and in-
creases it when its activeness tends to decrease; the agent
switches to the move mode as soon as the pheromone level
exceeds a defined threshold Th. In particular, at given time
intervals, i.e. every 2,000 seconds, each agent counts up the
number of times that it has evaluated the pick and drop
probability functions, and the number of times that it has
actually performed pick and drop operations (see algorithm
in Figure 1). At the end of each interval, the agent makes
a deposit into its pheromone base, by adding an amount of
pheromone equal to 1 minus the ratio between the number
of operations actually performed and the total number of
operation attempts. This way the value of the pheromone
base results to be inversely proportional to the activeness
of the agent. An evaporation mechanism is used to give a
higher weight to the recent behavior of the agent. Specif-
ically, at the end of the i-th time interval, the pheromone
level Φi is computed with formula (4).

Φi = Ev · Φi−1 + φi (4)

The evaporation rate Ev is set to 0.9, whereas φi is the
amount of pheromone deposited in the last time interval.
The pheromone level can assume values comprised between
0 and 10: the superior limit can be obtained by equalizing
Φi to Φi−1 and setting φi to 1. As soon as the pheromone
level exceeds the threshold Th (whose value must also be set
between 0 and 10), the agent switches its mode from copy
to move. The value of Th can be used to tune the num-
ber of agents that work in the copy mode, and consequently
the replication and dissemination of descriptors, since these
agents are able to generate new descriptor replicas. Specifi-
cally, the number of agents in copy increases with the value
of the threshold Th. This phenomenon is not analyzed here
but is widely discussed in [7].

2.4 Management of Peer Disconnections
In a dynamic Grid, peers can go down and reconnect again

with varying frequencies. To account for this, we define the
average connection time of a peer, which is generated ac-
cording to a Gamma probability function, with an average
value set to the parameter Tpeer. Use of the Gamma distri-
bution assures that the Grid contains very dynamic hosts,
which frequently disconnect and rejoin the network, as well
as much more stable hosts.

As a consequence of this dynamic nature, two issues are
to be tackled. The first is related to the management of new
resources provided by new or reconnected hosts. Indeed,
if all the replication agents switch to the move mode, it
becomes impossible to replicate and disseminate descriptors
of new resources; as a consequence, agents cannot be allowed
to live forever, and must gradually be replaced by new agents
that set off in the copy mode. The second issue is that the
system must remove ”obsolete descriptors”, i.e. descriptors
of resources provided by hosts that have left the system, and
therefore are no longer available.

Simple mechanisms are adopted to cope with these two
issues. The first is to correlate the lifecycle of agents to the



lifecycle of peers. When joining the Grid, a host generates
a number of agents given by a discrete Gamma stochastic
function, with average Ngen, and sets the life-time of these
new agents to the average connection time of the peer itself.
This setting assures that (i) the relation between the num-
ber of peers and the number of agents is maintained with
time (more specifically, the overall number of agents is ap-
proximately equal to the number of active peers times Ngen)
and (ii) a proper turnover of agents is achieved, which allows
for the dissemination of descriptors of new resources, since
new agents start in the copy mode. A second mechanism
assures that, every time a peer disconnects from the Grid,
it loses all the descriptors previously deposited by agents,
thus contributing to the removal of obsolete descriptors. Fi-
nally, a soft state mechanism [16] is adopted to avoid the
accumulation of obsolete descriptors in very stable nodes.
Each host periodically refreshes the descriptors correspond-
ing to the resources owned by other hosts, by contacting
these hosts and retrieving from them updated information
about resources.

It is worth mentioning that the described approach for
handling a dynamic Grid implicitly manages any unexpected
peer fault, because this occurrence is processed in exactly the
same way as a peer disconnection. Indeed, the two events are
indistinguishable, since (i) a peer does not have to perform
any procedure before leaving the system, and (ii) in both
cases (disconnection and fault) the descriptors that the peer
has accumulated so far are removed.

3. PERFORMANCE EVALUATION
The performance of the Antares algorithm was evaluated

with an event-based simulator written in Java. Simulation
objects are used to emulate Grid peers and Antares agents.
Each object reacts to external events according to a finite
state automaton and responds by performing specific op-
erations and/or by generating new messages/events to be
delivered to other objects.

A Grid network having a number of hosts Np equal to
2500 is considered in this work. Hosts are linked through
P2P interconnections, and each host is connected to 4 peer
on average. The average connection time of a peer, Tpeer

(see Section 2.4), is set to 100,000 seconds. The number
of Grid resources owned and published by a single peer is
obtained with a Gamma stochastic function with an average
value equal to 15 (see [12]).

Resources are characterized by metadata descriptors in-
dexed by bit strings (keys) having 4 bits, with 24

−1 possible
values 3. These values, as mentioned in Section 1, can re-
sult from a semantic description of a resource, in which each
bit represents the presence of a particular topic, or from the
application of a locality preserving hash function. In any
case, it is guaranteed that similar keys are given to descrip-
tors of similar resources. Notice that if the range of possible
resource types is larger than 24

− 1, it can always be as-
sumed that a resource is characterized by several attributes,
each having no more than 24

− 1 possible values. In this
case, each attribute corresponds to a separate mapping on
the Grid network. This assumption is made in several P2P
architectures ([1, 3]); however, here we discuss the simple

3a key string with all bits equal to 0 is not permitted in
order to correctly calculate the cosine of the angle between
two vectors.

case of one attribute descriptors.
The mean number of agents generated by a single peer,

Ngen, is set to 0.5; as a consequence, the average number
of agents Na that travel the Grid is equal to Np/2, as ex-
plained in Section 2.4. The average time Tmov between two
successive agent movements is set to 60 s, whereas the max-
imum number of P2P hops that are performed within a sin-
gle agent movement, Hmax, is set to 3, in order to limit the
traffic generated by agents.

Prior to the numerical analysis, a graphical description
of the behavior of the algorithm, for the case in which the
number of bits in the descriptor key is set to 3, is given in
Figure 2. For the sake of clearness we show a portion of
the Grid, and Grid hosts are arranged in a bi-dimensional
mesh. Each peer is visualized through a color that results
from the application of the RGB color model. This color re-
sults from a combination of the 3 primary colors (red, green
and blue), each of which is associated to one of the three
bits of the descriptor (for example red is associated to the
first bit and so on) and can assume a value ranging from 0
to 255. For a given peer, the value of each primary color is
set by examining the corresponding bits of the descriptors
maintained in this peer. More specifically, it is set to the
fraction of bits equal to 1 with respect to the total number
of descriptors, and then multiplied by 255. This way the
color of each peer immediately represents the descriptors
that this peer maintains. Three snapshots of the network
are depicted: the first is taken when the Antares process is
initiated (time 0), the second is taken 50,000 seconds later,
and the third snapshot is taken in a quite steady situation,
500,000 seconds after the process start. This figure shows
that descriptors are initially distributed in a completely ran-
dom fashion, but subsequently they are reorganized and spa-
tially sorted by agents. In fact we note the creation of color
spots that reveal the accumulation of similar descriptors in
restricted regions of the Grid. The different colors of the
spots correspond to the different combinations of descriptor
values that are aggregated. For example red, green and blue
spots reveal a massive presence of descriptor keys equal to
[1,0,0], [0,1,0], [0,0,1], respectively, while yellow, cyan, vio-
let and white spots represent the predominant presence of
vectors having two or three bits equal to 1. We can also ob-
serve that colors change gradually between neighbor regions,
which proves that the descriptors are not only clustered but
also spatially sorted on the network.

A set of performance indices are defined to evaluate the
performance of the Antares algorithm. The overall homo-
geneity function H , discussed in Section 2.3, is used to esti-
mate the effectiveness of the algorithm in the reorganization
of descriptors. The Nd index is defined as the mean num-
ber of descriptors maintained by a Grid host. Since new
descriptors are only generated by agents that work in the
copy mode, the number of such agents, Ncopy, is another in-
teresting index that helps understand what happens in the
system. Finally, the processing load, L, is defined as the av-
erage number of agents per second that get to a Grid host,
and there perform pick and drop operations.

Performance indices have been obtained by varying several
parameters, for example the average number of resources
published by a host and the frequency of agent movements.
We found out that the qualitative behavior of Antares is not
affected by these parameters, which proves the robustness of
the algorithm. This robustness derives from the decentral-



Figure 2: Accumulation and reorganization of re-

source descriptors.

ized, self-organizing and adaptive features of the algorithm,
which are also the cause of its scalability. Indeed, since each
agent operates only on the base of local information, per-
formance is not significantly affected by the topology or the
size of the network.

Here we choose to show performance indices, versus time,
obtained for different values of the parameter Tpeer, the av-
erage connection time of a peer, which has been introduced
in Section 2.4. Specifically, tested values of Tpeer range from
36,000 to 500,000 seconds and, for comparison purposes, we
also tested the case in which peers never disconnect. This
kind of analysis is useful because it helps understand the
mechanisms through which the information system is con-
structed, and also because it is possible to assess the algo-
rithm ability to adapt the mapping of descriptors to the con-

tinuous modifications of the environment. Simulations were
executed with Th equal to 9.0, which means that each agent
sets off in the copy mode and passes to the move mode as
soon as its pheromone, starting from 0, exceeds the thresh-
old of 9.0 (see Section 2.3).

Figure 3 reports the trend of H , the overall homogeneity
function. It appears that the work of Antares agents make
this index increase from about 0.50 to much higher values.
After a transient phase, the value of H becomes stable: it
means that the system reaches an equilibrium state despite
the fact that peers go down and reconnect, agents die and
others are generated, etcetera. In other words, the algo-
rithm adapts to the varying conditions of the network and
is robust with respect to them. Note that the stable value
of H decreases as the network becomes more dynamic (that
is, with lower values of Tpeer), because the reorganization of
descriptors performed by agents is partly hindered by envi-
ronment modifications. However, even with the lowest value
of Tpeer that we tested, 36,000, the percentage increase of H
is about 30%, whereas it is more than 50% with Tpeer equal
to 500,000.
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Tpeer.

Figure 4 depicts Ncopy, the number of agents that operate
in the copy mode, also called copy agents in the following.
This analysis is interesting because copy agents are respon-
sible for the replication of descriptors, whereas agents in the
move mode are exclusively devoted to the relocation and
spatial sorting of descriptors.

When the process is initiated, all the agents (about 1250,
half the number of peers) are generated in the copy mode,
but subsequently several agents switch to move, as soon as
their pheromone value exceeds the threshold Th. This cor-
responds to the sudden drop of curves that can be observed
in the left part of Figure 4. Thereafter the number of copy
agents gets stabilized, even with some fluctuations; this equi-
librium is reached because the number of new agents which
are generated by Grid hosts (these agents always set off in
the copy mode) and the number of agents that switch from
copy to move get balanced.

Figure 4 also shows that the number of copy agents in-
creases as the Grid is more dynamic. Indeed, a higher
turnover of agents is obtained when peers disconnect and
reconnect with a higher frequency, because more agents die
if more peers disconnect (because the lifetime of agents is
correlated to the lifetime of peers), and at the same time
more agents are generated by reconnecting peers (see Sec-



tion 2.4). Since new agents set off in the copy mode, this
leads to a larger number of copy agents, as appears in Fig-
ure 4. Moreover, note that in a stable network (no peer
disconnections) all agents work in the move mode after a
short transient phase. Indeed in this case no new agents are
generated after the process is initiated.
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Figure 4: Number of agents that operate in the copy

mode, vs. time, for different values of the average

connection time Tpeer.

Figure 5 reports Nd, the average number of descriptors
that are maintained by a Grid host at a given time. One of
the main objectives of Antares is the replication and dissem-
ination of descriptors. This objective is achieved because the
value of Nd increases from an initial value of about 15 (equal
to the average number of resources published by a host) to
much higher values; as for the other indices, the trend of Nd

undergoes a transient phase, then it gets stabilized, even if
with some fluctuations.

The value of Nd is determined by two main phenomena:
on the one hand, a large number of copy agents tend to in-
crease Nd, because they are responsible for the generation
of new descriptor replicas. On the other hand, a frequent
disconnection of peers tends to lower Nd, because a discon-
necting peer loses all the descriptors that it has accumulated
so far (see Section 2.4). These two phenomena work in op-
posite directions as the value of Tpeer increases: in a more
dynamic network there are more copy agents (which tends
to increase Nd), but more descriptors are thrown away by
disconnecting peers (which tends to decrease Nd).
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Figure 5: Average number of descriptors maintained

by a Grid host, vs. time, for different values of the

average connection time Tpeer.

The result is that the stable number of Nd is relatively

lower both when the disconnection frequency is very low
and when it is very high or infinite (i.e., with no peer dis-
connections). Interestingly, a higher degree of replication
can be reached for intermediate values of Tpeer , which are
more realistic on Grids. Indeed the figure shows, even if
curves are more wrinkled than those examined so far (prob-
ably due to the two underlying and contrasting mechanisms
discussed above), that the value of Nd first increases as Tpeer

increases from 36,000 to values comprised between 100,000
and 150,000, then it decreases again for higher values of
Tpeer, and finally it becomes very low in the (not realistic)
case of no peer disconnections.

As opposed to the indices described so far, the processing
load L, defined as the average number of agents per second
that are processed by a peer, does not depend on the value
of Tpeer, but only on the number of agents and the frequency
of their movements across the Grid. L can be obtained as
follows:

L =
Na

Np · Tmov

=
Ngen

Tmov

(5)

In the described scenario, since the average value of Tmov

is equal to 60 seconds, and Ngen is set to 0.5, each peer
receives and processes about one agent every 120 seconds,
which can be considered an acceptable load. Note that the
processing load does not even depend on other system pa-
rameters such as the network size, the average number of
resources published by a node and so on, which confirms
the scalability properties of the Antares algorithm.

In the Introduction of the paper, we briefly mentioned
that the reorganization and sorting of descriptors can be ex-
ploited by a semi-informed discovery algorithm. According
to this algorithm, query messages travel the network ran-
domly until they get close to a region of interest, and then
they may be directly driven to peers which have a large num-
ber of useful descriptors. As an example, one can examine
the last graph of Figure 2: if a discovery operation is is-
sued to search for ”red” descriptors (i.e., descriptors having
keys equal to [1,0,0]), a blind search can become informed
if a query message gets to a peer whose color is sufficiently
similar to red. From that point, the query can be driven to-
wards ”red” peers. This can be simply done by making this
query hop to the neighbor peer whose descriptors are the
most similar to the target descriptor specified in the query.

Previous work [8, 9] showed that the performance of dis-
covery operations is strictly related to a better reorganiza-
tion of information, and preliminary experiments are fully
confirming this observation also in the context of Antares.

Finally, the spatial sorting of descriptors enables the pos-
sibility of effectively serving range queries, since descriptors
indexed by similar keys are likely to be located in neighbor
hosts. The confirmation of this intuition is one of the main
objectives of current work.

4. CONCLUSIONS
In this paper we introduced and evaluated Antares, an

algorithm inspired on ant behavior whose aim is to build a
P2P information system of a Grid. Through the evaluation
of simple probability functions (pick and drop), a number
of ant-inspired agents replicate and move the descriptors of
Grid resources from host to host, and this way disseminate
and reorganize these descriptors on the network.



Antares achieves an effective reorganization of informa-
tion, since descriptors are spatially sorted on the network
and, in particular, descriptors indexed by equal or similar
binary keys are placed in neighbor Grid hosts. This was
confirmed in the paper both with a graphical description
based on the RGB model and with the analysis of perfor-
mance measures, in particular of a homogeneity index based
on the cosine similarity between binary vectors.

The resulting P2P information system is basically un-
structured because there is no predetermined association be-
tween resources and hosts, but thanks to the work of agents,
the spatial sorting of descriptors allows to retain important
benefits of structured P2P systems, such as the possibility
of driving discovery messages towards useful descriptors and
effectively managing range queries.

Antares is scalable and robust with respect to the varia-
tion of algorithm and network parameters. In particular, the
reorganization of descriptors performed by Antares sponta-
neously adapts to the ever changing environment, for exam-
ple to the joins and departs of Grid hosts and to the changing
characteristics of resources. This results from the decentral-
ized, self-organizing and adaptive features of Antares, which
are borrowed by the corresponding biological system.
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